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Abstract. The Laplace likelihood method for estimating linear conditional quan-
tile functions with right censored data proposed by Bottai and Zhang (2010) is
demonstrated to be highly non-robust.

1. Introduction

Bottai and Zhang (2010) have recently proposed a method of estimating linear
conditional quantile functions for right censored data based on an asymmetric Laplace
likelihood formulation. They assert that their procedure is both more accurate and
faster than prior proposals by Portnoy (2003) and Peng and Huang (2008). The
objective of this note is to demonstrate that neither of these claims are correct.

2. Inconsistency of the Bottai and Zhang Estimator

The flaw in the proposed estimator is immediately apparent from consideration
of the simplest median regression setting, where, in effect, it is assumed that the
event times, Ti, conditional on covariate vector, xi, arise from the double exponential
(Laplace) density,

f(t|x) =
1

4σ
exp(−|t− x>β|/2σ),

with corresponding distribution function,

F (ti|xi) =
1

2
(1 + sgn(t− x>β)[1− exp(−|t− x>β|/2σ)],

For right censored data with Yi = Ti ∧ Ci and censoring indicator, δi = I(Ti < Ci),
arising from such a parametric model we have the likelihood,

`n(β, σ) =
n∑

i=1

δi log f(yi|xi) + (1− δi) logF (yi|xi)

and we can optimize with respect to (β, σ). Optimizing leads to a weighted quantile
regression procedure with weights depending upon the estimated scale parameter
σ̂. This weighting is asymptotically the same as that introduced by Portnoy (2003)
provided the Laplacian distributional assumption holds.

In the uncensored case, so δi ≡ 1, it is easily seen that the estimation of β is in-
dependent of σ, reducing to conventional median regression, and σ̂ becomes simply
the mean absolute error of the median regression fit. Thus, the Laplacian assumption
is harmless. However, in the censored case, the estimation of β and σ become in-
extricably linked, so when the distributional assumption fails, the weights produced
by the Laplace likelihood are no longer correct and the procedure fails to yield a
consistent estimator. Note that this is the case even when the errors are Laplace
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if one is estimating a quantile other than the median with the asymmetric version
of the Laplace likelihood, and in non-iid error conditions the situation is even more
problematic since a single scale parameter based on the mean absolute error no longer
provides a reliable way to estimate the weighting process. This failing is apparent in
the simulation experiments reported in the next section.

3. Some Simulation Evidence

Bottai and Zhang write,

On the whole, we found that the performance of Portnoy’s and Peng
and Huang’s methods was poorer than that of Wang and Wang (2009).
. . In all the simulation scenarios considered, Laplace regression was
consistently better than Wang and Wang’s method in terms of bias
and [coverage probability].

To reevaluate the finite sample performance of the procedure we have tried to re-
produce some of the simulation results of Bottai and Zhang (2010). This is somewhat
difficult, since the simulation design is incompletely described, however we believe
that the setting described below is quite similar to theirs. We focus on the compar-
ison with Portnoy’s estimator. We consider nine distinct models. There are three
specifications of the covariate effects

[M1] Qlog Ti|xi
(τ |xi) = −2 + 6x1i + F−1u (τ),

[M2] Qlog Ti|xi
(τ |xi) = 1 + 2x2i + 3x3i + F−1u (τ),

[M3] Qlog Ti|xi
(τ |xi) = −2 + 6x1i + x1iF

−1
u (τ),

and there are three choices of the quantile function, F−1u : Standard Gaussian, Gumbel
with scale π/

√
3, and t3 with scale

√
3, designated F1, F2, and F3 respectively in Table

1. The covariates are generated iid-ly from standard uniform, standard Gaussian and
Bernoulli (p = 0.5) distributions respectively. The precise nature of the censoring
used in the Bottai-Zhang simulations is somewhat unclear, but they comment that
the censoring variable, Ci is uniformly distributed on [0, a] with a chosen for each
model “to make the censoring rate approximately equal to 20 and 40%” [sic]. In
the simulations reported here, this same uniform censoring is employed with a = 35
for models M1 and M3, and a = 150 for model M2. This yields between 1/4 to
1/3 censoring in each of the nine models investigated. In all cases we estimate four
coefficients for the three quartiles and compare performance of the Bottai-Zhang
estimator with that of Portnoy’s crq estimator as implemented in the quantreg R
package of Koenker (2010). Prior comparisons reported in Koenker (2008) indicate
that the Peng and Huang (2008) estimator performs very similarly to that of Portnoy
(2003). For the implementation of the Bottai-Zhang estimator we have used the code
provided in the electronic supplement to their published paper.

Before considering all nine models we conducted a preliminary exercise with the
simplest of the nine, model M1 with Gaussian error. In Figures 1 and 2 report
bias and (scaled) root mean squared error for the Bottai-Zhang estimator and the
Portnoy estimator, for four sample sizes: n ∈ {100, 500, 1000, 10, 000}. There are
four parameters for each of the fitted models, and we evaluate performance for the
three quartile estimates. Figure 1 reports the absolute value of the bias scaled by
100, for the two estimators. Figure 2 reports root mean squared errors scaled by the
square root of sample size n. In all cases 1000 replications were done.
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As can be seen in Figure 1, the bias of the Portnoy estimate is quite small and stable
over the range of sample sizes considered, however the Bottai-Zhang estimator has
quite substantial bias, somewhat attentuated by larger sample sizes, but remaining
quite substantial even at the n = 10, 000 sample size. The impact of this bias effect
is also apparent in Figure 2 where root mean squared errors particularly for the non-
zero coefficients β1 and β2 for the first and third quartiles are increasing in sample
sample size. Note that because the root mean squared errors are scaled by the square
root of sample size they should be quite stable with respect to n, and we see that
this is true for the Portnoy crq estimator, but it is not the case for the Bottai-Zhang
Laplace likelihood estimator.

