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Abstract

Convex optimization now plays an essential role in many facets of statistics. We briefly
survey some recent developments and describe some implementations of these methods
in R. Applications of linear and quadratic programming are introduced including quantile
regression, the Huber M-estimator and various penalized regression methods. Applica-
tions to additively separable convex problems subject to linear equality and inequality
constraints such as nonparametric density estimation and maximum likelihood estimation
of general nonparametric mixture models are described, as are several cone programming
problems. We focus throughout primarily on implementations in the R environment that
rely on solution methods linked to R, like MOSEK by the package Rmosek. Code is pro-
vided in R to illustrate several of these problems. Other applications are available in the
R package REBayes, dealing with empirical Bayes estimation of nonparametric mixture
models.

Keywords: convexity, optimization, linear programming, quadratic programming, second or-
der cone programming, semidefinite programming, lasso, quantile regression, penalty meth-
ods, shape-constrained methods.

1. Introduction

Optimality, in statistics as in the rest of life, is probably over-rated; better to be “not bad”
most of the time, than perfect once in a while. Tukey taught that, and Huber turned it
into a higher form of optimality, although for a partial recantation, see Huber (2009). Given
the apparently inescapable need for optimality, what can we do to keep the practical effort
of optimization to a minimum? The answer of course, the magic elixir of optimization, is
convexity. Without convexity we risk wandering around in the wilderness always looking for
a higher mountain, or a deeper valley. With convexity we can proceed with confidence toward
a solution.

While convexity plays an essential role in many aspects of statistical theory – it is crucial
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in the theory of estimation and inference for exponential family models, in experimental
design, in the underpinnings of the Neyman-Pearson lemma, and in much of modern decision
theory – our main objective will be to describe some recent developments in computational
statistics that rely on recent algorithmic progress in convex optimization, and to illustrate
their implementation in R (R Core Team 2014). In the remaining sections we will sketch some
basic unifying theory for a variety of convex optimization problems arising in statistics and
discuss some aspects of their implementation in R. In the final section we describe some future
developments that we would view as desirable.

2. Convex optimization

Convex optimization seeks to minimize a convex function over a convex (constraint) set.
When the constraint set consists of an entire Euclidean space such problems can be easily
solved by classical Newton-type methods, and we have nothing to say about these uncon-
strained problems. Instead we will focus on problems with more restrictive constraint sets,
usually polyhedral sets arising as the intersection of linear equality and inequality constraints.
Nonlinear inequality constraints are also sometimes of interest, but we should caution that
convexity of the constraint set prohibits nonlinear equality constraints.

The extremal conditions of Fermat have undergone a radical transformation since the 17th cen-
tury. Classical Lagrangian conditions designed to remove equality constraints were extended
by the Karush-Kuhn-Tucker (KKT) conditions to handle inequality constraints. Considerable
impetus for these developments was provided by the emergence of linear programming meth-
ods in the 1940’s, but it was not until barrier methods were introduced in the early 1980’s
that convex optimization really took off as a distinct field. Having seen how linear inequality
constraints could be incorporated into the Newton framework via log barrier penalties for lin-
ear programming, there was an inevitable torrent of work designed to adapt similar methods
to other convex optimization settings. Rockafellar (1993, p. 185) expressed this as

“In fact, the great watershed in optimization isn’t between linearity and nonlin-
earity, but between convexity and nonconvexity.”

We will thus begin with a brief discussion of linear programming problems and methods,
briefly describing some parallel developments for quadratic programming problems, and then
turn to more general problems beyond the linear-quadratic class.

For the reader interested in a more detailed treatment we might suggest Boyd and Vanden-
berghe (2004), although there are now numerous treatises that offer an overview of these
ideas, all of which owe an enormous debt to the seminal work of Rockafellar (1974, 1996).

2.1. Linear programming

Linear programming (LP) the optimization of a linear objective function subject to linear
equality and inequality (polyhedral) constraints, has become an indispensable tool of applied
mathematics. The seminal work of Kantorovich (1939) on such problems usually marks
the birth of convex optimization as a distinct subject of mathematical inquiry, although
the official reception of this paper in the West was delayed until its translation appeared
in Management Science. Meanwhile Dantzig (1951) and much related work had introduced
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similar methods and the first revolution of large scale linear programming was well underway.
These methods found immediate applications in decision theory and the emerging theory of
games, as surveyed by Karlin (1959), in addition to their more remunerative applications in
oil refineries and airline scheduling.

The second revolution in linear programming was sparked by Karmarkar (1984) who provided
the first compelling case for the advantages of interior point methods over earlier (exterior)
simplex methods. As noted by Gill, Murray, Saunders, Tomlin, and Wright (1986), Kar-
markar’s approach had been partially anticipated in earlier work on log-barrier methods by
Frisch (1956) and Fiacco and McCormick (1968) and by the ellipsoidal method of Khachiyan
(1979). But the stimulus of a more rigorous justification for the methods produced a vast out-
pouring of new research; freeing linear programming methods from their habitual paths along
the exterior edges of the constraint set also opened the way for a panoply of new methods
for non-polyhedral problems. Not only the classical task of (convex) quadratic programming,
looked suddenly very similar to linear programming, but new classes of problems as catalogued
by Nesterov and Nemirovskii (1987), fell under the interior point rubric in rapid succession.

