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1. Introduction

To bake a Bayesian π (posterior) I was taught that you needed an L (likelihood) and
a p (prior) – Oh yeah, and probably some data, don’t forget the data! So it comes as
something of a shock to discover that there are 5,240 web documents employing the phrase
“Bayesian quantile regression,” as of September 1, 2015, according to Google. Quantile
regression would seem to be the very antithesis of a likelihood based procedure, committing
the investigator to a parametric model for one paltry conditional quantile function, while
professing total ignorance, even indifference, about the rest of the Deus ex machina, aka
data generating mechanism.

2. A Most Perplexing Paradox

So what is the attraction? What brings Bayesians to quantile regression like bears to
honey? Is it that sweet smell of sin, always so powerful for the priesthood? Or is it that
jihadist spirit of the Crusades, intent to recapture Jerusalem from the infidels? Maybe. But
more likely it is simply that “Anything you can do, I can do better” confidence immortalized
by Ethel Merman in the musical Annie Get Your Gun. If you listen to the song carefully,
e.g. Berlin (1966), you will hear that the only thing that both parties to this competitive
duet agree upon is that neither one can bake a π.

The usual knock on Bayesian methods focuses on the difficulty of coming up with sensible
priors. I’ve never quite understood this complaint; of course it isn’t easy especially in high
dimensional problems to elicit a prior, anyone who thinks it is should consult the recent
exchange between Larry Wasserman and Chris Sims. But everyone is entitled to the
courage of their own convictions, I suppose, provided that they are not too dogmatic. It
is just this last proviso that really worries me about the other crucial ingredient of the
Bayesian paradigm: how is it that one can be so ignorant about model parameters but so
confident about the specification of the likelihood? Likelihoods have proven to be especially
problematic for quantile regression. There are, of course, several proposals, but by far the
most commonly applied is the asymmetric Laplace distribution (ALD) employed in Yu and
Moyeed (2001), which simply exponentiates the usual quantile regression objective function,
introduces a scale parameter and computes a normalizing constant. Voilà we have magically

Version: September 24, 2015. This is an invited comment on the paper: Posterior Inference in Bayesian
Quantile Regression with Asymmetric Laplace Likelihood, by Yunwen Yang, Huixia Judy Wang and Xuming
He to appear in the International Statistical Review.

1



2 ROGER KOENKER

transformed a local model for a single quantile into a global model for the entire data cloud.
But does this make any sense? Isn’t it paradoxical that we would extrapolate a local model
that was totally agnostic about the probabilistic behavior of Y except for its conditional
quantiles, QY (τ |x) at one particular τ , to make a global model that assumed iid error, thus
parallel conditional quantile functions for all τ ∈ (0, 1)? And what if we now consider the
likelihood for another τ? Don’t we have a completely different global model? Don’t they
conflict with one another?

3. Second Thoughts

I would like to express my profound gratitude to the authors of this paper for their cogent
unraveling of this paradox. The authors have done a great service to the research community
by clarifying this rather murky situation. Not only do they explain why naive implemen-
tations of Bayesian MCMC methods using the ALD approach lead to poor inference, they
also reveal how to modify standard MCMC posterior inference to achieve good performance.
Their results, building on earlier work of Chernozhukov and Hong (2003), provide a general
approach to Bayesian inference for situations in which likelihoods are potentially misspeci-
fied. The quantile regression setting is especially well-suited to this analysis since the lim-
iting (sandwich) covariance matrix, V (τ) = τ(1 − τ)D−11 D0D

−1
1 has a rather complicated

form for D1 = limn→τ
∑n

i=1 fi(F
−1
i (τ))x>i xi, an estimate of which is delivered automati-

cally by the MCMC iterations. This avoids the necessity of estimating the local conditional
density fi(F

−1
i (τ)). Estimating the meat of the sandwich, D0 = limn→∞ n

−1X>X is trivial,
so building the modified covariance matrix for the estimator is easy. In other misspecified
Bayesian settings the situation is unlikely to be quite so straightforward, nevertheless it is
valuable to see the general framework.

