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2 Computation

0.1 Introduction

The earliest computation of a median regression estimator, is usually attributed to the
Croatian Jesuit, Rudjer Boscovich. In 1760 Boscovich visited London, and as recounted
by Stigler (1984) and Farebrother (1990), posed the problem of computing it to Thomas
Simpson. In Boscovich’s version of the problem the mean residual was constrained to be zero,
a requirement that conveniently reduces the problem to finding a (scalar) weighted median.
Thus, the bivariate median regression problem of minimizing sum of absolute residuals,

β̂ = argmin(b0,b1)∈R2{
n∑
i=1

|yi − b0 − b1xi|},

is reduced to solving,

β̂1 = argminb1∈R{
n∑
i=1

wi|zi − b1|},

where zi = (yi− ȳ)/(xi− x̄) and wi = |xi− x̄|, for i = 1, · · · , n, and β̂0 = ȳ− x̄β̂1. Simpson
apparently recognized that the solution to the constrained problem could be found as,

β̂1 = z(j∗),

where z(1), · · · , z(n) denote the order statistics of the zi’s, w(1), · · · , w(n) denote the corre-
spondingly ordered weights and

j∗ = min{j|
j∑
i=1

w(i) >
1
2

n∑
i=1

w(i)}.

This formulation was maintained by Laplace and became known as the Methode de Situa-
tion.

Gauss (1809, §186), noting that the Boscovich/Laplace proposal could be generalized
by removing the zero mean residual constraint and including more than a single covariate,
makes several remarkably astute observations about the resulting procedure:

It can be easily shown, that a system of values of unknown quantities, derived
from this principle alone, must necessarily exactly satisfy as many equations out
of the number proposed, as there are unknown quantities, so that the remaining
equations come under consideration only so far as they help to determine the choice:
if, therefore, the equation V = M , for example, is of the number of those which
are not satisfied, the system of values found according to this principle would in
no respect be changed even if any other value N had been observed instead of M ,
provided that, denoting the computed value by n, the differences M − n, N − n,
were affected by the same signs.

Not only does Gauss recognize in this brief passage that minimizing the sum of absolute
residuals yields solutions determined by an exact fit of p observations when there are p
parameters to be estimated, but also that these solutions are insensitive to perturbations
that do not alter the signs of the residuals. Whether Gauss had further algorithmic ideas
is unclear, but he seems well on the way to a full understanding of the linear programming
structure of the problem. In his later memoir on least squares fitting, Gauss(1823, §7) seems
more on the defensive,
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Laplace has also considered the problem in a similar manner, but he adopted the
absolute value of the error as his measure of loss. Now if I am not mistaken this
convention is no less arbitrary than mine. Should an error of double size be considered
as tolerable as a single error twice repeated or worse? Is it better to assign only twice
as much influence to a double error or more? The answers are not self evident, and
the problem cannot be resolved by mathematical proofs, but only by an arbitrary
decision. Moreover, it cannot be denied that Laplace’s convention violates continuity
and hence resists analytic treatment, while the results that my convention leads to
are distinguished by their wonderful simplicity and generality.

Perhaps by 1823 he had forgotten the wonderful simplicity and generality of the Laplace
method that he had grasped so easily earlier?

In a series of papers in the 1880’s Edgeworth also proposed removing the constraint
on the mean residual, and defined a “plural median” generalizing the original Boscovich
formulation to multiple covariates. Edgeworth (1888) suggested an ingenious geometric
strategy for the case of bivariate regression that anticipated later development of the simplex
algorithm. Noting that points in sample space (xi, yi) 7→ {(α, β) : α = yi−xiβ} map to lines
in parameter space, and thus lines through pairs of points in sample space map to points
in parameter space, Edgeworth proposed starting at one of these intersections in parameter
space, choosing a direction of steepest descent, and proceeding to the next intersection.
Continuing in this fashion eventually leads to a solution characterized by a pair of points that
determine the optimal solution. This approach can be generalized to additional covariates,
indeed Edgeworth notes this himself, but rather apologetically observes that it may require
“the attention of a mathematician . . . with some power of hypergeometrical conception.”

