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Abstract. We argue that quantile regression methods can play a constructive role
in the analysis of duration (survival) data o�ering a more 
exible, more complete
analysis than is typically available with more conventional methods. We illustrate
the approach with a reanalysis of the data from the Pennsylvania Reemployment
Bonus Experiments. These experiments, conducted in 1988-89, were designed to
test the e�cacy of cash bonuses paid for early reemployment in shortening the
length of insured unemployment spells

1. Introduction

Duration models play an increasingly important role in applied econometrics, and
have proven to be a fertile �eld for the growth of semiparametricmethods. Chaudhuri,
Doksum and Samarov (1997) have recently stressed the usefulness of the quantile
regression formulation, Koenker and Bassett (1978), for survival analysis arguing
that it provides a unifying approach for transformation models more generally. Powell
(1986) extended quantile regression methods to censored regression models. Horowitz
and Neumann (1987) and Fitzenberger (1997) illustrate the approach with analyses
of durations of employment spells.
In this paper we brie
y describe the link between quantile regression and the trans-

formation model formulation of survival analysis. We stress a general formulation of
experimental treatment e�ects introduced by Lehmann (1974) and Doksum (1974)
that is particularly well-adapted to quantile regression in survival analysis. These
introductory sections draw heavily on earlier work appearing in Koenker and Geling
(1999). We then describe the Pennsylvania experiment and the model employed to
analyze it. The analysis and interpretation is presented in Section 6. Some concluding
remarks appear in the �nal section.
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2 Quantile Regression for Duration Data

2. Survival Analysis and the Transformation Model

Doksum and Gasko (1990) provide a valuable survey of survival analysis emphasiz-
ing the fundamental link with binary response models and the transformation model

(1) h(Ti) = x0i� + ui:

Many important parametric and semiparametric survival models may be expressed in
this form: somemonotone transformation of an observed survival time, Ti, represented
as a linear predictor (single-index) plus iid error.
In the Cox proportional hazard model, undoubtedly the leading example, we have

(2) log �(tjx) = log �0(t)� x0�

and thus, expressing the conditional survival function S(tjx) in terms of the integrated
baseline hazard

�0(t) =

Z t

0

�0(s)ds

we have,

(3) log(� log S(tjx)) = log �0(t)� x0�:

Now if we �x t, and consider the analysis of the binary response variable

Zi = I(Ti > t)

this would lead to the complementary log-log model and the term log �0(t) would be
absorbed into the intercept component of the linear predictor x0�.
More generally, suppose we write (3) as

G�1(S(tjx)) = h(t)� x0�

Then since,

P (h(T ) > tjx) = P (T > h�1(t)jx)

= S(h�1(t)jx)

= G(t� x�);

this is equivalent to the transformation model

(4) h(T ) = x0� + u

where u has distribution function G. In the case of the Cox model this yields

log �0(T ) = x0� + u

with u iid with distribution function F (u) = 1 � exp(� exp(u)): Specializing yet
further, if the baseline hazard is of the Weibull form, so

log �0(t) = 
 log t� �;
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then, again incorporating the constants into the linear predictor, we obtain the ac-
celerated failure time model,

log T = x0� + u:

Under the strict Weibull assumption this model can be estimated by maximum like-
lihood. Or, relaxing the Weibull assumption, it is often estimated by conventional
least squares methods.
An important extension of the Cox proportional hazard model is the class of frailty

models. Such models involve some additional random component in the intensity
(hazard) formulation so, for example, we might replace (2) by

log �(tjx; v) = log �0(t)� x0� � v

where now v represents some source of \unobserved heterogeneity", due perhaps to
omitted covariates, that shifts the baseline hazard. Assuming iid behavior of v, we
are led back to the transformation model

h(T ) = x0� + u+ v:

See Andersen, et al (1994) and Horowitz (1998) for further discussion of this class of
models.
The common feature of all the foregoing models is the iid error assumption, which

asserts that for some appropriate choice of the transformation h(�) we can express
the transformed survival times h(T ) as a pure location shift model in the covariates
x. This formulation is perfectly natural if we are intent on representing the e�ect of
the covariates in the p-vector �: However, it imposes rather drastic constraints on the
way that covariates are permitted to in
uence the survival distribution.
To see this consider the implications of the iid error assumption on the family of

conditional quantile functions. Given the transformation model (4) we may write the
conditional quantile functions of h(T ) as

Qh(T )(� jx) = x0� + F�1
u (� )

for � 2 (0; 1): The only e�ect of the covariates is to shift the location of the distribu-
tion. The scale and shape of the distribution is entirely determined by the distribution
of u. It follows immediately from the fact that for any monotone transformation, h(�),

P (h(T ) � t) = P (T � h�1(t));

that we can write the conditional quantile functions of T , itself as,

QT (� jx) = h�1(x0� + F�1
u (� )):

This may appear, at �rst consideration, a reasonably 
exible speci�cation. It is not.
As an alternative to this location shift model we propose to consider a family

of linear-in-parameters quantile regression models for the transformed survival time
h(T );