Example 2.1. (Median regression) Least absolute error or median regression falls into
this class of linear objective functions constrained by linear equality and inequality constraints.
It has become a standard component of the statistical toolkit. Minimizing

n∑
i=1

|yi − x>i b| ≡ ‖y −Xb‖1, (1)

we obtain β̂ ∈ Rp as an estimate of the coefficients of a linear approximation of the conditional
median function of y given x, just as the corresponding squared error objective yields an
estimate of the coefficients of the linear approximation of the conditional expectation function.
The primal form of the linear program (1) is a bit unwieldy once one introduces appropriate
slack variables,

min
(u,v,b)∈R2n

+ ×Rp
{e>u+ e>v|y = X>b+ u− v}, (2)

but its dual form,
max
a∈Rn
{y>a|X>a = 1

2X
>e, a ∈ [0, 1]n}, (3)

is quite convenient for both simplex and interior point implementations. Here, e denotes an
n-vector of ones, and a denotes a dual vector that represents the “active set” indicators of
observations that determine the solution. Solutions take the form β̂ = b(h) = X(h)−1y(h)
where h denotes a p-element subset of the first n integers, X(h) denotes a p by p submatrix
of X with row indices h, and y(h) the corresponding p-vector from y. Thus, β̂ interpolates
p observations. And at a dual solution, α̂, points above the fitted hyperplane, H(x) = x>β̂
have α̂i = 1, while points below H(·) have α̂i = 0. Active observations that are on H(·) have
α̂i ∈ (0, 1).

When the dual problem is feasible, as it certainly is in the present instance, set a = 1
2e,

strong duality implies that convergence tolerances can be based upon the so-called duality
gap. Thus, if we have a primal feasible point b∗ with associated objective function value,
ϕP (b∗) = ‖y − Xb∗‖1, and dual feasible point a∗ with associated dual objective function
value, ϕD(a∗) = y>a∗, we are assured that b∗ and a∗ are ε-suboptimal in the sense that
the proposed solutions are each within ε = ϕP (b∗) − ϕD(a∗) of the optimal solution of the
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problem. This crucial feature of linear programming problems carries over to virtually all of
the problems we consider below.

Example 2.2. (Quantile regression) The extension of this median regression dual for-
mulation to quantiles other than the median is remarkably simple: replacing 1

2 by 1 − τ in
(3) yields an estimate of the coefficients of the τth conditional quantile function of y given
x. Standard parametric programming methods enable one to find the entire solution path
{(α̂(τ), β̂(τ)) : τ ∈ (0, 1)} very efficiently. As noted by Gutenbrunner and Jureckova (1992),
the dual process α̂ constitutes an important link to the classical theory of rank tests as de-
veloped by Hájek.

Example 2.3. (Piecewise linear regression) An alternative form of the linear program
for the `1 regression primal minimizes the sum of ui that dominate, for each i, both yi − x>i b
and its negative. This can be generalized for any piecewise-linear objective function with k
pieces,

min
b∈Rn
{e>u | cj(y −X>b) + dj � u for j = 1, . . . , k}.

Of course, the objective function still needs to be convex, which places the order requirement
on the slopes. The examples include not only the quantile loss function, but also max{0, |·|−ε},
corresponding to so-called ε-insensitive, or support vector regression of Vapnik (2000); it can
be also viewed as a piecewise-linear approximation of the Huber function (see the example
below).

If the regression likelihood is estimated via a nonparametric estimate that constrains the
shape of the estimated density to be log-concave, then the resulting loss function is convex and
piecewise linear. While the combined problem of estimating regression and residual density is
not convex – a demonstration of an unfortunate fact that convexity is frequently lost in more
structured problems – the convex task of piecewise linear regression can be bundled with a
convex task of estimating a log-concave density in an alternating backfitting iteration scheme.

Simplex algorithms for computing solutions to (3) can be formulated as moving from one b(h)
to another, at each step removing the element of h that allows movement in the direction
of steepest descent of the objective function, among the 2p available directions, and then
introducing a new element of h by solving a one dimensional weighted quantile problem. See
the discussion in Section 6.2 of Koenker (2005) for further details.

Simplex iterations move along the exterior edges of the constraint set toward a solution
vertex. This iteration is usually quite efficient: indeed why simplex was so efficient became
an important research problem in the 1970s. Interior point algorithms take another route:
starting from the center of the constraint set they take a series of Newton-like steps based
on a deformed version of the constraint set. In the most common implementatons, inequality
constraints are replaced by log barrier (Lagrangian) penalty functions that introduce a smooth
contribution to the objective function thus ensuring a proper Hessian. Relaxing the log-barrier
penalty parameter defines a homotopy, the central path, that connects the initial central point
to the vertex solution on the exterior of the constraint set. As described in more detail in
Portnoy and Koenker (1997), for bounded variable LP problems like (3) interior point methods
begin to dominate earlier simplex methods when sample sizes exceed 100,000 or so.

The R package quantreg (Koenker 2013). contains implementations based on the Barrodale
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and Roberts (1974) version of the simplex algorithm, as well as interior point implementations
based on the Mehrotra (1992) predictor-corrector approach. Several variants of the latter
approach are provided. Linear inequality constraints on β can be incorporated into (1) quite
easily. When the parametric dimension, p, of β is large the Newton steps of the interior point
iteration may become onerous, however in many cases this can be remedied by exploiting
sparsity of the design matrix, X. The difficult aspect of the interior point computation
involves solving linear equations for the Newton steps. When the column dimension of X
is large, and X is sparse, these solutions are typically done by Cholesky decomposition of
matrices of the form X>WX with diagonal W . These matrices are themselves (usually)
sparse, and Cholesky factorization is quite efficient with current algorithms as described in
more detail in Koenker and Ng (2005). When problem sizes and sparsity fail to conform to
these requirements one must resort to gradient descent methods about which we will have a
little more to say in the final section.

2.2. Quadratic programming

Quadratic programming involves the minimization of a positive semi-definite quadratic ob-
jective function subject to polyhedral constraints. There are many applications of quadratic
programming (QP) in statistics, typically involving Gaussian likelihoods constrained by some
form of linear inequalities. The Markowitz mean-variance portfolio problem is perhaps the
most prominent such example. Shape constrained regression examples have gained recent
attention, and the introduction of sparse regularization methods like lasso, has greatly stimu-
lated interest in computational methods for such problems. Before considering these examples
we begin with a more classical one.