Edgeworth’s formulation of what has become known as the “dual plot,” e.g. Rousseeuw
and Hubert (1999) incorporates the essential features of the Barrodale and Roberts (1974)
algorithm for median regression. Starting from an initial basic solution consisting of an
exact fit to p observations, we consider the local consequences of dropping each of the p
observations and moving in either a positive or negative direction. Choosing the steepest
of the possible directions of descent these choices present, we then decide how far to go
by solving a one dimensional weighted median problem of the same type as that originally
formulated by Boscovich. This identifies a new observation to replace the one removed
by our determination of the descent direction, and the procedure continues until we can
no longer find a direction of descent. For problems of modest size, up to a few thousand
observations and a few dozen parameters this form of the algorithm is extremely efficient.
However, in very large problems we now have available a new arsenal of techniques that
can be adapted to various forms of larger problems. We will briefly survey some of these
techniques in the sequel.

0.2 Exterior Point Methods

Linear programming and the associated simplex solution method emerged out of the fog
of World War II, as did many other important statistical ideas. Dantzig’s (2002) memoir
recounts that his simplex method ideas arose in 1947 as an attempt to solve a class of
military planning problems using methods similar to those he had employed in earlier work
with Wald and Neyman on the Neyman-Pearson Lemma. Kantorovich’s (1939) contributions
were not appreciated in the west until they appeared in translated form in 1960. Following
these developments it was quickly recognized that the median regression problem fit nicely
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into the linear programming framework; Charnes et al. (1955) appears to be the first explicit
use of simplex to solve the median regression problem.

The algorithm of Barrodale and Roberts (1974) was the first to exploit the bounded
variables dual form of the median regression problem. The primal median regression problem
can be formulated as,

min{1>n u+ 1>n v | y −Xb = u− v, (u, v) ≥ 0}

and seems a bit unwieldy since the minimization is over a 2n + p dimensional vector. In
contrast the dual problem has the simpler form,

max
a
{y>a | X>a = 1

2X
>1n, a ∈ [0, 1]}

In effect, Barrodale and Roberts implemented a general form of the Edgeworth dual plot
strategy. Given a basic solution, which we can write as

b(h) = X(h)−1y(h)

where h indexes p element subsets of the integers N = {1, 2, · · · , n}, X(h) denotes the
submatrix of X consisting of the rows h, and y(h) is the corresponding subvector of the
response y, we need to find the direction of steepest descent. In the original Edgeworth
bivariate setting this amounts to looking in one of four possible choices: starting from an
intersection in the dual plot we consider dropping one of the two basic observations in h, and
moving away from the intersection along the line representing the chosen observation. Thus,
we need only look at four possible direction, and among those with negative slope choose
the steepest. The Barrodale and Roberts innovation was rather than stopping at the next
adjacent vertex to continue in this direction as long as such motion reduced the objective
function. This is just the weighted median problem that we have already described. When
we are estimating p > 2 parameters the situation is essentially the same except that we have
2p directions to examine in order to select the descent direction. See Bloomfield and Steiger
(1983) for a more detailed investigation of simplex-based algorithms for median regression.

Modification of this approach to compute quantile regression models other than the
median is straightforward. In the primal we only replace the 1n’s by appropriate asymmetric
weights, in the dual we simply change the 1

2 to (1− τ) to obtain the τth regression quantile
estimate. Some further details are provided in Koenker and d’Orey (1987). It may seem
alarming that there are to be a continuum of problems of this form: Do we really need
to solve such problems for every τ ∈ [0, 1]? Fortunately, the answer to this question is
“no”; there are only a finite set of distinct solutions, and they are easily found by classical
parametric linear programming methods. Given a vertex solution at a particular, b(h),
small changes in τ have no impact on the solution, eventually τ changes enough that the
hyperplane representing the objective function is no longer “tangent” to the constraint set
at a unique vertex, but now coincides with the constraint set along an entire edge of that set.
It is easy to compute these “critical” τ ’s at which the solution jumps and thereby produce
the entire solution path for τ ∈ [0, 1]. Portnoy (1989) has shown that the expected number
of distinct solutions along this path is O(n log n), of course in the one sample setting there
are always precisely n distinct solutions provided that observations are themselves distinct.

Similar parametric programming techniques may be employed to study the solution path
for penalized smoothing problems, or lasso-type penalized estimators. They have also proven
very useful in inferential applications such as the inversion of the rank tests proposed by
Gutenbrunner and Jurečková (1992) which can be carried out by parametric programming
to produce confidence intervals for quantile regression coefficients. While it has become
common to encounter paeans to the computation of the “entire regularization path,” it
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should also be recognized that such computations quickly become burdensome in large data
applications. It is a great virtue of exterior point methods like simplex that it is easy to
trace out trajectory of solutions for parametric families of problems, but the number of
distinct solutions can easily become overwhelming and in such cases we need to find better
ways to approximate the path. Unfortunately, the great advances made in the development
of interior point methods for linear programming and discussed in the next section do not
easily lend themselves to this task.