Qh(T )(� jx) = x0�(� );
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where, potentially, all of the parameters of the p-vector �(� ) now depend upon the
speci�ed quantile, � . The prior models constitute special cases in which all of the
dependence on � is concentrated in the intercept coe�cient, leaving the p � 1 slope
entirely free of � .
By allowing the slope coe�cients of �(� ) to depend upon � , we can introduce a

wide variety of forms of heterogeneity in the conditional distribution of h(T ) over the
\design-space" of the covariates. A particularly simple, yet important, special case is
the family of linear location-scale models

h(Ti) = x0i�+ (xi
)ui

where ui is taken to be iid from F . In this model we have the linear family of
conditional quantile functions

Qh(T )(� jx) = x0� + (x0
)F�1
u (� )

= x0�(� )

where �(� ) = � + 
F�1
u (� ): In this case all of the coordinates of �(� ) depend upon

� in the same way up to a location and scale shift. This model captures a variety
of models of heteroscedasticity but it is still highly restrictive, since the shape of the
conditional density of h(T ) is the same for all values of x.

3. The Quantile Treatment Effect

To motivate a more 
exible formulation of the survival model we reconsider a gen-
eral formulation of the two-sample treatment response model introduced by Lehmann
(1974),

\Suppose the treatment adds the amount �(x) when the response of the
untreated subject would be x. Then the distribution G of the treatment
responses is that of the random variable X +�(X) where X is distributed
according to F ."

Doksum (1974) provides a detailed axiomatic analysis of this formulation, showing
that if we de�ne �(x) as the \horizontal distance" between F and G at x, so

F (x) = G(x+�(x))

then �(x) is uniquely de�ned and can be expressed as

�(x) = G�1(F (x))� x:

Changing variables, so � = F (x) we obtain what we will call the quantile treatment

e�ect,

�(� ) = �(F�1(� )) = G�1(� )� F�1(� ):
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In the two sample setting this quantity is naturally estimable by

�̂(� ) = Ĝ�1
n1
(� )� F̂�1

n0
(� )

where Ĝn1 ; F̂n0 denote the empirical distribution functions of the treatment and con-

trol observations respectively, and F̂�1
n = inffxjF̂n(x) � �g, as usual. Since we

cannot observe subjects in both the treated and control states { and this platitude
may be regarded as the fundamental \uncertainty principle" underlying the \causal
e�ects" literature { it seems reasonable to regard �(� ) as a complete description of
the treatment e�ect.
Of course, there is no way of really knowing whether the treatment operates in

the way prescribed by Lehmann. In fact, the treatment may make otherwise weak
subjects especially robust, and turn the strong to jello. All we can observe from the
experimental evidence is the di�erence between the two marginal survival distribu-
tions, so it is natural to associate the treatment e�ect with this di�erence.1 The
quantile treatment e�ect provides the unexpurgated version.
Of course, it is possible that the two distributions di�er only by a location shift, so

�(� ) = �0, or that they di�er by a scale shift so �(� ) = �1F
�1(� ) or that they di�er

by a location and scale shift so �(� ) = �0 + �1F
�1(� ): But these hypotheses are both

nicely nested within Lehmann's general framework.
It is also worth noting that the Lehmann quantile treatment e�ect (QTE) is

intimately tied to the conventional two sample QQ-plot. The function �̂(x) =
G�1

n (Fm(x))�x is exactly what is plotted in the QQ-plot. This connection is further
developed by Doksum and Sievers (1976).

4. The Quantile Regression Model

In the two sample treatment-control model the QTE leads naturally to the quantile
regression model. Let y1; : : : ; yn denote the full sample of treatment and control
observations, and let xi = 1 for treatment observations and xi = 0 for controls, then

(�̂0(� ); �̂1(� )) = argmin�2<2

X
�� (yi � �0 � �1xi)

for ��(u) = u(� � I(u < 0)) is easily shown to yield

�̂0(� ) = F̂�1
n0
(� )

1This is also the view recently espoused by Abadie, Angrist, and Imbens (1999) who note that
in contrast with average treatment e�ects, where average di�erences equal di�erences in averages,
the di�erence in the quantiles of the marginal distributions is not the same as the quantile of the
di�erence, Y1 � Y0, between treatment and control response. They comment further, \Although
the latter may also be of interest, we focus on the marginal distributions of potential outcomes
because identi�cation of the distribution of Y1�Y0 requires much stronger assumptions and because
economists making social welfare comparisons typically use di�erences in distributions and not the
distribution of di�erences for this purpose."
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and

�̂1(� ) = Ĝ�1
n1
(� )� F̂�1

n0
(� ):

In the case of p distinct treatments, we can write

Qyi(� jxij) = �0(� ) +

pX
j=1

�j(� )xij

where xij = 1 if observation i received treatment j and xij = 0 otherwise. And again
the quantile regression formulation yields an optimization problem that is separable
in the p + 1 parameters and the �j(� )'s may be expressed as the di�erence between
quantile function of the control response evaluated at � and the corresponding � th
quantile of the jth treatment group.
When the treatment is continuous, as for example in dose response studies, then it

is natural to consider the hypothesis that the e�ect is linear at each quantile and in
the simplest bivariate case we may write,