log(n)

B
ia

s

0

10

20

30

40

5 6 7 8 9

●

● ● ●
● ● ● ●

beta[1]
tau = 0.25

●

● ● ●

● ● ● ●

beta[2]
tau = 0.25

5 6 7 8 9

● ● ● ●● ● ● ●

beta[3]
tau = 0.25

●
● ● ●●
● ● ●

beta[4]
tau = 0.25

●

● ● ●
● ● ● ●

beta[1]
tau = 0.5

●

● ● ●
● ● ● ●

beta[2]
tau = 0.5

● ● ● ●● ● ● ●

beta[3]
tau = 0.5

0

10

20

30

40

● ● ● ●● ● ● ●

beta[4]
tau = 0.5

0

10

20

30

40

●

●
●

●
●

● ● ●

beta[1]
tau = 0.75

5 6 7 8 9

●

●

●

●

● ● ● ●

beta[2]
tau = 0.75

● ● ● ●● ● ● ●

beta[3]
tau = 0.75

5 6 7 8 9

●
●

● ●● ● ● ●

beta[4]
tau = 0.75

Figure 1. Absolute Values of Bias (scaled by 100) for the Portnoy
(magenta filled circles) and Bottai-Zhang (blue open circles) censored
quantile regression estimators.

In Table 2 we report comparative performance of the Bottai-Zhang (Laplace like-
lihood) estimator relative to the Portnoy crq estimator for all nine models. In all
cases n = 200 and 1000 replications were done. Entries in the table represent ra-
tio of root mean square errors for the two methods, with entries greater than one
indicating superior performance for the Portnoy estimator. As is evident from the
table the Portnoy method dominates the Bottai-Zhang estimator in all of the cases
investigated.

4. Computational Speed

Finally, we come to the Bottai-Zhang claim that their estimator, as implemented
in R with the Nelder-Mead option of the R function optim, is faster than the Portnoy
estimator. This is truly puzzling, since our R timings of a typical instance of the
simulation estimation of the three quartiles is roughly 40 times faster for the Portnoy
method than the Bottai-Zhang method when the sample size is 500, 20 times faster
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Figure 2. Root mean squared error (scaled by
√
n) for the Portnoy

(magenta filled circles) and Bottai-Zhang (blue open circles) censored
quantile regression estimators.

when n = 1000, and even at n = 10, 000 is slightly faster despite the fact that it has
estimated the model at more than 100 τ ’s rather than only three. These timings were
made without any bootstrapping.

5. Conclusions

We cannot offer any explanation for what went wrong – suffice it to say that both of
the central claims of Bottai and Zhang (2010) fail to stand up to closer examination.
As for the “heuristic interpretation” offered for the Laplace likelihood approach, it is
worth mentioning again that in the uncensored case their method reduces to conven-
tional quantile regression, so the scale parameter estimation is harmless, but it should
also be emphasized that the proposed Nelder-Mead algorithm is a poor alternative
to standard linear programming methods. In the censored case, the scale parameter
of the Laplace likelihood is not so innocuous, it is unable to adapt to the myriad
possibilities that give rise to the linear conditional quantile model, and consequently
its performance is inevitably poor.
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Coefficient M1 M2 M3
F1 F2 F3 F1 F2 F3 F1 F2 F3

τ = 0.25

β̂0 1.19 1.15 3.41 1.41 1.34 6.29 1.21 1.19 6.17

β̂1 1.30 1.17 1.94 1.37 1.37 3.75 1.41 1.24 3.26

β̂2 1.12 1.02 2.78 1.25 1.09 4.87 1.26 1.07 4.93

β̂3 1.28 1.09 3.46 1.50 1.19 5.70 1.53 1.16 6.48
τ = 0.5

β̂0 1.12 1.31 4.40 1.25 2.06 7.34 1.37 1.79 5.90

β̂1 1.07 1.31 2.08 1.17 2.01 2.51 1.27 1.90 3.01

β̂2 1.05 1.10 3.64 1.15 1.44 3.13 1.25 1.30 4.40

β̂3 1.08 1.25 2.72 1.22 1.60 3.25 1.35 1.64 4.06
τ = 0.75

β̂0 2.54 3.82 16.51 2.60 3.35 19.08 3.75 6.10 21.78

β̂1 2.00 3.43 4.82 1.83 3.38 5.84 2.71 4.61 6.42

β̂2 2.26 2.51 9.14 1.42 1.80 14.33 3.73 2.91 15.98

β̂3 1.85 3.70 9.92 1.65 2.18 9.06 2.74 5.57 12.71

Table 1. Ratio of Root Mean Squared Errors: Table entries report the
ratio of the RMSE for the Bottai-Zhang (Laplace likelihood) estimator
to the corresponding Portnoy crq estimator, so entries larger than one
indicate superior performance for the Portnoy method. All entries are
based on 1000 replications.

Portnoy, S. (2003): “Censored Quantile Regression,” Journal of American Statistical Association,
98, 1001–1012.

Wang, H. J., and L. Wang (2009): “Locally Weighted Censored Quantile Regression,” Journal
of American Statistical Association, 104, 1117–1128.