It is worth reemphasizing that the usual claims in the earlier ALD literature that “the
posterior is consistent” should not be taken as a justification for using the unmodified
MCMC posterior for inference. It is reassuring of course to know that the posterior even-
tually converges to point mass at the true parameter, but without further information on
rates and the behavior of the normalized estimator it is impossible offer any reliable advice
on how to construct credible sets, or confidence regions. This is precisely what the emerging
literature on Bernstein von Mises results is intended to resolve. Again, quantile regression
offers a nice environment since we have a semiparametric estimator that is known to have
relatively simple asymptotic behavior and convergence at the standard 1/

√
n rate.

There are many new and challenging questions raised by this important paper. An
obvious motivation for the Bayesian formulation of quantile regression is the desire to impose
prior information on some form of the local conditional quantile model. Even in the simplest
case of a single quantile of interest with `1 or `2, i.e. Laplacian or Gaussian prior, it would
be nice to know more about how to adapt inference under various regimes for the selection
of the penalty parameter λ. For fixed “strength” of the prior, the usual Bernstein von
Mises theory implies that the prior has no impact asymptotically, but this is a highly
unsatisfactory conclusion. Often we would like to consider prior (penalties) that allow the
effective dimension of the model to grow with sample size, and this is more challenging
from an inferential perspective. Another important motivation for Bayesian formulations
of quantile regression involves so-called composite quantile regression models in which one
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Figure 1. One Realization of Simulation 2: Black lines depict the linear fit
for τ = 0.5± 0.166, and red lines show the quadratic fit at these quantiles.

wishes to estimate several conditional quantile models simultaneously; in these settings
it will be often advantageous to consider prior smoothness restrictions across coefficients.
Effectively we can “borrow strength” in the terminology of Tukey across quantiles and
produce more reliable estimates, but formal inference in such settings is still a challenge.

4. A Homework Exercise

One disturbing aspect of the Yang, Wang and He (YWH) results, at least for me, was the
poor performance of the Wald based “nid” confidence intervals in their second simulation
setting. See their Table 1. I wanted to understand what was going wrong. The basic idea of
the “nid” method is to estimate the limiting covariance matrix using a difference quotient
for the local conditional density terms,

f̂i(F
−1
i (τ)) = 2h/(x>i β(τ + hn)− x>i β(τ − hn))

where hn is a bandwidth computed by default as in Hall and Sheather (1988). The second
simulation model of Section 4.1 takes the form:

yi = 2
3 + 4x1i + 4x2i + (1 + 0.6x21i)ui,

where the xij and ui are independent standard normal random variables. Thus, at the
median where the simulation results are focused, the model is linear in the covariates.
However, at any quantile other than the median, the model is quadratic in the first covariate.
Therein lies the difficulty, since the ±h estimation of a quadratic model is in such a case
replaced by a more restrictive linear estimate.
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Table 1. Coverage frequency in 10,000 trials Model 2: Linear Median Model

n = 200 n = 500
rank nid ker boot rank nid ker boot

b0 0.886 0.912 0.975 0.909 0.892 0.905 0.951 0.904
b1 0.889 0.716 0.948 0.897 0.892 0.672 0.929 0.899
b2 0.892 0.894 0.973 0.911 0.895 0.904 0.956 0.907

The situation is illustrated for one realization of the simulation model in Figure 4. We
have sample size n = 200, and we have dropped the second covariate to facilitate the
visualization. The black lines illustrate the fitted linear model for this data at τ = 0.5 ±
0.166, and the (red) dashed lines illustrate the fitted quadratic model at the same quantiles.
What is the consequence of using the linear fit rather than the quadratic? The linear
fitting understates the quantile differences in the difference quotient above, especially for
the extreme xi’s, and this tends to overstate the precision (Hessian) matrix D̂1, relative
to what it would have been under the quadratic model where the outlying xi’s would have
received less weight. Now when we make the sandwich, V̂ (τ) = τ(1 − τ)D̂−11 D̂0D̂

−1
1 , the

estimated precision of the β̂’s is exaggerated, confidence intervals are too small and coverage
is substantially less than the nominal level.