Example 2.4. (Huber’s M-estimator) Inspired by piecewise-linear regression formu-
lations, one can also formulate Huber’s M-estimator as a quadratic program. The primal
formulation minimizes

∑
i ρσ(yi − x>i b), where ρσ is the Huber function (with tuning param-

eter σ)

ρσ(u) =

{
u2/(2σ) when |u| ≤ σ,
|u| − 1

2σ |u| > σ

(a more common form in the literature is equal to σρσ, but both obviously give the same
estimates). After the inclusion of slack variables the primal is again somewhat tricky, but the
dual,

max
a∈Rn
{12σa

>a+ y>a | X>a = 0, a ∈ [−1, 1]n},

exhibits striking similarity with the version of the dual of `1 regression obtained from (3) by
a 7→ 2a−1 change of variable – in which the dual variables can be interpreted as (generalized)
signs of residuals.

The role of duality in quadratic programming is closely aligned with the LP case. If we write
the canonical primal QP as,

min{c>x+ 1
2x
>Qx | Ax− b ∈ T, x ∈ S}

where Q is a positive semi-definite matrix and again S and T denote convex cones. The dual
becomes

max{b>z − 1
2y
>Qy | c+Q>y −A>z ∈ S∗, z ∈ T ∗},
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where S∗ and T ∗ denote the dual cones, defined as K∗ = {y | x>y ≥ 0, x ∈ K}.

Example 2.5. (Penalized quantile regression) We can illustrate this by considering
a quantile regression problem subject to quadratic constraints (Gaussian penalty) on the
coefficients,

min
b∈Rp

n∑
i=1

ρτ (yi − x>i b) + b>Sb.

Problems of this type arise in both parametric and nonparametric settings. Reversing the roles
of the objective and constraint we could encompass various versions of the lasso. Proceeding
as in the unconstrained case we can split the residual vector in its positive and negative parts
and write x = (b, u, v) in the primal formulation. All is as before except that we have the
quadratic term with semi-definite Q, in fact Q is only non-zero in the upper diagonal p by p
block S, which we will assume is invertible, so we can further simplify the problem to obtain
the dual,

max{(y + (1− τ)XS−1X>e)>a− a>XS−1X>a | a ∈ [0, 1]n}

The objective function is an instance of a separable quadratic problem; in fact, any quadratic
problem can be reformulated as such via Cholesky factorization expressing x>Qx = x>F>Fx
as a squared quadratic norm of Fx. The problem can be then rewritten as

min{c>x+ 1
2y
>y | Ax− b ∈ T, Fx = y, x ∈ S}

More constraints have been added, but the separability in y is usually advantageous. Typ-
ically, we have reduced the number of non-zeros required to represent the problem by the
diagonalization and this reduces the computational effort of the solution.

Example 2.6. (Support vector machine with hinge loss) In the the field of statistical
learning QP became a standard technology long ago: binary classification by support vector
machines combines quadratic penalization with the so-called hinge loss function. The dual
formulations is

min{
∑
i

ai − 1
2

∑
i,j

aiajyiyjK(xi, xj) | y>a = 0, a � 0},

where yi are ±1 indicators and K(xi, xj) are the values of the positive definite function K
(Mercer kernel) at the corresponding classifiers xi. See Vapnik (2000). Many instances of
this scheme can be found in the R package kernlab (Karatzoglou, Smola, Hornik, and Zeileis
2004).

2.3. Second-order cone programming

Modern QP implementations reformulate problems in terms of generalized inequalities em-
ploying second-order cone constraints. The QP domain is thus extended to a more general
class of quadratic programs with quadratic constraints; the latter were not permitted in tra-
ditional QP formulations that allowed quadratic components only in the objective function.
These so-called second order cone programs (SOCP) include constraints of the form

‖Ax+ b‖ ≤ c>x+ d,
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which require that the affine function (y, t) ≡ (Ax + b, c>x + d) lie in the second order cone
defined as K = {(y, t) | ‖y‖ ≤ t}. A canonical formulation of SOCPs can be expressed as

min
x∈Rn
{c>0 x | A0x = b0, ‖Aix+ bi‖ ≤ c>i x+ di, i = 1, 2, · · · ,m}.

Using cone constraints, quadratic problems can be formulated in “epigraph” form: the objec-
tive is linear, and all quadratic terms appear in the constraints. The form of the quadratic cone
K as defined above suffices for all these needs; however, sometimes it may be more straight-
forward to use so-called rotated quadratic cones, defined as K = {(y, t, s) | ‖y‖2 ≤ 2ts}.
Compare the implementations of the lasso and group lasso in the Appendix.

Example 2.7. (Random linear constraints) To illustrate such SOCP methods, suppose
that we wish to minimize a linear objective function subject to random linear constraints in
of the form:

P(a>i x ≤ bi) ≥ η i = 1, · · · ,m,
where the vectors ai are multivariate Gaussian with means αi and covariance matrix Ωi. Thus,
our constraints may be rewritten as,

α>i x+ Φ−1(η)‖Ω1/2x‖ ≤ bi,

so provided that η ≥ 1/2 we have a SOCP.

2.4. Generalized inequalities and cone programming

Cone programming further expands the class of convex optimization problems and leads to
many important applications. Following Boyd and Vandenberghe (2004), a cone, K ∈ Rn is
proper if it is closed, convex, has non-empty interior, and is pointed, i.e., x ∈ K and −x ∈ K
implies x = 0. Proper cones can be used to define partial orderings on Rn via generalized
inequalities: x �K y iff y − x ∈ K and similarly, x ≺K y iff y − x ∈ int(K).

