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The Origin of Regression – Regression Through the Origin

Find the line with mean residual zero that minimizes the sum of absolute
residuals.
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Problem: minα,β
∑n
i=1 |yi − α− xiβ| s.t. ȳ = α+ x̄β.
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Boscovich/Laplace Methode de Situation

Algorithm: Order the n candidate slopes: bi = (yi − ȳ)/(xi − x̄)
denoting them by b(i) with associated weights w(i) where wi = |xi − x̄|.
Find the weighted median of these slopes. Reduces the problem to
(partial) sorting.
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Edgeworth’s (1888) Plural Median

What if we want to estimate both α and β by median regression?

Problem: minα,β
∑n
i=1 |yi − α− xiβ|
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Points in sample space map to lines in parameter space.

(xi,yi) 7→ {(α,β) : α = yi − xiβ}
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Lines through pairs of points in sample space map to points in parameter
space.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex
All pairs of observations produce

(
n
2

)
points in dual plot.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex
Follow path of steepest descent through vertices in the dual plot.
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Barrodale-Roberts (1974) Implementation of Edgeworth

rqx<- function(x, y, tau = 0.5, max.it = 50) { # Barrodale and Roberts -- lite

p <- ncol(x); n <- nrow(x)

h <- sample(1:n, size = p) #Phase I -- find a random (!) initial basis

it <- 0

repeat {

it <- it + 1

Xhinv <- solve(x[h, ])

bh <- Xhinv %*% y[h]

rh <- y - x %*% bh

#find direction of steepest descent along one of the edges

g <- - t(Xhinv) %*% t(x[ - h, ]) %*% c(tau - (rh[ - h] < 0))

g <- c(g + (1 - tau), - g + tau)

ming <- min(g)

if(ming >= 0 || it > max.it) break

h.out <- seq(along = g)[g == ming]

sigma <- ifelse(h.out <= p, 1, -1)

if(sigma < 0) h.out <- h.out - p

d <- sigma * Xhinv[, h.out]

#find step length by one-dimensional wquantile minimization

xh <- x %*% d

step <- wquantile(xh, rh, tau)

h.in <- step$k

h <- c(h[ - h.out], h.in)

}

if(it > max.it) warning("non-optimal solution: max.it exceeded")

return(bh)

}
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Quantile Regression Primal and Dual

Splitting the QR “residual” into positive and negative parts, yields the
primal linear program,

min
(b,u,v)

{τ1>u+ (1− τ)1>v | Xb+u− v−y ∈ {0}, (b,u, v) ∈ |Rp× |R2n
+ }.

with dual program:

max
d

{y>d | X>d ∈ {0}, τ1 − d ∈ |Rn+, (1 − τ)1 + d ∈ |Rn+},

max
d

{y>d | X>d = 0, d ∈ [τ− 1, τ]n},

max
a

{y>a | X>a = (1 − τ)X>1, a ∈ [0, 1]n}
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Quantile Regression Dual

The dual problem for quantile regression may be formulated as:

max
a

{y>a|X>a = (1 − τ)X>1, a ∈ [0, 1]n}

What do these âi(τ)’s mean statistically?
They are regression rank scores (Gutenbrunner and Jurečková (1992)):

âi(τ) ∈


{1} if yi > x

>
i β̂(τ)

(0, 1) if yi = x
>
i β̂(τ)

{0} if yi < x
>
i β̂(τ)

The integral
∫
âi(τ)dτ is something like the rank of the ith observation.

It answers the question: On what quantile does the ith observation lie?
Fundamental to the construction of linear rank statistics for regression.
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Linear Programming: The Inside Story

The Simplex Method (Edgeworth/Dantzig/Kantorovich) moves from
vertex to vertex on the outside of the constraint set until it finds an
optimum.
Interior point methods (Frisch/Karmarker/et al) take Newton type steps
toward the optimal vertex from inside the constraint set.

