CENSORED QUANTILE SURVIVAL WITH CURE
ROGER KOENKER AND NAVEEN NARISETTY

ABSTRACT. We describe a quantile regression model for survival
data that allows a positive proportion of subjects to become unsus-
ceptible to recurrence of disease following treatment. Our approach
follows recent work of Wu and Yin (2013, 2017). We compare two
estimation strategies proposed by Wu and Yin with a third “data
augmentation” approach based [Yang et al. (2016). The methods
are illustrated with data from a Lung Cancer survival study. Soft-
ware and documentation are provided in R.

1. INTRODUCTION

Motivated to some degree by recent progress in cancer treatment
there has been increasing interest in survival analysis models that ac-
commodate a probability of “cure,” that is a positive treatment effect
that lengthens survival prospects to the extent that probability of re-
currence or death from the original disease is reduced essentially to
zero. Estimating such models from conventional survival data alone
is obviously challenging since we must distinguish cured subjects from
those merely censored by various aspects of the study design and still
susceptible to the disease. Quantile regression models offer an attrac-
tive framework for such modeling since they provide a flexible, local
specification of covariate effects in general, and treatment effects in
particular.

In recent work Wu and Yin| (2013, 2017 have proposed both estimat-
ing equation and multiple imputation methods for quantile regression
models with cure. Building on their work this note describes some
further developments of these methods along with testing and docu-
mentation of new software implementations in R.

2. THE MODEL

The quantile regression survival model as introduced in |Koenker and
Geling| (2001)), [Portnoy| (2003) and Peng and Huang| (2008) assumes
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that the tth conditional quantile functions of the possibly transformed
survival time T are given by,

Qr (X =x;) =x{ (7).

Typically, as in the classical accelerated failure time (AFT) model,
survival times are log transformed and subject to censoring from the
right. The possibility of cure is introduced via a latent variable, 1,
modeled as a binary response, so

=P = 1lz) = n(z{y),

depends on covariates as mediated by the link function, 7t. In Wu and
Yin, 7t is logistic, but we may consider other potential choices. When
1N = 1 we will say that subject 1 is susceptible to the event of interest,
while if n; = 0 they are unsusceptible, thus,

\N(:nT—I— (1—mn)oo,

subject to the usual constraints of censoring. We observe, Y = YAC,
where C denotes the censoring time, and A = I(Y < C). We must
assume, further, that Y and C are conditionally independent given the
covariates X and Z.

Under these conditions we can define the counting process Ni(t) =
A;I(Y; < t), and the cumulative hazard function,

Ay (thxi, zi) = —log(1 — mi(z{ v)Fr(tix;))
yielding the resulting martingale,
Mi(t) = Ni(t) — Ay(tlxi, zi),

which can be exploited as in [Peng and Huang (2008)) to construct an es-
timating equation for the quantile regression process, (1), conditional
on .

Wu and Yin (2013) initially proposed an estimation strategy that
alternated between estimation of y and {3, but acknowledged that the
procedure was unstable, and sometimes failed to converge. This was
also our experience, so we have focused here on three alternative es-
timation strategies: one that replaces the parametric Peng-Huang es-
timation method for (3(t), by a nonparametric “local Nelson-Aalen”
estimator, a second that relies on multiple imputation as proposed in
Wu and Yin (2017)), and a third that extends the data augmentation
approach introduced in [Yang et al.| (2016)). We will describe each ap-
proach briefly, before turning to a comparison of their performance.
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3. THE ESTIMATORS

An advantage of the parametric QR model is that it allows the re-
searcher to be quite flexible about how many, and the way that co-
variates enter into the model, while maintaining the linear parametric
structure familiar from regression modeling. From an asymptotic view-
point this is reflected in parametric rates of convergence for the estima-
tor of B(t). The downside of this in the presence of censoring is that it
requires a global (linear) specification of the covariates effects in order
to justify the weighting schemes used to account for the censoring.

3.1. Local Nelson-Aalen. Building on prior work of Beran| (1981)),
Dabrowska (1987) and others, [Wang and Wang| (2009)) proposed esti-
mating censored QR models using a local, kernel weighted, version of
the Kaplan-Meier estimator. [Wu and Yin| (2013)) adapt this approach
to construct a local Nelson-Aalen estimator; for cure applications this
has the advantage that an estimating equation for y can be constructed
that avoids any global parametric specification of the quantile specific
effects. The difficulty with this approach, of course, is that specifi-
cation of kernel and its associated bandwidths becomes increasingly
problematic as the dimension of the covariate space grows.

3.2. Multiple Imputation. Wu and Yin| (2017) extend their prior
approach by noting that conditional probabilities of subjects being un-
cured can be computed from the local Nelson-Aalen method and used
to impute 1’s for the full sample. Of course, for subjects with A; =1
these probabilities are necessarily one. The imputed n’s could be used
to generate an updated estimate of vy, leading to an updated estimate
of A, and this process could be continued until some form of conver-
gence is achieved. However, the Wu and Yin (2017) approach updates
only the 3(t) parameters. Such imputation schemes can be expected
to improve upon the earlier estimating equation equation method, but
it still suffers from the inherent drawbacks of the local Nelson-Aalen
approach.