An important example is the familiar partial order of positive semidefinite (psd) matrices. Let
Sn denote the set of n-dimensional symmetric matrices, and Sn+ ⊂ Sn the set of psd matrices.
The set Sn+ is a convex cone since for any A and B in Sn+ and positive real numbers, θ1 and
θ2,

x>(θ1A+ θ2B)x = θ1x
>Ax+ θ2x

>Bx ≥ 0

for all x ∈ Rn. Sn+ is a proper cone with interior consisting of the positive definite matrices,
so we can write for K = Sn+, A �K B to mean A−B is psd.

Generalized inequalities can be used to formulate conic optimization problems like,

min{c>x | Ax = b, x �K 0}.

As a special case, if K = Sn+ we obtain semi-definite programs, SDP, of the form,

min{c>x | A0x = b,
n∑
i=1

xiAi �K B}.

where B and Ai : i = 1, · · · , n are all symmetric matrices. Another subclass of conic problems
are the SOCP’s, since we can write,

min{c>0 x | A0x = b, −(Aix+ bi, c
>
i x+ di) �Ki 0, i = 1, · · · ,m}.
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for Ki = {(y, t) ∈ Rki+1 | ‖y‖ ≤ t}.
Matrix norm optimization can also be cast into conic form. Suppose A(x) = A0 +

∑n
i=1 xiAi

for Ai ∈ Rp×n and we wish to minimize the spectral norm ‖A(x)‖, the maximum singular
value of A(x). We can rewrite this as

min{a ∈ R | A(x)>A(x) � aI}.

Such problems are closely related to recent work on matrix completion and robust principal
component analysis. Suppose in the spirit of the recent Netflix competition, Feuerverger, He,
and Khatri (2012), we could like to minimize,

f(A) =
∑

(i,j)∈C

|Yij −Aij |

where C denotes the set of complete entries provided for the matrix, A ∈ Rm×n. Some form of
regularization is necessary: motivated by lasso methods for regression, several authors have
recently considered penalization of f(A) by the nuclear norm ‖A‖∗, i.e., the sum of of the
singular values of A, yielding,

min
A∈Rm×n

{f(A) | ‖A‖∗ ≤ t/2}

This formulation can be viewed as an attempt to find a minimal rank decomposition, A =
UV > to approximate the matrix A. This problem can be reformulated as a semi-definite
program as follows: let A = UV > with U ∈ Rn×r, V ∈ Rm×r and

Z =

(
U
V

)
(U> V >) =

(
UU> UV >

V U> V V >

)
≡
(
Z11 Z12

Z21 Z22

)
.

Then f(A) = g(Z) ≡ f(Z12) and since ‖A‖∗ = minA=UV >
1
2(Tr(UU>) + Tr(V V >)), we have

the SDP,

min{g(Z) | Z � 0,Tr(Z) = t}.

Linear inequality constraints are typically transformed by interior point methods into log
barrier constraints; generalized inequality constraints require an analogous treatment. For
this purpose it is convenient to define “generalized logarithms” for proper cones, K ⊂ Rn.
The function, λ : Rn → R, is a generalized logarithm for K if (i) λ is closed, concave, twice
continuously differentiable on dom(λ) = int(K), and ∇2λ(x) ≺ 0 for x ∈ int(K), and (ii)
there exists a constant θ > 0 such that for all x �K 0 and y > 0, λ(yx) = λ(x) + θ log(y).
When K = Rn+ we can use λ(x) =

∑
log(xi), while for the second order cone K = {(x0, x) ∈

Rn+1 | ‖x‖ ≤ x0} we can employ λ(x0, x) = log(x20 − ‖x‖2), and for the positive semi-definite
cone K = Sn+, we have λ(A) = log(|A|). For further details, consult Boyd and Vandenberghe
(2004) and Nesterov and Nemirovskii (1987).

2.5. Separable convex programs

Interior point strategies for convex optimization crucially rely on sparsity of the relevant
Hessian matrix. Given sparsity, Cholesky decomposition offers an efficient means of computing
Newton type steps, without sparsity problems quickly become intractable as problem size
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grows. Another large class of sparse convex problems that is particularly well suited to
statistical applications is the class of separable nonlinear programs of the form,

min{
∑

ϕ(xi) ‖ Ax = b, x �K 0}.

Example 2.8. (Mixture models) An important instance of such problems is the classical
Kiefer and Wolfowitz (1956) nonparametric maximum likelihood estimator for mixture mod-
els. Additive separability of the log likelihood ensures that the objective function contributes
sparsely to the Hessian. Suppose we observe X1, · · · , Xn drawn iid-ly from the mixture den-
sity,

g(x) =

∫
ϕ(x, θ)dF (θ),

where ϕ is a known parametric density and F is an unknown mixing distribution. Koenker
and Mizera (2014) propose a discrete formulation of the Kiefer-Wolfowitz MLE as,

min{−
∑

log(gi) | Af = g, f ∈ S}.

where A is an n by m matrix with typical element (ϕ(xi, θj)), with the θj defined on a
relatively fine grid, and S denotes the unit simplex in Rm. Convexity of − log(·) implies that
we have a convex object subject to linear equality and inequality constraints thereby ensuring
a unique solution. This is quite remarkable in view of the notorious multimodality observed
in most finite dimensional mixture settings. The dual to the original variational problem can
be written as,

max{
n∑
i=1

log(νi) |
n∑
i=1

νiϕ(xi, θ) ≤ n, for all θ ∈ R}.

and a discretized version of this dual has proven to be very efficient in a wide variety of
mixture problems. Since Laird (1978) the EM algorithm has been used to compute the
Kiefer-Wolfowitz estimator, however it is our experience that modern interior point methods
are vastly superior, both in terms of accuracy and computational effort.