QYi
(� jxi) = �0(� ) + �1(� )xi:

We assume thereby, of course, that the treatment e�ect at the � quantile, �(� ) of
changing x from x0 to x0 + �, is the same as the e�ect of an alteration from x1 to
x1 +�: But in contrast to the classical regression model we do not assume that this
e�ect is necessarily the same across the various quantiles.
In survival analysis it is natural to associate the robustness (or frailty) of partic-

ular subjects with their quantile in the survival distribution. By assumption this
\propensity for longevity" is the same whether the subject is a treatment observation
or a control. In either case, the subject is assumed to fall into the distribution at the
same quantile. This may seem strange, but again we emphasize that unless subjects
are observable in both the control and treatment states, there is no loss of generality
involved; the implication is untestable.

5. The Pennsylvania Reemployment Bonus Experiments

The current framework of the U.S. unemployment insurance (UI) system provides
short-term monetary assistance to the involuntarily unemployed. A frequent criticism
of the system has been that the unemployment insurance bene�t acts as a disincentive
for job-seekers and prolongs the duration of unemployment spells. During the 1980's
several controlled experiments tested alternative compensation schemes for UI. In
these experiments, UI claimants were o�ered a cash bonus if they found a job within
some speci�ed period of time and if the job was retained for some speci�ed duration.
The question was: would the promise of a monetary lump-sum bene�t provide a
signi�cant inducement for more intensive job-seeking?
The �rst two experiments were conducted in Illinois in 1984 and 1985 and are

described in detail by Woodbury and Spiegelman (1987). In the �rst experiment, a
random sample of new claimants were told that they would receive a bonus of $500
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if they found full-time employment within 11 weeks of �ling their initial claim, and
if they retained their new job for at least 4 months. In the second experiment, a
random sample of new claimants were told that their prospective employer would be
entitled to a bonus of $500 provided that the claimants were able to �nd a job and
keep it under the same conditions as the previous experiment. The two treatments
were tested against a control group of claimants who followed the usual rules of the
Illinois UI system.
The Illinois experiments, and especially the bonus o�er made directly to claimants,

provided a very encouraging initial indication of the incentive e�ects of such policies.
They showed that bonus o�ers could result in a signi�cant reduction in the duration
of unemployment spells and consequently of the regular amounts paid by the state
to UI bene�ciaries. This �nding led to further \bonus experiments" in the states of
New Jersey, Pennsylvania and Washington with a variety of new treatment options.
An excellent review of the experiments, some general conclusions about their e�cacy
and a critique of their policy relevance can be found in Meyer (1995, 1996). In this
paper we will focus more narrowly on a reanalysis of data from only the Pennsylvania
Reemployment Bonus Demonstration described in detail in Corson et al. (1992).

5.1. Treatment Design. The Pennsylvania experimentswere conducted by the U.S.
Department of Labor between July 1988 and October 1989. During the enrollment
period, claimants who became unemployed and registered for unemployment bene�ts
in one of the selected local o�ces throughout the state were randomly assigned either
to a control group or one of the six experimental treatment groups. In the control
group the existing rules of the unemployment insurance system applied. Individuals
in the treatment groups were o�ered a cash bonus if they became reemployed in a
full-time job, working more than 32 hours per week, within a speci�ed period we will
call the quali�cation period. In addition, to qualify for the bonus, claimants were
required to work in the new job continuously for at least 16 weeks, or they were
allowed to change jobs as long as the transition took place within a period of 5 days.
The latter requirements were imposed to discourage cases of fraudulent hiring for
purposes of obtaining the bonus, and to avoid the possibility of bonus payments to
seasonal workers.
Two bonus levels were tested. The lower bonus was three times the weekly bene�t

amount, and the higher bonus was six times the weekly bene�t. Bonuses were tied
to the weekly bene�t rather than o�ering a �xed amount as in the Illinois experi-
ment, because it was felt that such a policy yielded more uniform incentives across
individuals. It was also thought that such a system was politically more feasible than
the �xed bonus scheme. The low bonus averaged $500 and the high bonus averaged
$997. The two levels were chosen on the basis of both the Illinois and New Jersey
experiences.2

2In Illinois study the bonus was set at $500 while in the New Jersey case it started with 10 times
the weekly bene�t and declined by 10% each week.
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Two quali�cation periods were considered: a short period of 6 weeks and a longer
one of 12 weeks. The long quali�cation period was close to that studied in Illinois
and New Jersey. The choice of the shorter period was intended to test the sensitivity
of the treatment e�ect to alternative speci�cations of the quali�cation periods.
The bonus levels and quali�cation periods of the six treatment groups are described

in Table 5.1. All of the treatments, except the last one, involved a voluntary option
of attending a workshop designed to aid job search. However, less than three percent
of eligible participants attended the workshop so we follow the practice established
by prior analysts of ignoring the workshop option. In e�ect this enables us to pool
treatments 4 and 6. Four of the treatments were created by the combination of a
bonus amount and a quali�cation period plus the o�er of the workshop. The �fth
treatment included an initially high, but declining bonus over the period of 12 weeks
plus the optional workshop. The sixth treatment combined the high bonus with the
long quali�cation period without the workshop.