A toy problem: Given a polygon inscribed in a circle, find the point on the
polygon that maximizes the sum of its coordinates:

max{e>u|A>x = u, e>x = 1, x > 0}

were e is vector of ones, and A has rows representing the n vertices.
Eliminating u, setting c = Ae, we can reformulate the problem as:

max{c>x|e>x = 1, x > 0},
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Toy Story: From the Inside
Simplex goes around the outside of the polygon; interior point methods
tunnel from the inside, solving a sequence of problems of the form:

max{c>x+ µ
n∑
i=1

log xi|e
>x = 1}
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Toy Story: From the Inside
By letting µ→ 0 we get a sequence of smooth problems whose solutions
approach the solution of the LP:
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Mehrotra Primal-Dual Predictor-Corrector Algorithm

The algorithms implemented in my R package quantreg are based on
Mehrotra’s (1992) Predictor-Corrector approach. Although somewhat
more complicated than prior methods it has several advantages:

Better stability and efficiency due to better central path following,

Easily generalized to incorporate linear inequality constraints.

Easily generalized to exploit sparsity of the design matrix.

Preprocessing can improve performance in large n small p problems.

These features are all incorporated into various versions of the algorithm in
quantreg, and coded in Fortran.
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A Model of Childhood Malnutrition in India

fit <- rqss(cheight ∼ qss(cage, lambda = lam[1]) +

qss(bfed, lambda = lam[2]) + qss(mage, lambda = lam[3]) +

qss(mbmi, lambda = lam[4]) + qss(sibs, lambda = lam[5]) +

qss(medu, lambda = lam[6]) + qss(fedu, lambda = lam[7]) +

csex + ctwin + cbirthorder + munemployed + mreligion +

mresidence + deadchildren + wealth + electricity +

radio + television + frig + bicycle + motorcycle + car +

tau = 0.10, method = "lasso", lambda = lambda, data = india)

The seven coordinates of lam control the smoothness of the
nonparametric components via total variation penalties,

lambda controls the (lasso) shrinkage of the linear coefficients.

The estimated model has roughly 40,000 ”observations”, including
the penalty contribution, and has 2201 parameters.

Fitting for a single choice of λ’s takes approximately 5 seconds.
Sparsity of the design matrix is critical to efficient Cholesky
factorization at each interior point iteration.
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Proximal Algorithms for Large p Problems

Given a closed, proper convex function f : |Rn → |R ∪ {∞} the proximal
operator, Pf : |R

n → |Rn of f is defined as,

Pf(v) = argminx{f(x) +
1
2‖x− v‖

2
2}.

View v as an initial point and Pf(v) as a half-hearted attempt to minimize
f, while constrained not to venture too far away from v.

The corresponding Moreau envelope of f is

Mf(v) = inf
x
{f(x) + 1

2‖x− v‖
2
2}.

thus evaluating Mf at v = x we have,

Mf(x) = f(Pf(x)) +
1
2‖x− Pf(x)‖

2
2}.
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A Toy Example:
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Proximal Operators as (Regularized) Gradient Steps

Rescaling f by λ ∈ |R,

Mλf(x) = f(Pλf(x)) +
1
2λ‖x− Pλf(x)‖

2
2}.

so
∇Mλf(x) = λ

−1(x− Pλf(x)),

or
Pλf(x) = x− λ∇Mλf(x).

So Pλf may be interpreted as a gradient step of length λ for Mλf.

Unlike f, which may have a nasty subgradient, Mf has a nice gradient:

Mf = (f∗ + 1
2‖ · ‖

2
2)
∗

where f∗(y) = supx{y
>x− f(x)} is the convex conjugate of f.
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Proximal Operators and Fixed Point Iteration

The gradient step interpretation of Pf suggests the fixed point iteration:

xk+1 = Pλf(x
k).

While this may not be a contraction, it is “firmly non-expansive” and
therefore convergent.