To explore this further I have replicated the experiment of YWH for this particular sim-
ulation setting using four standard methods for constructing confidence intervals available
from the R package quantreg, Koenker (2015). In addition to the rank inversion and “nid”
methods studied by YWH, I’ve added the Powell (1991) kernel method and a conventional
implementation of the xy-bootstrap. We see in Tables 1 and 2 that coverage at the nominal
0.9 level, is quite good for all the methods with the exception of the “nid” method for
the first slope coefficient confirming the YWH finding. Note that the Powell “ker” is quite
conservative in this setting, but the xy-bootstrap performs quite well. Can we rescue the
performance of the “nid” method by fitting quadratic models?

In Table 2 I report results of the same experiment except that now I’ve fitted a qua-
dratic model for both of the covariates so the b3 and b4 rows of the table correspond to
the quadratic coefficients of the median model, which are both zero at the median. As
conjectured coverage performance for the “nid” intervals are now quite good, not only for
the problematic slope coefficient, b1, but also for the two quadratic coefficients. The lesson
I would draw from this exercise is that linearity assumptions can be dangerous even when
they are correct. One sometimes needs to be more flexible, at least for inferential purposes.

5. Conclusion

Finally, in light of the proceeding simulation exercise, I would like to raise a general
question about the trade-off between statistical and computational efficiency. This is a
topic that has gradually come to the forefront as statistics and machine learning have
needed to confront larger datasets. But it is also a question that can be relevant in more
moderate data settings. This was brought home to me recently by an email inquiry I received
from someone interested in using the confidence intervals produced by rank test inversion
method mentioned above on a regression problem with about half a million observations
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Table 2. Coverage frequency in 10,000 trials Model 2: Quadratic Median Model

n = 200 n = 500
rank nid ker boot rank nid ker boot

b0 0.877 0.887 0.974 0.908 0.877 0.893 0.953 0.905
b1 0.886 0.888 0.945 0.912 0.894 0.899 0.928 0.909
b2 0.895 0.884 0.972 0.925 0.897 0.890 0.954 0.914
b3 0.878 0.874 0.901 0.894 0.887 0.890 0.896 0.898
b4 0.888 0.856 0.964 0.919 0.892 0.865 0.952 0.913

and 50 parameters. My correspondent wondered if the quantreg computation of the rank
inversion confidence intervals had “gone into an infinite loop.” He had decided to terminate
the process after a couple of hours without a solution. I assured him to the contrary, that
on problems of this size the parametric linear programming problem that needed to be solve
(twice!) for each coefficient must step through a very large number of matrix pivots and
consequently was going to take an egregious effort. He wrote back sceptically saying that
it was hard to “prove” the existence of an infinite loop, but he was going to let the job run
and see what happened. The next day I got a somewhat sheepish note saying, “Well, you
were right. My large job took over 27 hours of cpu time, but it did finally complete.” So
although the rank inversion intervals are quite reliable statistically, they do not “scale up”
in the usual machine learning jargon, and one needs to find alternatives.

The Wald “nid” method of estimating the covariance matrix is usually also pretty reliable,
but we saw that it can perform poorly in terms of coverage when the model specification
ignores nonlinearities, rendering it “quick, but wrong.” The standard “xy-bootstrap” seems
to be a reasonable compromise, usually performing reliably from a coverage and mean
length viewpoint, and it is reasonably computationally efficient. Of course when sample
sizes become large one would have to reconsider, and at that point one might want to resort
to the “m-out-n” bootstrap. All of this is leading up to the question: Can the authors
provide any specific, or general, advice about this statistical vs computational trade-off for
their modified MCMC procedure and its comparison with any of the available resampling
methods?
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