Table 5.1. Treatment Groups

Group Bonus Quali�cation Workshop
Amount Period O�er

Controls 0 0 No
Treatment 1 Low Short Yes
Treatment 2 Low Long Yes
Treatment 3 High Short Yes
Treatment 4 High Long Yes
Treatment 5 Declining Long Yes
Treatment 6 High Long No
Note: The low bonus was 3 times UI weekly bene�t amount, the high bene�t was 6 times

this amount. The declining bonus declined from 6 times the weekly bene�t to zero, over

a 12 week period. The short quali�cation period was 6 weeks, and the long period was 12

weeks.

5.2. Sample Design. The Pennsylvania experiments were designed to answer two
questions. Could \policy relevant," i.e. politically feasible, treatments yield de-
tectable cost savings to existing UI bene�t programs? And how sensitive are program
costs to various elements of the treatment design? For a more detailed description of
the design goals one can consult Corson et al. (1992). Based on these objectives, as
well as prior estimates of the magnitude of the response to the bonus o�ers, and a
budget constraint for the experiment, a formal sample allocation model was developed
that ful�lled the goals. The design provided 3,000 control and 10,120 treatment plan
members, allocated to the speci�c treatments as shown in Table 5.2 in the column
headed \Target n".
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Table 5.2. Target, Collected and, Analysis Sample Sizes

Groups Target n Collected n Analysis n
Control 3,000 3,392 3,354
Treatment 1 1,030 1,395 1,385
Treatment 2 2,240 2,456 2,428
Treatment 3 1,740 1,910 1,885
Treatment 4 1,590 1,771 1,745
Treatment 5 1,740 1,860 1,831
Treatment 6 1,780 1,302 1,285
Total 13,120 14,086 13,913

The sample was drawn randomly from claimants at twelve Job Services (JS) o�ces
located throughout the state of Pennsylvania. The limited selection of sites con-
stituted a compromise between the need to obtain a fairly large sample that could
accurately re
ect the demographic and occupational characteristics of the state, and
the need for an easy monitoring and low operational cost of the study.
E�ort was made to select twelve local o�ces which were representative of the

insured unemployed population of Pennsylvania. More speci�cally, the state was
divided in eight UI/JS regions. One or more clusters of local o�ces were formed within
each region according to average duration of UI receipt. This process produced twelve
clusters of approximately equal size UI caseloads. Finally, one o�ce was selected
randomly from each cluster to participate in the demonstration. The twelve Job-
Service o�ces chosen were: Coatesville, Philadelphia-North, Philadelphia-Uptown,
Reading, Lancaster, Lewistown, Butler, Connellsville, McKeesport, Erie, Pittston
and Scranton. Corson et al (1992) comment, \ UI claimants were selected randomly
from claimants at local o�ces throughout Pennsylvania. The most cost-e�ective way
to meet this objective was �rst to select a random sample of local UI/JS o�ces, and
then to select a random sample of UI claimants from each of the selected o�ces. This
process was undertaken in a manner which ensured that each eligible claimant in the
state had an equal probability of selection into the demonstration sample."
Several criteria were imposed on potential UI claimants to determine their eligibility

in the experiment. To be selected and assigned to one of the six treatments or to the
control group, an individual had to:

� �le a claim in one of the selected o�ces between July, 1988 and October, 1989,
� �le a non-transitional claim,
� indicate no union or employer attachment,
� apply for bene�t starting no more than 2 weeks before their selection day,
� be separated from their old job for reasons other than a labor dispute.

These eligibility criteria were imposed to increase the homogeneity of the sample
and thus ensure that possible di�erences in the response could be attributed primarily
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to variation in treatment. Claimants who �led for a transitional claim were excluded
because of the likelihood of a previous job o�er. For the same reason there was
exclusion from the experiment of individuals who indicated that it was possible they
could �nd a new job through a union channel rather than the market, or if they
were waiting for some de�nite recall within 60 days from their former employer. This
category of claimants was very unlikely to respond to a bonus o�er by searching for a
new job intensively. The bonus payments would simply constitute a \windfall" gain
for them. The fourth eligibility criterion was established to attain the operational
goal of the program to o�er bonuses to claimants as soon as possible after they
became eligible for UI. On the other hand, the Pennsylvania UI system permits back-
dating applications as long as claimants had been eligible for bene�ts during previous
weeks. Requiring the unemployed not to have been separated from the most recent
employer due to a labor dispute was dictated from the need to conduct a test for the
e�ectiveness of job-search services; state and federal regulations prohibit the provision
of such services to such claimants.