0.3 Interior Point Methods

In contrast to the “exterior point” algorithms exemplified by the Edgeworth procedure and
its simplex progeny that move from vertex to vertex on the exterior of the constraint set,
interior point methods move from the center of the constraint set toward a vertex solution.
Although prior work in the Soviet literature offered theoretical support for the idea that
polynomial algorithms for linear programming could be structured in this way, Karmarker
(1984) constituted a pivotal moment in the development of optimization tools for linear
programs and convex problems more generally. It was quickly recognized that Karmarker’s
ideas were closely connected to earlier work on barrier methods for nonlinear programming
as developed by Fiacco and McCormick (1968) and even earlier for linear programs by Frisch
(1956).

The logarithmic barrier method of Frisch for the canonical linear program,

min{c>x | Ax = b, x ≥ 0}

simply replaces the inequality constraints with a penalty term that forces x to stay in the
positive orthant,

min{c>x− µ
p∑
j=1

log xj | Ax = b}.

By gradually relaxing the penalty parameter, µ, we can approach a vertex solution as µ→ 0.
The modified problem has the obvious advantage that it has a smooth objective that for any
fixed µ generates Newton steps. Following the exposition in Portnoy and Koenker (1997),
and denoting diagonal matrices by upper-case letters corresponding to lower-case vectors,
e.g. X = diag(x), and letting e denote a p-vector of ones, we can write the quadratic
(Newton) problem for a direction of descent, p, starting from x as,

min{c>p− µp>X−1e+ 1
2µp

>X−2p | Ap = b}.

Denoting a vector of Lagrange multipliers for the equality constraint by y, this problem
yields first order conditions,

{c− µX−1e+ µX−2p = A>y, Ap = 0},

which, multiplying through by AX2, can be reformulated as,

AX2A>y = AX2c− µAX1e.

Solving for y and substituting back into the first order conditions yields a Newton direction,
δ. The inherent difficulty of each step of this primal log barrier method thus lies in solving
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the p by p linear system in this equation. As long as p is modest, or the matrix AX2A> is
sparse, this can be done quite efficiently.

Some improvement in performance can be achieved by exploiting both the primal and
dual formulations of the problem. The dual of our canonical problem may be expressed as,

max
y
{b>y | A>y + z = c, z ≥ 0}.

Optimality in the primal implies that, c − µX−1e = A>y, so we can set z = µX−1e to
satisfy the dual constraint and obtain the system,

Ax = b x ≥ 0

A>y + z = c z ≥ 0

Xz = µe.

The parametric trajectory (x(µ), y(µ), z(µ)) describes the “central path” from the center of
the constraint set to a solution on the boundary of the constraint set satisfying the classical
complementary slackness condition, Xz = 0 when µ = 0. As described in more detail
in Portnoy and Koenker (1997), this primal-dual formulation yields a slighted perturbed
version of the primal Newton step described above, but again results in a p by p linear
system that requires the same computational effort at each iteration.

To complete the description of the primal-dual method we would need to specify how far
to go in the direction, p, how to adjust µ as we proceed along the central path and how to
stop. Each of these aspects are addressed in Section 4 of Portnoy and Koenker (1997) where
the bounded variables approach of Lustig et al. (1994) and Mehrotra (1992) is adapted to
the quantile regression dual problem. This approach has been implemented in Fortran in
several variants in the R package quantreg, Koenker (2015).

Comparison of performance of the modified Barrodale and Roberts algorithm, Koenker
and d’Orey (1987), for quantile regression with the interior point implementation indi-
cates that the exterior point (simplex) approach has a clear advantage for relatively small
problems with sample size, n, less than a few thousand and parametric dimension, p, also
modest, say less than 20. However, for larger problems IP is substantially quicker and also
more accurate than BR. Accuracy of the BR solutions for large problems could be im-
proved by periodically reinverting the current basic solution, since extensive pivoting can
produce substantial accumulated error. The IP algorithm typically requires at most only a
few dozen iterations and accuracy is easily monitored by the duality gap in the primal dual
formulation.