Example 2.9. (Penalized density estimation) Maximum penalized likelihood methods
for density estimation also fall nicely into the separable convex programming framework.
Good (1971) proposed a nonparametric maximum likelihood estimator of a univariate density
subject to the smoothness constraint,

P (f) =

∫
((
√
f(x))′)2dx.

This penalty has the effect of shrinking f̂ toward densities with minimal Fisher information
for location. How natural this might be is an open question, and subsequent authors have
focused on other roughness penalties imposed on the log density. For example, Silverman
(1982) proposed the penalty,

P (f) =

∫
((log f(x))′′′)2dx,

which shrinks toward the normal density. Koenker and Mizera (2006) proposed total variation
penalties of the form,

P (f) = TV ((log f)′) =

∫
|(log f)′′|dx.
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If we reparameterize the problem in terms of h(x) = − log f(x), we can write the variational
form of the problem as

min{
∑

h(xi) |
∫
|h′′(x)|dx ≤M,

∫
e−h(x)dx = 1}.

Again the problem can be discretized on a grid to enforce the integrability constraint and we
are left with a strictly convex objective subject to linear constraints.

Regularization of likelihood methods for density estimation by such seminorm penalties has
the feature that it require some form of λ-selection to control the degree of smoothness.
This often imposes an outer layer of optimization over the problems described above, a layer
whose non-convexity that (fortunately) places it outside the scope of the present survey. An
alternative regularization strategy that has attracted substantial recent attention replaces the
seminorm penalties by shape constraints. Imposing log-concavity, for example, is sufficient to
regularize density estimation by maximum likelihood. Recent work by Cule, Samworth, and
Stewart (2010), Dümbgen and Rufibach (2009), Koenker and Mizera (2010), and Seregin and
Wellner (2010) have explored such methods and there is continuing work seeking to link this
approach to more complicated semi-parametric models.

3. Convex optimization in R

Many unconstrained convex optimization problems in statistics can be very efficiently solved
by some form of iteratively reweighted least squares. This class includes base R’s glm()

family and its many extensions. Linear equality constraints can generally be incorporated
by some form of projected gradient method. However, inequality constraints, whether linear
or nonlinear, pose new difficulties and require more sophisticated methods. We will briefly
survey existing R functionality for such problems with apologies in advance for contributions
we have overlooked.

In addition to the standalone R packages described below there are an increasing number of
R packages that provide interfaces to independent convex optimization solvers. We will focus
primarily on the Rmosek (Friberg 2014) interface to MOSEK (MOSEK ApS, Denmark 2011),
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/, but similar interfaces are available for CPLEX (IBM 2009), CSDP (Borchers 1999), and
Gurobi (Gurobi Optimization, Inc. 2014). We emphasize that we are restricting attention to
software intended for convex optimization; a broader overview of the optimization options
in R is available from the task views on optimization (Theussl 2014) and machine learning
(Hothorn 2014).

3.1. Linear programming

Most of the existing LP functionality in R is based on lpSolve Berkelaar et al. (2014) which in
turn is based on the open source project lp solve Berkelaar, Eikland, and Notebaert (2012),
employing a revised simplex algorithm and supporting problem formulation in most standard
formats. Alternative interior point methods are available via the quantreg package, like
lpSolve, problems can be formulated to exploit sparsity of the constraint matrix. But problem
formulations are currently confined to bounded variable forms that arise in the parametric
and nonparametric quantile regression setting.

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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Example 3.1. (Penalized quantile regression) Standard quantile regression models
can be estimated with the rq() function of the quantreg package. The syntax is similar to
the lm() function for mean regression in base R, and associated inference apparatus is also
similar: summary(), anova(), predict(), etc. The computational method for this estimation
is controlled by the method argument. By default, on small problems a variant of the Barrodale
and Roberts (1974) bounded variables simplex algorithm is used; on larger problems – by
default for n > 1000 – the interior point algorithm method = "fn" is used. Linear inequality
constraints of the general form Rb = r can be introduced by specifying the R and r arguments
to rq(). Model selection with the lasso penalty can be invoked with the method = "lasso".

Nonparametric quantile regression methods are invoked with the rqss() function of quantreg,
which can be used to fit additive smoothing spline models much like the mgcv package of
Wood (2006) for mean models, except that the Sobolev penalties in mgcv are replaced by
total variation penalties for rqss(). See Koenker (2011) for further details and examples.

Example 3.2. Another leading example of such problems is the Dantzig Selector of Candes
and Tao (2007):

min{‖β‖1 | ‖X>(y −Xβ)‖∞ < K},

where K = λσ with σ being the scale of the noise. This problem is closely related to the
standard lasso penalized mean regression problem as can be seen by noting that the vector
appearing in the `∞ norm is just the usual gradient of the unpenalized least squares problem.
It is easy to see that this can be reformulated as a linear inequality constrained `1 regression
problem, and as along as X is reasonably sparse can be solved efficiently by the interior point
methods available in the quantreg package. See the appendix for an implementation of this.
This formulation is used in the R package hdlm (Arnold 2013) for high dimensional linear
model estimation.

3.2. Quadratic programming

Several R packages include some QP functionality: the quadprog package of Turlach and
Weingessel (2013), and the ipop function in the kernlab package of Karatzoglou et al. (2004)
both provide interior point methods for a somewhat restrictive class of QPs. The function
solve_QP_SOCP of the package DWD of Huang, Haaland, Lu, Liu, and Marron (2013) imple-
ments the full QP formulation via the SOCP algorithm of Toh, Todd, and Tutuncu (1999),
used in SDPT3, the open-source software project for semidefinite programming (however, the
interface to its full capabilities seems to be still missing in R). More general formulations
are provided by the commercial developers. Several such applications using Rmosek will be
described below.

Example 3.3. (The lasso) Perhaps the most familiar statistical QP application in recent
times has been the lasso estimator of Tibshirani (1996) and Donoho, Chen, and Saunders
(1998),

β̂ = argmin{‖y −Xb‖22 + λ‖b‖1}.