5.3. Data. The �nal collected sample was the result of �fty-two weekly sub-samples
selected in all twelve o�ces beginning on October 26, 1988. Prior to that date, �fteen
weekly sub-samples were drawn from the Pittston site for a pilot test of all operations,
which are also included in the �nal \collected-sample". Thus, the enrollment period
for the experiment started July 1988 and ended October 1989. The design target
was to identify and select 13,120 claimants with each site contributing roughly 1,100
individuals in total and a weekly target of 21 claimants per site. However, since
some claimants who initially apply for bene�ts do not return to a local o�ce to �le
further, a larger sample was selected to achieve the desired sample size for analysis.
Thus, a sample ranging from 22 to 40 claimants was selected at each o�ce per week,
depending on the historical experience. Overall, 15,005 individuals were initially
selected to participate in the demonstration. A total of 14,086 individuals �led for
a week of UI and were included in the study. Table 5.2 presents the distribution
of the �nal sample by treatment group under the header \Collected n". Missing
values for certain variables that are needed as covariates during our data analysis
stage necessitated that we restrict our attention to a total of 13,913 subjects; the last
column of Table 5.2 presents the allocation of our analysis sample over the control
and the six experimental groups.
Table 5.3 presents the distribution of claimants of each treatment group by quarter

of entry into the experiment. An examination of Table 5.3 con�rms two interventions
that took place during the enrollment period. One change was dictated by the low
participation rate in the job-search assistance services provided along with the group
of treatments 1 to 5. As previously noted, the attendance in workshop was less than
3% which made the fourth and the sixth treatments indistinguishable. Therefore, as
of July 1989{four months before the end of the experiment{individuals who would
have been assigned to treatment 6 were assigned to the other treatments. A second
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Table 5.3. Distribution of claimants in each Group by Selection time

Treatment Groups
Selection Quarter Control 1 2 3 4 5 6

Q3.1988 1.2 1.3 1.3 1.2 1.4 1.5 1.9
Q4.1988 20.5 17.0 19.4 21.0 20.2 18.0 31.5
Q1.1989 23.7 20.1 23.4 21.9 23.3 21.2 35.7
Q2.1989 22.0 20.5 22.8 22.2 23.7 23.3 30.9
Q3.1989 25.6 22.9 27.3 25.3 26.4 25.4 0.0
Q4.1989 7.0 18.3 5.9 8.5 5.0 10.6 0.0
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Calculations are based on the Analysis Sample of 13,913 observations.
Columns may not sum exactly to 100% due to rounding.

change was made because preliminary demonstration results showed that treatment
1 had a larger than expected e�ect. Initially only a small proportion of the total
sample was assigned to this treatment due to its perceived low policy signi�cance.
Beginning October 1989, experimenters increased its sample. This change is re
ected
in the relatively high percentage, 18.3%, of entries during the last quarter.
A detailed description of the characteristics of claimants under study is presented in

Table 5.4 which has information on age, race, gender, number of dependents, location
in the state, existence of recall expectations, and type of occupation. The table shows
their distribution over the seven groups and their totals in the last column. Standard
�2 tests for nonrandomness of the allocations to the 7 treatments for each of the
covariates fall well within conventional con�dence limits, con�rming the success of
the randomization procedure. Categorical variables related to these characteristics
are used in our modeling. More speci�cally these are:

young: 1 if the claimant's age is less than 35 and 0 otherwise.

old: 1 if the claimant's age is more than 54 and 0 otherwise.

black: 1 if the claimant is black and 0 otherwise.

hispanic: 1 if the claimant is hispanic and 0 otherwise.

female: 1 if the claimant is female and 0 otherwise.

recall: 1 if the claimant answered \yes" when asked if he/she had any expectation
to be recalled to his/her prior job.

dependents: indicates the number of dependents of the claimant. Coded 0, 1, or
2 if the number of dependents is 2 or greater.
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Table 5.4. Characteristics of claimants by Group

Percentage in Treatment Groups
Control 1 2 3 4 5 6 Total

Age
< 35 0.238 0.097 0.176 0.141 0.130 0.129 0.090 7556

(35 � 54) 0.245 0.103 0.175 0.128 0.117 0.133 0.100 4872
> 54 0.246 0.102 0.166 0.135 0.129 0.142 0.079 1485
Race
White 0.240 0.101 0.175 0.134 0.125 0.132 0.094 11704
Black 0.251 0.089 0.173 0.143 0.132 0.130 0.082 1623

Hispanic 0.235 0.109 0.180 0.146 0.093 0.138 0.099 506
Other 0.238 0.088 0.138 0.125 0.225 0.100 0.088 80

Recall Expectation
Yes 0.240 0.084 0.166 0.135 0.132 0.117 0.126 1512
No 0.241 0.101 0.176 0.136 0.125 0.133 0.088 12401