A natural extension of the basic quantile regression problem that maintains its linear
programming structure involves the imposition of additional linear inequality constraints
on the model parameters. Such constraints arise in a variety of contexts including portfolio
optimization and the introduction of shape constraints in nonparametric regression. Koenker
and Ng (2005) describe a modified version of the interior point method that is implemented
in the quantreg package. The only potential difficulty with adding such constraints is lack
of an initial feasible solution, in contrast to the original dual problem where the center of
the unit cube is always feasible.

When the parametric dimension of the model is large then the original implementations
of both the BR and IP methods can be quite slow, so it is worthwhile to consider other
options. The first question in such circumstances should always be: How sparse is the design
matrix X? In most nonparametric applications like those encompassed by the total variation
penalized additive models described in Koenker (2011) and implemented in the quantreg

function rqss, the design matrix is extremely sparse, typically with only 1 or 2 percent
nonzero entries. In such cases sparse linear algebra comes to the rescue, and in particular
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sparse Cholesky factorization as described in Koenker and Ng (2003) makes the interior
point approach entirely feasible even for problems with several thousand parameters.

0.4 Preprocessing

In many linear programming applications we can profitably remove dominated constraints
and thereby reduce the effective dimensionality and consequently the effort required to solve
the problem. In large quantile regression problems it is worthwhile to consider strategies that
might be able to reduce both the column and row dimension of the design matrix. Especially
in dense design settings with large column dimension, p, it is natural to consider lasso
methods to reduce the column dimension in a preliminary phase. This tactic is described in
some detail in Chernozhukov et al. (2016), so I won’t dwell on it here, instead I will briefly
describe a strategy for reducing the row dimension.

In Portnoy and Koenker (1997) we considered a relatively simple strategy for reducing
the row dimension of large, dense problems. Variants of this technique are likely to prove
helpful in many applications. An important feature of the linear quantile regression prob-
lem – already apparent to Gauss, as we have seen – is that the subgradient condition for
optimality of a solution depends only on the signs of the residuals. More explicitly, the
directional derivative of the objective,

R(b) =

n∑
i=1

ρτ (yi − x>i b),

in the direction, δ, is

∂R(b, δ) = −
n∑
i=1

x>i δ(τ − sgn∗(yi − x>i b, −xiδ),

where sgn∗(u, v) = sgn(u)I(u 6= 0)+sgn(v)I(u = 0). Optimality at b requires that ∂R(b, δ) ≥
0 for all δ on the unit sphere in Rp. Thus, if we had a way to predict that a group of
observations, say JL ⊂ N would be below the optimal hyperplane ĥ(x) = x>β̂, and another
group JH ⊂ N would be above, we would also know precisely how these observations would
contribute to the subgradient. This implies that we could aggregate the observations in JL
and JH and treat them as two globbed observations with the new objective function,

R̃(b) =
∑
J
ρτ (yi − x>i b),

where the index set J = {N\JL\JH , L,H} and yj =
∑
i∈Jj yi and xj =

∑
i∈Jj xi for

j = L,H. If the number of elements of JL and JH is large relative to n we have significantly
reduced the row dimension of the problem.

Of course, no one is likely to do our predictions for us, but we can easily do them
ourselves using a subset of m of the n observations. As shown in Portnoy and Koenker
(1997) standard confidence band procedures yield bands with expected width O(p/

√
m)

and it is optimal to choose O((np)2/3) to balance coverage and the complexity of the band
construction. Given a band it is easy to determine how many of the original points lie within
the band; this number M is of order O(np/

√
m). Reestimating using the globbed sample

of M + 2 = O((np)2/3) observations we have a trial solution. It must now be verified that
the globbed observations do indeed lie above or below the fitted hyperplane as predicted.
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If they do, we are done; if not we can expand m and try again. The probability of failing
this check, π, can be controlled, and the number of required repetitions of this cycle is
a geometric random variable with expectation π−1, so we can assure that only a small
number of cycles is needed. Each cycle operates on a significantly reduced sample, reducing
a sample one million observations for example to only 10 to 20 thousand. The entire strategy
is implemented in the ‘‘pfn’’ option for the rq fitting function of the quantreg package
in R.

0.5 First-order, Proximal Methods

However pleased we might be with the performance of interior point methods and pre-
processing for large problems, there may come a time when the parametric dimension of
new problems stretches the effort required for Cholesky factorization at each iteration to
the breaking point. When this happens it is time to reconsider first-order, gradient descent
methods. Fortunately, here too we find that great progress has been made in recent years and
a unified, efficient approach has emerged well suited to modern parallelized computation.