In additively separable problems of the form

min
x

{f(x) + g(x)},

with f and g convex, this may be extended to the ADMM algorithm:

xk+1 = Pλf(z
k − uk)

zk+1 = Pλg(x
k − uk)

uk+1 = (uk + xk − zk)

Alternating Direction Method of Multipliers, Parikh and Boyd (2013).
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The Proximal Operator Graph Solver

A further extension that encompasses many currently relevant statistical
problems is:

min
(x,y)

{f(y) + g(x) | y = Ax},

where (x,y) is constrained to the graph G = {(x,y) ∈ |Rn+m | y = Ax}.
The modified ADMM algorithm becomes:

(xk+1/2,yk+1/2) = (Pλg(x
k − x̃k),Pλf(y

k − ỹk))

(xk+1,yk+1) = ΠA(x
k+1/2 − x̃k,yk+1/2 − ỹk)

(x̃k+1, ỹk+1) = (x̃k + xk+1/2 − xk+1, ỹk+1/2 + yk+1/2 − yk+1)

where ΠA denotes the (Euclidean) projection into graph G. This has been
elegantly implemented by Fougner and Boyd (2015) and made available by
Fougner in the R package POGS.
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When Is POGS Most Attractive?

f and g must:
I Be closed, proper convex
I Be additively (block) separable
I Have easily computable proximal operators

A should be:
I Not too thin
I Not too sparse

Other Problem Aspects
I Available parallelizable hardware, cluster, GPUs, etc.
I Not too stringent accuracy requirement
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POGS Performance – Large p Quantile Regression
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Global Quantile Regression?

Usually quantile regression is local, so solutions,

β̂(τ) = argmin
b∈|R

p

n∑
i=1

ρτ(yi − x
>
i b)

are sensitive only to {yi} near Q(τ|xi), the τth conditional quantile
function of Yi|X = xi.
But recently there has been more interest in jointly estimating several
β(τi):

{β̂(τ) | τ ∈ T} = argmin
∑
τ∈T

n∑
i=1

wτρτ(yi − x
>
i bτ)

This is sometimes called “composite quantile regression” as in Zou and
Yuan (2008). Constraints need to be imposed on the β(τ) otherwise the
problem separates.
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Example 1: Choquet Portfolios

Bassett, Koenker and Kordas (2004) proposed estimating portfolio weights
π ∈ |Rp by solving:

min
π∈|R

p
, ξ∈|R

m
{

m∑
k=1

n∑
i=1

wτkρτk(x
>
i π− ξτk) | x̄

>π = µ0}

where xi ∈ |Rp : i = 1, · · · ,n denote historical returns, and µ0 is a required
mean rate of return. This approach replaces the traditional Markowitz use
of variance as a measure of risk with a lower-tail expectation measure.

The number of assets, p, is potentially quite large in these problems.

Linear inequality constraints can easily be added to the problem to
prohibit short sales, etc.

Interior point methods are fine, but POGS may have advantages in
larger problems.
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Example 2: Smoothing the Quantile Regression Process

Let τ1, · · · , τm ⊂ (0, 1) denote an equally spaced grid and consider

min
β(τ)∈|R

mp
{

m∑
k=1

n∑
i=1

wτkρτk(yi − x
>
i β(τk)) |

∑
k

(∆2β(τk))
2 6M}.

Imposes a conventional L2 roughness penalty on the quantile regression
coefficients.

Implemented recently in POGS by Shenoy, Gorinevsky and Boyd
(2015) for forecasting load in a large power grid setting,

Smoothing, or borrowing strength from adjacent quantiles, can be
expected to improve performance,

Many gory details of implementation remain to be studied.
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Conclusions and Lingering Doubts

Optimization can replace sorting

Simplex is just steepest descent at successive vertices

Log barriers revive Newton method for linear inequality constraints

Proximal algorithms revive gradient methods

Statistical vs computational accuracy?

Quantile models as global likelihoods?

Multivariate, IV, extensions?
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