Gender
Male 0.240 0.099 0.177 0.135 0.126 0.130 0.094 8318

Female 0.243 0.101 0.171 0.136 0.125 0.134 0.090 5595
Dependents

0 0.243 0.102 0.175 0.135 0.126 0.130 0.089 10010
1 0.232 0.093 0.182 0.146 0.119 0.130 0.098 1628
2 0.240 0.093 0.168 0.131 0.127 0.138 0.103 2275

Location
lusd1 0.230 0.099 0.181 0.141 0.131 0.129 0.090 3693
husd2 0.241 0.099 0.175 0.127 0.120 0.141 0.098 3086
muld3 0.248 0.102 0.170 0.138 0.124 0.128 0.090 6094
huld4 0.242 0.092 0.177 0.126 0.131 0.135 0.097 1040

Occupation
durable manuf 0.245 0.103 0.174 0.138 0.120 0.134 0.086 2068

nondurable manuf 0.235 0.097 0.179 0.132 0.130 0.134 0.092 1525
other 0.241 0.099 0.174 0.135 0.126 0.131 0.094 10320

duration
week 1 0.233 0.094 0.184 0.140 0.128 0.134 0.087 2491
week 2 0.211 0.103 0.164 0.156 0.133 0.131 0.101 900
week 27 0.245 0.111 0.173 0.131 0.128 0.133 0.080 2510

Notes: 1Number of claimants �led in Coatesville, Reading, or Lancaster. These sites were considered to be

located in areas characterized by low unemployment rate and short duration of unemployment.
2Number of claimants �led in Lewistown, Pittston, or Scranton. These sites were considered to be located

in areas characterized by high unemployment rate and short duration of unemployment.

3Number of claimants �led in Philadelphia-North, Philadelphia-Uptown, McKeesport, Erie, or Butler. These

sites were considered to be located in areas characterized by moderate unemployment rate and long duration

of unemployment.
4Number of claimants �led in Connellsville. This site was considered to be located in area characterized by

high unemployment rate and long duration of unemployment.
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lusd: 1 if the claimant �led in Coatesville, Reading, or Lancaster and 0 otherwise.
These three sites were considered to be characterized by low unemployment rate and
therefore shorter durations of unemployment.

durable: 1 if the occupation of the claimant was in the sector of durable manu-
facturing and 0 otherwise.

Q1-Q5: �ve indicator variables indicating the quarter of enrollment of each claimant.

Treatment: �ve indicator variables indicating the treatment group (bonus amount
- quali�cation period) in which each claimant enrolled.

The last part of Table 5.4, under the header \duration" presents some limited
information on the distribution of the duration of the of UI bene�ts, measured in
weeks. This measure of duration is called \inuidur" in the �nal report of the ex-
periment. It is worth noting that a large portion of spells end in the �rst and the
twenty seventh week. It should be stressed that the de�nition of the �rst spell of UI
in the Pennsylvania study includes a waiting week and that the maximum number
of uninterruptedly received full weekly bene�ts is 26. This implies that a total 2491
subjects did not receive any weekly bene�t and that most of the claimants received
continuously their full, entitled unemployment bene�t. A more complete description
of unemployment durations in the combined sample is presented in Figure 6.1.
Tables 5.3 and 5.4 are potentially useful for checking whether the randomization of

subjects to experimental groups was successful. A properly made randomization im-
plies that any di�erence between the length of unemployment insurance of claimants
receiving the treatment and those that do not can be attributed exclusively to the
treatment e�ect. Despite the intermediate changes in the rate of entry in the various
groups, it is generally considered that the randomization process was e�ective; see
Corson et al. (1992, p 45) and Meyer (1995, p 98).

6. An Analysis of the Experiment

Our basic model for analyzing the Pennsylvania experiment presumes that the
logarithm of the duration (in weeks) of subjects' spells on UI bene�ts have linear
conditional quantile functions of the form

Qlog(T )(� jx) = x0�(� ):

The choice of the log transformation is dictated primary by the desire to achieve
linearity of the parametric speci�cation and by its ease of interpretation. Multiplica-
tive covariate e�ects are widely employed throughout survival analysis, and they are
certainly more plausible in the present application than the assumption of additive ef-
fects. It is perhaps worth reiterating that the role of the transformation is completely
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Figure 5.1. Histogram of Duration of Unemployment by Group.
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transparent in the quantile regression setting, where

Qh(T )(� jx) = x0�(� )
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implies

QT(� jx) = h�1(x0�(� )):

In contrast, the role of transformations in models of the conditional mean function
are rather complicated since the transformation a�ects not only location, but scale
and shape of the conditional distribution of the response.
Our (provisional) model includes the following e�ects:

� Indicators for the 5 treatment groups, with treatments 4 and 6 pooled.
� Indicators for female, black and hispanic respondents.
� Number of dependents, with 2 indicating two or more dependents.
� Indicators for the 5 quarters of entry to the experiment.
� Indicator for whether the claimant \expected to be recalled".
� Indicator for whether the respondent was \young" { less than 35, or \old" {
greater than 54.