0.5.1 Proximal Operators and the Moreau Envelope

Proximal algorithms for convex optimization rely on additive separability of the objective
function and efficient computation of optima for separable components of the problem.
This structure is well adapted to a wide variety of statistical applications including quantile
regression. A brief introduction to these methods will be sketched here, for further details
the reader is encouraged to consult Parikh and Boyd (2013) and the extensive references
provided there.

Let f : Rn → R ∪ {∞} be a closed, proper convex function with effective domain,
domf = {x ∈ Rn | f(x) <∞}. The proximal operator Pf : Rn → R of f is

Pf = argminx{f(x) + 1
2‖x− v‖

2
2},

where ‖ · ‖2 denotes the usual Euclidean norm. Pf (v) can be interpreted as seeking to
minimize f without allowing the solution to move too far away from v. By rescaling the
function f , so,

Pλf (v) = argminx{f(x) + 1
2λ‖x− v‖

2
2},

we can control the relative strength of this tradeoff. Pf (v) can be viewed as a generalized
projection: if f is simply the indicator of a convex set C, so f(x) = 0 if x ∈ C and f(x) =∞
otherwise, we have,

Pf = argminx∈C‖x− v‖22,

the Euclidean projection of v onto C.
To illustrate the behavior of the proximal operator, Pf a bit further, Figure 1 depicts

the action of Pf for the function,

f(x) =

{
‖x‖2 if x1x2 ≥ 1
∞ otherwise.

Points v are mapped by the proximal operator toward the constrained optimum at (1, 1):
when v lies outside the constraint set it is sent to the nearest boundary point, when v lies
inside the constraint set it is directed toward the optimum by an amount controlled by λ.
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FIGURE 1
The proximal operator Pf (v) projects points, v outside the shaded constraint set to the
constraint boundary, while points inside the constraint set are mapped toward the boundary
by an amount controlled by the choice of λ.
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To pursue the connection to projection a bit further, recall that the infimal convolution
of two closed proper convex functions f and g on Rn is,

(f2g)(v) = inf
x
{f(x) + g(v − x)}.

If we take g(x) = 1
2‖ · ‖

2
2, then,

Mλf (v) = inf
x
{f(x) + 1

2λ‖x− v‖
2
2},

is called the Moreau envelope of the function λf . We may view Mλf (v) as a smoothed,
or regularized version of f and as such it has several advantages. It has domain Rn even
when f does not, it is continuously differentiable even though f may not be, and perhaps
most importantly, f and Mλf have the same minimizers. Parikh and Boyd (2013) interpret
Mf in the following way: letting f∗ denote the convex conjugate of f , that is f∗(y) =
supx{y>x− f(x)}, we may write

Mf = (f∗ + 1
2‖ · ‖

2
2)∗,

so Mf results from adding a smooth regularization to f∗, and then transforming back to
obtain a smooth approximation of f . The connections between Pf and Mf are obviously
very intimate: Pf (x) is the unique point that achieves the infimum of Mf , that is,

Mf (x) = f(Pf (x)) + 1
2‖x− Pf (x)‖22,

and
∇Mλf (x) = 1

λ (x− Pλf (x)).

The latter expression, when rewritten as,

Pλf (x) = x− λ∇Mλf (x),

reveals that Pλf (x) can be viewed as a gradient step of length λ for the regularized function
Mλf . This interpretation also suggests the fixed point iteration,

xk+1 = Pλf (xk),

which can be shown to converge under quite general conditions. As noted by Parikh and
Boyd (2013) such methods are closely related to gradient flow methods for solving differential
equations, and in special cases to the well-known EM and MM algorithms that have been
extensively employed in the statistics literature.

0.5.2 Alternating Direction Method of Multipliers

It is common in statistical applications to encounter optimization problems with additively
separable convex components. Suppose for the moment we consider only two components,

min
x
{f(x) + g(x)},

one, or even both, components may represent constraints since they may take on infinite val-
ues. A familiar example would be f as (negative) log likelihood and g a lasso-like parametric
penalty. When Pf and Pg are easily computed, but Pf+g is not, the following iteration is
attractive:

xk+1 = Pλf (zk − uk)

zk+1 = Pλg(x
k + uk)

uk+1 = uk + xk+1 − zk+1.