3.3. Data Augmentation. The data augmentation estimator estends
the approach introduced in [Yang et al.|(2016) and shares some features
of the imputation method. In contrast to the two prior estimation
methods, however, data augmentation relies on the linear parametric
specification of the QR process allowing us to more easily accommodate
several covariates in X. An initial estimator of the QR process, (1) on
the grid T4, ...,TMm is obtained by simply computing the median regres-
sion estimator B(l /2), based on only the uncensored observations and
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imposing the common slope assumption, so B(T) = B(1/2) + R1(7)es
where Bl (T) denotes the ordinary sample quantiles of the residuals from
the median fit and e; is the first unit basis vector of RP. An initial
estimator of y is obtained by (naively) estimating the binary response
model of 6 on Z, i.e. assuming provisionally that all the censored
subjects are cured. Given these initial estimators, we may begin the
iteration:

e Generate n;’s,

e Reestimate vy,

e Generate the censored y;i’s,
e Reestimate ().

Accumulating the y’s and B(T)’s from this iteration, point estimates
can be obtained by simply averaging over the corresponding iterates.
For both reestimation steps there is the option to resample with replace-
ment from the relevant full sample as in the standard x,y bootstrap.

4. SOFTWARE IMPLEMENTATION

In this section we will briefly describe the R implementation of the
foregoing methods. The main function that provides a unified interface
to all three estimation methods is cqr (), pronounced “cure.” Not to
be confused with crq(), which is the umbrella function for censored
quantile regression applications in the R package quantreg, we expect
eventually to try to fold the functionality of cqr into quantreg and
perhaps even into crq, but for the moment it seems prudent to keep
them separate.

The cqr function uses the extended formula interface of the package
Formula, so one writes the model asy | d ~ X | Z where y denotes
the observed response, d the censoring indicator, X the covariates of
the QR model, and Z the covariates of the binary response model.
The remaining arguments are standard, with the method argument
taking one of three possible values, LNA, Imp or DA corresponding to
the methods discussed in the previous section. Users have the option
of specifying a vector of T’s of interest when evaluating B(T) as well as
the grid of T’s used for the intermediate computations. The latter, by
default, is set to the percentiles.

The default link function for the binary response cure component
of the model is logistic, but other link functions compatible with the
R glm function are easily available. These include probit and cauchit,
but one could also use one of the parametric links available from the
package glmx, |Zeileis et al.| (2015)).
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gtab Bias MSE

LNA Imp DA LNA Imp DA
Intecept —0.007 —0.007 —0.001  0.102 0.102 0.115
Slope 0.060  0.060  0.065 0.296 0.296 0.321

btab Bias MSE

LNA Imp DA LNA Imp DA
Intecept 0.063 0.009 —0.047  0.103 0.099 0.103
Slope 0.107 0.071 0.083 0.454 0.441 0.434

5. SIMULATIONS

We consider two distinct simulation settings, one that reproduces
that in [Wu and Yin (2017) and the other that is based on the Lung
Cancer data also analyzed in Wu and Yin (2017). In the former case
we have a single, uniformly distributed covariate, x, that determines
the cure proportion,

log(7ti/(1 — 7)) = vo +v1x4,
and the event time model,
Yi = IOgT' = f)o + lei + (1 + xi)ui

where u ~ N(0,1). Censoring is determined by x and a random uni-
form, R ~U[0,L) as,

Ci = I(Xi < 1/2)R1 + I(Xi = 1/2)(R1 + 1)

As in Wu and Yin| (2017)), we set y = (1,—1), B = (2,1) and L = 40.
Note, however, that this L, which represents the duration of the study in
clinical trial applications corresponds to a rather unrealistic, essentially
infinite value. We report results for our three estimators for both bias
and mean squared error (MSE) in Tables ??7 and ?7?; in the latter
we aggregate over the nine deciles. The experiment is based on 1000
replications. Performance of the three methods both in terms of bias
and MSE are quite similar.

We now briefly reconsider the lung cancer data considered in Wu and
Yin/ (2017).

Employing the same model as Wu and Yin, we report results from all
three fitting methods. The data consists of 280 observations with 64%
censoring. There are three covariates: tumor histology, patient age and
patient gender. All three are used in both the logistic cure model and
the QR survival model. Although we have used the same bandwidth
parameters for the local Nelson-Aalen estimation for the “LNA” and
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LNA Imp DA
Intercept 1.069  1.069  0.273

(0.646) (0.646) (0.285)
Histology —0.506 —0.506 —0.471
(0.563) (0.563) (0.326)
Age 0.731 0.731 0.591
(0.312) (0.312) (0.187)
Sex —0.686 —0.686 —0.258
(0.568) (0.568) (0.376)

TABLE 1. Estimates of the y parameters for the logistic
cure model, bootstrap standard errors in parentheses

“Imp” estimators, our estimates differ slightly from those reported in
Wu and Yin| (2017). Table|l|reports y estimates for the three methods,
while Figure 1| depicts (t) estimates. Standard errors and pointwise
confidence bands are based on 200 replications.

Again we see that the three methods produce similar conclusions. In
our judgement the data augmentation approach is preferable for several
reasons. It is less sensitive to the upper tail of quantile regression
model, it is more easily adaptable to several covariates, and avoids
inherently delicate bandwidth selection issues.

6. CONCLUSION

Quantile regression methods offer an attractive approach to estimat-
ing survival models with a positive cure proportion. Covariate effects
are flexibly modeled in the upper tail where the cure effect is most
salient. Here, we have adopted the modeling strategy of [Wu and Yin
(2013) and [Wu and Yin| (2017), however their estimation methods,
which are based on the local Nelson-Aalen approach of[Wang and Wang]
(2009) are compared with an alternative data augmentation approach
proposed recently by Yang et al| (2016|). The latter approach has a
number of advantages, and it is the approach we would recommend for
most applications.
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FiGure 1. Estimated Quantile Regression Coefficients
for the Lung Cancer Model: Comparison of three estima-
tors, the blue pointwise bands are based on 200 bootstrap

replications.
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