� Indicator for whether claimant was employed in the durable goods industry.
� Indicator for whether the claimant was registered in a low employment district:
Coatesville, Reading, or Lancaster.

In Figure 6.1 we present a concise visual representation of the results from the
estimation of this model. Each of the panels of the Figure illustrate one coordinate
of the vector-valued function, �̂(� ), viewed as a function of � 2 [�; 1 � �]. Here
we choose � to be .20 e�ectively neglecting the proportion of the sample that are
immediately reemployed in week one and those whose unemployment spell exceeds
that insured limit of 26 weeks. Con�dence bands in each panel are computed by the
procedures detailed in Appendix A. We note that the apparently anomalous behavior
of these bands yielding narrowing the bands in the tails may be attributed to the
large conditional density in these regions apparent from the histograms in Figure 5.1.
Before turning to interpretation of speci�c coe�cients, we will try to o�er some

brief general remarks on how to interpret these �gures. The simplest case is the pure
location shift model in which we would have the classical accelerated failure time
(AFT) model,

log Ti = x0i� + ui

with fuig's iid from some F . In this case we would expect to see coe�cients �̂j(� )
that oscillate around a constant value indicating that the shift due to a change in
the covariate is constant over the entire observed range of the distribution. Another
conventional model with linear quantile functions is the linear location-scale model,

log Ti = x0i� + (x0i
)ui

where again, ui is taken to be iid. Now the covariates are allowed to in
uence the
scale as well as the location of the conditional distribution of durations. In this case
the \slope" coe�cients �̂j(� ) should look just like the \intercept" coe�cient up to a
location and scale shift. The intercept coe�cient estimates a normalized version of
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the quantile function of the ui's and all the other coe�cients are simply location and
scale shifts of this function.

Figure 6.1. Estimated Quantile Regression Coe�cients.
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The e�ect of the �ve treatments depicted in subplots b-f are all roughly similar
in shape. No treatment e�ect is observed in the tails implying that the treatments
had no e�ect in either changing the probability of immediate reemployment (in week
one), or in e�ecting the probability of durations beyond the 26 week maximum.
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Treatments 1, 2, 3, and 5 are only marginally signi�cant, inducing a modest 10%
reduction in duration in the center of the distribution, but barely achieving nominal
5% signi�cance for this e�ect. The combined treatments 4 and 6, which o�ered the
high bonus and long quali�cation period, yielded a stronger e�ect. Roughly a 15%
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reduction in median duration is observed, and this e�ect has a considerably stronger
statistical signi�cance than seen in the other treatments.
As we have already noted, the randomization of the experiment was quite e�ective

in rendering the potentially confounding e�ects of other covariates orthogonal to the
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treatment indicators. Nevertheless, it is of some interest to explore the e�ect of
other covariates in an e�ort to better understand determinants of the duration of
unemployment.
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Women are 5 to 15% slower than men to exit unemployment. Blacks and Hispan-
ics are much quicker than whites to become reemployed. This e�ect is particularly
striking in the case of blacks for whom median duration is roughly half (� e�:75)
that of whites, and only 30% as long as controls at � = :33: The number of depen-
dents appears to exert a rather weak positive e�ect on unemployment durations. The
quarter-of-entry variables are inherently not very interesting, but it appears that late
entry into the experiment improved one's chances for early reemployment. The recall
indicator is considerably more interesting. Anticipated recall to one's prior job has a
very strong and very precisely estimated detrimental e�ect over the entire lower tail
of the distribution. However, beyond quantile � = :6; which corresponds to about 20
weeks duration for white, male controls, the anticipated recall appears to be foresaken
and beyond this point recall becomes a signi�cant force for early reemployment in
the upper tail of the distribution.
Not surprisingly the young (those under 34) tend to �nd reemployment earlier

than their middle aged counterparts, while the old (those over 54) do signi�cantly
worse. In both cases the e�ects are highly signi�cant throughout the entire range of
quantiles we have estimated. Prior employment in durable manufacturing has a weak
disadvantageous e�ect on reemployment, but residing in a low unemployment district
is obviously helpful in facilitating more rapid reemployment.
Some preliminary investigation of interaction e�ects has yielded no substantial

improvement over the reported model. But we intend to continue to pursue this
line of inquiry. Koenker and Xiao (2000) explore tests for joint e�ects, including
the hypothesis of a linear location-scale model. However, informal examination of the
foregoing �gures makes it quite clear that the data o�er little support for the location-
scale hypothesis. The strongly non-monotone behavior of several of the coe�cients
in itself makes this highly implausible.
What have we learned from the quantile regression analysis that we could not have