In effect this is an attempt to approximate the solution of the combinatorial problem with
non-convex penalty, ‖b‖0 = Card{bi 6= 0}, by solutions for the convex `1 penalty. There are a
variety of methods that have been proposed for computing β̂, including the LARS approach
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of Efron, Hastie, Johnstone, and Tibshirani (2004). To illustrate the conic programming
approach to such QPs, we rewrite the problem as

min{λ‖b‖1 + t | v = y −Xb, ‖(v, (t− 1)/2)‖2 ≤ (t+ 1)/2}.

This equivalence follows immediately by noting that the constraint, ‖v‖22 ≤ t, is equivalent
to the second-order cone constraint, ‖(v, (t− 1)/2)‖2 ≤ (t+ 1)/2. An implementation of this
formulation, as an Rmosek conic program, is given in the Appendix; the test problem was
again adapted from Belloni, Chernozhukov, and Wang (2011).

Example 3.4. (Square-root lasso) Belloni et al. (2011) have recently proposed a modified
version of the lasso in which the fidelity term of the objective function is replaced by its square
root,

β̂ = argmin{‖y −Xb‖2 + λ‖b‖1}.

This replacement, albeit numerically equivalent to lasso (with different λ, but in one-to-one
correspondence), has several advantages, most notably it simplifies the choice of λ. In this
form the conic problem is even simpler,

min{λ‖b‖1 + t | v = y −Xb, ‖v‖2 ≤ t},

and again we have illustrated an R implementation in the Appendix; the test problem is taken
from Belloni et al. (2011).

Example 3.5. (Group lasso) For more structured problems, Bakin (1999), Yuan and
Lin (2006), and others proposed the so-called group lasso, to achieve sparse selection not of
individual covariates but rather their groups. Group lasso replaces the lasso’s usual `1 penalty
by a combined `1/`2 one,

∑
j ‖bj‖2, where bj are subvectors of b, the elements of a specific

partitioning of the parameter vector b. The applications are manifest, e.g., in fitting ANOVA
models, when the group consist of all parameters related to the given factor or interaction.
Group lasso can be implemented as a special instance of SOCP, minimizing the square of
quadratic norm of the residuals while either bounding the penalty or adding it multiplied by
a Lagrange multiplier λ to the objective function. Example code for the latter is given in the
Appendix; the test problem is once again adapted from Belloni et al. (2011).

Example 3.6. (Convex regression) Suppose we would like to estimate the nonparametric
(mean) regression model,

yi = g(xi) + ui, i = 1, · · · , n,

subject to the constraint that the function g : R→ R is convex. This is a QP of the form,

min{12‖g‖
2 − y>g | Dg ≥ 0},

where D denotes an n by n−2 matrix that computes second differences of the function values
g = g(xi). There are a variety of reformulations of this problem that lend themselves to
interior point methods. For MOSEK, it is convenient to introduce new variables, u and v and
write the quadratic term as a rotated quadratic cone constraint,

min{v − y>g | Dg ≥ 0, u = 1, 2uv ≥
∑

g2i , v ∈ R+, g ∈ Rn+}.
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In this form the problem is easily implemented in Rmosek. We include illustrative code in the
Appendix, tested on a problem taken from Groeneboom, Jongbloed, and Wellner (2008). The
latter have proposed an alternative “support reduction” active-set algorithm; they compare
performance of this algorithm with their coding of a log-barrier interior point method. For
their test problems with n = 10, 000 and equispaced xi on [−1, 1], they report timings of 0.24,
0.36, and 0.95 seconds for three variants with iid Gaussian ui with standard deviations 1,
0.1, and 0.01 respectively. Their version of the interior point algorithm required, in contrast,
about 4.5 seconds for each of these variants. Our implementation in Rmosek required 0.30,
0.31, and 0.26 seconds respectively, on a 2009 Mac Pro (2.93GHz). Corresponding timings
for the support reduction algorithm on this machine were 0.12, 0.44 and 1.54.

In our experience MOSEK provides a very flexible, reliable platform for convex optimization.
Relative performance of the commercial packages is a matter of some controversy, but for LP
and QP problems it appears that Gurobi has a slight edge, see e.g., Mittleman (2012). We
have no direct experience with either CPLEX or Gurobi, but at this point it is important to
stress that they are both limited to LP and QP problems and related integer programming
problems so they are not available for the separable convex optimization problems that we
have described in the previous section. Finally, the realm of semidefinite programming was so
far open to R users only via Rcsdp interface to CSDP; however, the new version 7 of MOSEK
and Rmosek, still in beta stage, seems to open new possibilities.

3.3. Separable convex optimization

The options in R for separable convex optimization are much more limited than those for
the prior categories. Again, MOSEK provides a quite general framework for such problems.
The recent CVX Research, Inc. (2012) initiative advocating“disciplined convex programming”
includes an interface to both MOSEK and Gurobi. Since additively separable convex prob-
lems play a natural role in many statistical applications. We will briefly describe two recent
examples with which we have some personal experience.

Example 3.7. There is a growing literature on density estimation subject to shape con-
straints. An important example involves estimating log-concave densities: given a random
sample, x1, · · · , xn from a distribution F , believed to have a log-concave density, we would
like to solve,

min{−
∑

log g(xi) |
∫
g = 1, log g convex}.

Reparameterizing, so h(x) = − log g(x), the problem becomes,

min{
∑

h(xi) |
∫
e−h(x)dx, h convex}.