Koenker 11

This alternating direction method of multipliers (ADMM) algorithm has broad applicability
and has been shown to converge under very mild conditions.

Fougner and Boyd (2015) discuss implementation details for an extension of the ADMM
approach introduced in Parikh and Boyd (2014) to problems in the following “graph form,”

min
(x,y)
{f(y) + g(x) | y = Ax}.

Now, (x, y) is constrained to the graph G = {(x, y) ∈ Rn+m | y = Ax}. The modified
ADMM algorithm becomes:

(xk+1/2, yk+1/2) = (Pλg(x
k − x̃k), Pλf (yk − ỹk))

(xk+1, yk+1) = ΠA(xk+1/2 − x̃k, yk+1/2 − ỹk)

(x̃k+1, ỹk+1) = (x̃k + xk+1/2 − xk+1, ỹk+1/2 + yk+1/2 − yk+1)

where ΠA denotes the (Euclidean) projection operator into the set G. This projection has
a relatively simple structure and has the advantage that the linear system representing
the solution need only be solved once. See Appendix A of Parikh and Boyd (2014) for full
details. This contrasts sharply with interior point methods where we repeatedly need to
solve linear systems involving a diagonally weight moment matrix.

ADMM algorithms like other first-order gradient type methods have the advantage that
they are efficiently parallelizable, all we need to be able to do is compute the proximal op-
erators for f and g and we have a gradient descent strategy based the regularized problem,
a strategy that avoids the burden of computing Cholesky factorization at each iteration.
Fougner and Boyd (2015) discuss some implementation issues and Fougner (2014) describes
a C++ library with both a Matlab and an R interface. In the next subsection some compu-
tational experience with this approach for quantile regression is described.

0.5.3 Proximal Performance

To evaluate performance of the ADMM approach for large quantile regression problems
I have carried out some very limited tests based on the GPU implementation of Fougner
(2014). These tests were conducted on an unloaded IBM x3400M3 machine running linux
with an NVIDIA Tesla C2050 graphics card.

In Figure 0.5.3 we compare the timing and accuracy tradeoff for the interior point solver
described above and the GPU implementation of the POGS solver in three large quantile
regression problems. Each setting has sample size n = 10, 000, but p varies from 100 to 300.
In each case entries of X are iid standard Gaussian, except for the appended intercept. By
adjusting the convergence tolerance we can control the accuracy of both methods. Accu-
racy is measured in decimal digits relative to the interior point solution solution with the
(default) tolerance of ε = 10−6, as (minus) the logarithm (base 10) of root mean squared
error. The interior point solution yields essentially single precision accuracy averaged over
the p estimated coefficients. This can be relatively easily evaluated by tightening the conver-
gence tolerance of the interior point algorithm. The CPU effort required for this benchmark
solution is indicated in the figure by the horizontal (red) lines. Further testing revealed
that there was little reduction in CPU effort achieved by further relaxation of the interior
point tolerance, a finding that is easily explained by examining the number of iterations
required. The interior point method is doing at most a few dozen iterations, and relaxing
the convergence tolerance saves a few of these; however, the POGS procedure required 1421,
6065, 28867 and 120002 iterations respectively for the four ascending points appearing in
the right-most panel of the figure. And the efficacy of the GPU notwithstanding, this takes
some time.
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FIGURE 2
Accuracy vs. Computational Effort: CPU effort (in seconds) is plotted against accuracy
in the number of correct decimal digits, averaged over the p coefficients for the POGS
GPU solutions to the primal quantile regression problem. Baseline accuracy is determined
by the interior point solution depicted by the horizontal (red) line, which is accurate to
at six decimal digits. Although the POGS procedure is quite quick to produce a solution
with two to three digit accuracy, the effort required to produce better accuracy increases
rapidly. In contrast, there is little advantage observed in the interior point timings when
the convergence tolerance is relaxed.

This performance tradeoff should not be entirely surprising since it is already apparent
in other gradient descent algorithms, and has been often remarked upon in applications of
the closely related EM algorithm. In some applications it can be easily disregarded since
decisions based on such data analysis only require a couple of digits accuracy. Nevertheless,
it is somewhat disconcerting in view of our usual obsessions with rates of convergence of
statistical procedures. There is an increasing tendency in statistical research to explicitly
consider computational effort as well as statistical performance in the evaluation of proce-
dures. It would be nice to understand this better in the present context. Larger sample sizes
may not offer the precision we have come to expect, if we cannot reliably estimate models
with them.
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