learned from a more conventional survival analysis? Clearly the treatment e�ect of
the bonus o�er does not conform to the location shift paradigm of the conventional
models. After the log transformation of durations, a location shift would imply that
the treatment exerts a constant percentage change in all durations. In the present
instance this implication is particularly unpalatable since the entire point of the ex-
periment was to alter the shape of the conditional duration distribution. In Figures
6.1b-f we have seen that the bonus e�ect gradually reduces durations from a null
e�ect in the lower tail to a maximum reduction of 15% at the median, and then grad-
ually again returns to a null e�ect in the upper tail. This �nding accords perfectly
with the timing imposed by the quali�cation period of the experiment. It might be
thought that the bonus should not e�ect durations at all beyond the quali�cation
period, but further consideration suggests that accelerated search in an e�ort to meet
the quali�cation period deadline could easily yield \successes" that extended beyond
the quali�cation period due to decision delay by potential employers, or other factors.
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Meyer (1996), who provides a careful proportional hazard analysis of similar exper-
iments in Illinois handles the quali�cation period by introducing time-varying covari-
ates that permit a discrete jump in the treatment e�ect at the end of the quali�cation
period. Whether such a jump is plausible seems debatable, however we would like to
emphasize that an important challenge in extending the applicability of quantile re-
gression methods for survival analysis involves some accommodation of time-varying
covariate e�ects as in the Cox model. Progress in this direction may be achieved by
imposing constraints across quantiles, but many details would need to be resolved.

7. Conclusions

We have argued that quantile regression o�ers a constructive complement to ex-
isting statistical methods of survival analysis. By enabling the researcher to focus
attention on particular regions of the conditional duration distribution, quantile re-
gression o�ers a more 
exible approach than the more conventional transformation
models in which covariates are assumed to exert a pure location-shift e�ect.
An analysis of the Pennsylvania Reemployment Bonus Experiments illustrates the

methods. The treatments in these experiments were designed to explore the e�cacy
of moderate cash bonuses o�ered for early reemployment in reducing the duration of
unemployment spells. We estimate that the Pennsylvania bonuses reduced the me-
dian duration of unemployment by about 10 to 15%, but this e�ect is considerably
attenuated away from the median and essentially negligible in both the upper and
lower tails of the distribution. These e�ects, if extrapolated to the full eligible popu-
lation, implies a modest net savings to the unemployment insurance system. But the
arguments of Meyer (1995, 1996) regarding the incentive e�ects on eligibility inherent
in implementing the bonus system on a larger scale remain quite persuasive.

Appendix A.

The asymptotic behavior of the quantile regression process f�̂(� ) : � 2 (0; 1)g closely parallels the
theory of ordinary sample quantiles in the one sample problem. Koenker and Bassett (1978) show
that in the classical linear model,

yi = xi� + ui

with ui iid from dfF; with density f(u) > 0 on its support fuj0 < F (u) < 1g, the joint distribution
of
p
n(�̂n(�i) � �(�i))

m
i�1 is asymptotically normal with mean 0 and covariance matrix 
 
 D�1.

Here �(� ) = � + F�1

u (� )e1; e1 = (1; 0; : : : ; 0)0; x1i � 1; n�1
P

xix
0

i ! D; a positive de�nite matrix,
and


 = (!ij = (�i ^ �j � �i�j)=(f(F
�1(�i))f(F

�1(�j))):

When the response is conditionally independent over i, but not identically distributed, the as-
ymptotic covariance matrix of �(� ) =

p
n(�̂(� ) � �(� )) is somewhat more complicated. Let

�i(� ) = xi�(� )
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denote the conditional quantile function of y given xi, and fi(�) the corresponding conditional density,
and de�ne,

Jn(�1; �2) = (�1 ^ �2 � �1�2)n
�1

nX

i=1

xix
0

i;

and

Hn(� ) = n�1
X

xix
0

ifi(�i(� )):

Under mild regularity conditions on the ffig's and fxig's, we have joint asymptotic normality for
vectors (�(�i); : : : ; �(�m)) with mean zero and covariance matrix

Vn = (Hn(�i)
�1Jn(�i; �j)Hn(�j)

�1)mi=1:

This \Huber sandwich" is the quantile regression version of the Eicker-White heteroscedasticity
consistent covariance matrix for the least squares estimator. In the present application we will
estimate fi(�i(� )) using

f̂i(�̂i(� )) = maxf0; 2hn=(x0i(�̂(� + hn) � �̂(t� hn)) � ")

where hn = n�1=3��1(1� �=2)2=3((3=2�2(0))=(2��1(� )2 + 1))1=3 is a bandwidth selected in accor-
dance with the theory developed in Hall and Sheather (1989). This is a version of an estimator
originally suggested in Hendricks and Koenker (1992). Note that the Op(n

�1=3) bandwidth is cho-
sen to optimize performance of the sparsity estimate for purposes of Studentization; conventional
theory would suggest Op(n

�1=5) if the objective were minimal mean squared error estimation of
the sparsity function itself. There are several alternative schemes for conducting inference in the
context of quantile regression. Rank based methods of inference for quantile regression are surveyed
in Koenker (1996), and various approaches to inference based on resampling methods are discussed
in Parzen, Wei and Ying (1994), Horowitz (1999), Buchinsky (1998) and Hahn (1995). Koenker and
Machado (1999) discuss general goodness of �t measures and related inference methods based on
the entire quantile regression process.
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