Thus we have a linear objective, subject to a strictly convex nonlinear constraint, and linear
inequalities defining a convex cone constraint. Various strategies for solving such problems
have been proposed, see e.g., Cule et al. (2010), Dümbgen and Rufibach (2009) and Koenker
and Mizera (2010). In the last of these we introduce auxiliary variables, undata, on relatively
fine grid, to approximate the integral as a Riemann sum. This approach can be extended
to bivariate densities, where the solutions take the form of piecewise linear ĥ defined on
triangulations of the observed points. Log-concavity is evidently a strong restriction, and
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similar methods can be adapted to replace the shape constraint with some form of norm
constraint that penalizes roughness of the fitted density. Total variation of ∇ log g provides
one potentially attractive possibility, as described by Koenker and Mizera (2006). One can
also relax the log-concavity condition, which implicitly imposes exponential tails. Instead we
might want to require concavity of 1/

√
g, as discussed in Koenker and Mizera (2010) and

Seregin and Wellner (2010). Methods of this type are available in the function medde() in
the R package REBayes (Koenker 2014).

Example 3.8. Suppose we have iid observations from the mixture model,

g(x) =

∫
ϕ(x, θ)dF (θ),

where ϕ denotes a known parametric density and θ ∈ Θ ⊂ R. Kiefer and Wolfowitz (1956)
proposed estimating g by maximum likelihood,

min
F∈F
{−
∑

log g(xi) | g(xi) =

∫
ϕ(xi, θ)dF (θ), i = 1, · · · , n},

where F is the convex set of distribution functions on R. Laird (1978) was apparently the
first to propose a viable algorithm to implement the Kiefer-Wolfowitz MLE. However, the
EM algorithm has proven to be frustratingly slow for problems of this type. Fortunately,
they are easy to reformulate as separable convex optimization problems. Groeneboom et al.
(2008) report on an example due originally to Richard Gill in which their support reduction
method reduced a five hour EM computation to about five minutes. An equivalent problem
formulated in the R package REBayes has been solved in less than five seconds. Mixture
problems of this type play an important role in many empirical Bayes and hierarchical model
problems and there are many opportunities to exploit improved methods of estimating the
nonparametric MLE in these models.

4. What’s next?

Up to this point we have emphasized the crucial role played by interior point methods in
unifying the field of convex optimization. But already there are signs that this foundation
may be crumbling. Massive new problems make the second order (Newton-type) methods
underlying interior point impractical, and this has led researchers back to first order methods
of the type pioneered by Shor and Nesterov. These methods can be seen as generalizations of
familiar projected gradient methods for solving large `2 problems, adapted to the nonsmooth
settings typically encountered with polyhedral constraints. Drawing on earlier work of Nes-
terov, Candès and coauthors have pioneered first-order methods for a variety of problems, see
e.g., Becker, Bobin, and Candès (2011a), Cai, Candès, and Shen (2010), and Becker, Candès,
and Grant (2011b). It would be desirable to see further development of these methods in R.

In the domain of interior point methods, there is still some scope for a “grand unification”: the
combination of separable nonlinearity with various types of conic constraints, in particular
of the semidefinite type is still missing, even in commercial implementations. Such meth-
ods would find applications in multivariate density estimation with shape constraints, or in
quadratically penalized logistic regression.
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A. The lasso

lasso <- function(x, y, sigma = 1, alpha = 0.05, c = 1.1, rtol = 1e-6,

verb = 5)

{

n <- nrow(x)

p <- ncol(x)

lambda <- c * sigma * 2 * sqrt(n) * qnorm(1 - alpha/(2*p))

P <- list(sense = "min")

P$c <- c(rep(lambda, 2*p), rep(0, n), 1, 0, 0)/n

A <- as.matrix.csr(x)

A <- cbind(A, -A, as(n, "matrix.diag.csr"), as.matrix.csr(0, n, 3))

A <- rbind(A,cbind(as.matrix.csr(0, 2, 2*p + n),

as.matrix.csr(c(-.5,-.5,1,0,0,1), 2, 3)))

P$A <- as(A," CsparseMatrix")

P$bc <- rbind(c(y, -0.5, 0.5), c(y, -0.5, 0.5))

P$bx <- rbind(c(rep(0, 2 * p), rep(-Inf, n), rep(0, 3)),

c(rep(Inf, 2 * p + n + 3)))

P$cones <- matrix(list("QUAD",

c(n + 2 * p + 3, (2 * p + 1):(2 * p + n), n + 2 * p + 2)), 2, 1)

rownames(P$cones) <- c("type", "sub")

P$dparam$intpnt_nl_tol_rel_gap <- rtol

z <- mosek(P, opts = list(verbose = verb))

status <- z$sol$itr$solsta

f <- z$sol$itr$xx

coef <- f[1:p] - f[(p + 1):(2 * p)]

resid <- f[(2 * p + 1):(2 * p + n)]

list(coef = coef, resid = resid, status = status)

}

library("SparseM")

library("Rmosek")

library("mvtnorm")

n <- 500

p <- 50

S <- 0.5^toeplitz(1:p)

X <- rmvnorm(n, sigma = S)

y <- apply(X[,1:5], 1, sum) + rnorm(n)

f <- lasso(X, y)

B. The square-root lasso

rooto <- function(x, y, alpha = 0.05, c = 1.1, rtol = 1e-6, verb = 5)

{
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n <- nrow(x)

p <- ncol(x)

lambda <- c * sqrt(n) * qnorm(1 - alpha/(2 * p))

P <- list(sense = "min")

P$c <- c(rep(lambda, 2 * p), rep(0, n), sqrt(n))/n

A <- as.matrix.csr(x)

A <- cbind(A, -A, as(n, "matrix.diag.csr"), as.matrix.csr(0, n, 1))

P$A <- as(A, "CsparseMatrix")

P$bc <- rbind(y, y)

P$bx <- rbind(c(rep(0, 2 * p), rep(-Inf, n), 0),

c(rep(Inf, 2 * p + n + 1)))

P$cones <- matrix(list("QUAD",

c(n + 2 * p + 1, (2 * p + 1):(2 * p + n))), 2, 1)

rownames(P$cones) <- c("type", "sub")

P$dparam$intpnt_nl_tol_rel_gap <- rtol

z <- mosek(P, opts = list(verbose = verb))

status <- z$sol$itr$solsta

f <- z$sol$itr$xx

coef <- f[1:p] - f[(p + 1):(2 * p)]

resid <- f[(2 * p + 1):(2 * p + n)]

list(coef = coef, resid = resid, status = status)

}

library("SparseM")

library("Rmosek")

library("mvtnorm")

n <- 500

p <- 50

S <- 0.5^toeplitz(1:p)

X <- rmvnorm(n, sigma = S)

y <- apply(X[, 1:5], 1, sum) + rnorm(n)

f <- rooto(X, y)

C. The group lasso

grupo <- function(x, y, alpha = 0.1, c = 1.1, rtol = 1e-6, verb = 5)

{

n <- nrow(x)

p <- ncol(x)/2

lambda <- c * sqrt(n) * qnorm(1 - alpha/(2 * p))

pr <- list(sense = "min")

pr$c <- c(rep(0, 2*p), rep(lambda, p), rep(0, n), 1, 0)/n

A <- as.matrix.csr(x)

A <- cbind(A, as.matrix.csr(0, n, p),

as(n, "matrix.diag.csr"), as.matrix.csr(0, n, 2))
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pr$A <- as(A, "CsparseMatrix")

pr$bc <- rbind(y, y)

pr$bx <- rbind(c(rep(-Inf, 2 * p), rep(0, p), rep(-Inf, n), 0, 0.5),

c(rep(Inf, 3 * p + n + 1), 0.5))

pr$cones <- matrix(list(), 2, p + 1)

pr$cones[1,1:p] <- "QUAD"

for (k in 1:p) pr$cones[2,k] <- list(c(2 * p + k, 2 * k - 1, 2 * k))

pr$cones[1, (p + 1)] <- "RQUAD"

pr$cones[2, (p + 1)] <- list(c(3 * p + n + 1, 3 * p + n + 2,

(3 * p + 1):(3 * p + n)))

pr$dparam$intpnt_nl_tol_rel_gap <- rtol

z <- mosek(pr, opts = list(verbose = verb))

status <- z$sol$itr$solsta

f <- z$sol$itr$xx

coef <- f[1:(2 * p)]

resid <- f[(3 * p + 1):(3 * p + n)]

list(coef = coef, resid = resid, status = status)

}

library("SparseM")

library("Rmosek")

library("mvtnorm")

n <- 500

p <- 25

S <- 0.5^toeplitz(1:p)

X <- rmvnorm(n, sigma = S)

X <- matrix(cbind(X, X^2), n)

y <- as.vector(X[, 1:10] %*% c(1, 1, 0, 1, 1, 0, 1, 1, 0.5, 0.5) + rnorm(n))

f <- grupo(X, y)

D. The Dantzig selector

DSelector <- function(X, y, sigma = 1, lambda = 3.5, sparse = TRUE)

{

n <- nrow(X)

p <- ncol(X)

K <- lambda * sigma

A <- t(X) %*% X

R <- rbind(A, -A)

a <- c(as.matrix(t(X) %*% y))

r <- c(a - K, -a - K)

zp <- rep(0, p)

if(sparse){

Ip <- as(p, "matrix.diag.csr")

R <- as.matrix.csr(R)
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f <- rq.fit.sfnc(Ip, zp, R = R, r = r)

}

else{

Ip <- diag(p)

f <- rq.fit.fnc(Ip, zp, R = R, r = r)

}

return(f)

}

library("quantreg")

n <- 100

p <- 50

X <- matrix(rnorm(p*n), n, p)

X <- cbind(1, X)

y <- apply(X[, 1:5], 1, sum) + rnorm(n)

f <- DSelector(X, y)

E. Convex regression as a conic program

creg <- function(x, y, rtol = 1e-6, verb = 5) {

n <- length(x)

o <- order(x)

x <- x[o]

y <- y[o]

P <- list(sense = "min")

P$c <- c(0, 1, -y)

P$A <- Diff2(x)

P$bc <- rbind(rep(0, n - 2), rep(Inf, n - 2))

P$bx <- rbind(c(1, 0, rep(-Inf,n)), c(1, rep(Inf, n + 1)))

P$cones <- matrix(list("RQUAD", c(1:(n + 2))), 2, 1)

rownames(P$cones) <- c("type", "sub")

P$dparam$intpnt_nl_tol_rel_gap <- rtol

z <- mosek(P, opts = list(verbose = verb))

status <- z$sol$itr$solsta

f <- z$sol$itr$xx[-(1:2)]

S <- 2 * z$sol$itr$xx[2]

list(f = f, S = S, status = status)

}

Diff2 <- function(x) {

p <- length(x)

h <- diff(x)

s <- 1/h

q <- p-2

ia <- c(1:(p - 2), 1:(p - 2), 1:(p - 2))

ja <- c(1:(p - 2), 2:(p - 1), 3:p)
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xa <- c(-s[1:(p - 2)], s[1:(p - 2)] + s[2:(p - 1)], -s[2:(p - 1)])

D <- 0.5 * (h[1:(p - 2)]+h[2:(p - 1)])

xa <- -xa / c(D, D, D)

A <- new("matrix.coo", ra = xa, ja = as.integer(ja),

ia = as.integer(ia), dimension = as.integer(c(p - 2, p)))

A <- cbind(as.matrix.csr(0, q, 2), as.matrix.csr(A))

as(A, "CsparseMatrix")

}

library("SparseM")

library("Rmosek")

n <- 10000

sd <- 0.1

x <- seq(-1, 1, length = n)

y <- x^2 + sd * rnorm(n)

f <- creg(x, y)
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