
PROMISCUOUS BAYESIAN (UP)DATING

ROGER KOENKER

Sexual intercourse began
In nineteen sixty-three
(which was rather late for me) -
Between the end of the Chatterley ban
And the Beatles’ first LP.

Phillip Larkin, Annus Mirabilis

The gap of more than 30 years between Metropolis et al. (1953) and
Gelfand and Smith (1990) can still be partially attributed to the lack of
appropriate computing power, . . .

C. Robert and G. Casella, (2008) A History of MCMC.

1. Introduction

When priors are not conjugal we can’t expect fertile offspring, but some forms of updating
may nevertheless still be possible. Indeed, quite a lot of this seems to have been going on
since about 1953, but it is only within the last two decades that it has “taken off.” The
simplest form of this updating is Gibbs sampling, attributed to the American physicist, J.
Willard Gibbs (1839-1903), even though he – in all likelihood – had no clue about it.

I will not attempt to recapitulate the rationale for Gibbs sampling, a nice elementary
exposition is available by Casella and George (1992). Instead, I will describe an application
to estimating a monotone regression function as proposed by Neelon and Dunson (2004).

2. Gibbs Sampling

Gibbs sampling relies on the observation that (under conditions we will not go into)
successive sampling from a complete set of conditional distributions generates a Markov
chain whose stationary distribution will be a valid joint posterior distribution. To illustrate
this approach we consider a simple Gaussian nonparametric regression model,

yi = g(xi) + ui

Version: September 29, 2010. These notes were prepared for the 2010 Friday Reading Group on non-
parametric Bayesian methods. R code for the two illustrative examples will be posted on the reading group
webpage. This so-called research was partially supported by NSF grant SES-08-50060.
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where the ui are iid N (0, σ2) and g : R→ R is a continuous monotone increasing function.
Following Neelon and Dunson (2004) we will parameterize ĝ by a linear spline with fixed
knots, using the basis expansion,

g(x) = β0 +
p∑
j=1

ϕj(x)βj ,

where ϕj(x) = max{min{x, ξj} − ξj−1, 0}. Given this parameterization, g is monotone iff
all the βj ≥ 0, and we have the likelihood,

L(y|β, σ2) = (2πσ2)−n/2 exp{− 1
2σ2 ‖y −Xβ‖22}.

The prior on β is complicated by the constraint that the last p coordinates should be non-
negative. To keep the situation semi-conjugal, the prior is formulated in terms of a latent
vector, β∗ taken to be Gaussian with βj = I(β∗j > δ)β∗j , for j = 2, · · · , p. To impose
some smoothness on hatg, the prior asserts that β∗j has mean β∗j−1 and common variance
ν2 = λ−2 for j = 2, · · · , p, i.e.

π(β∗) = φ(β∗0 , µ0, σ0)φ(β∗1 , µ1, σ1)
p∏
j=2

φ(β∗j , β
∗
j−1, ν).

Some hyperparameters are fixed, so µ0 = µ1 = 0, σ0 = σ1 =
√

10 and δ = 0.05. The
parameters σ2 and ν2 are taken to be inverse gamma, with rather uninformative parameters.

The conditional posterior distributions described in the Appendix of Neelon and Dunson
(2004) are all straightforward conjugal computations except for the transition from their
(A.1) to the next expression, say (A.2). The proportionality claimed, on closer examination,
follows from the fact that the ratios of the two respective terms have the same omitted factor.
Given (A.2) it is easy to compute the integrating constant for the conditional posteriors of
the β∗j ’s and show that each of them takes the form of a mixture of two truncated normals.
Further details are relegated to the code appearing on the group webpages.

In Figure 1 we illustrate a simple example of the use of this technique. The target function
is Beta distribution function depicted in black; there are 100 observations generated with
iid Gaussian error. The unconstrained least squares linear spline estimate appears in red,
and the mean of the posterior based on 10,000 MCMC iterations appears in blue.

3. Metropolis-Hastings

Gibbs sampling may be regarded as a special case of the Metropolis-Hastings MCMC
approach that employs a form of rejection sampling.1 To illustrate this more general tech-
nique we will briefly describe an application to estimation and inference about univariate
quantiles due to Dunson and Taylor (2005).

Bayesian inference about quantiles is problematic because there is no obvious likelihood
for quantiles unless we specify a full global parametric model for the observed data and
this is contrary to the think-local mindset of the quantilogue. One of the high priests of

1Paraphrasing Segal (1970), Gibbs means never having to reject.
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Figure 1. Three Normal Mixture Densities.

Bayesianism offers a way out of this impass; Jeffreys (1998) §4.4 considers inference about
the median and proposes the “substitute likelihood”

s(θ) =
(

n

k(θ)

)
(1
2)2

where k(θ) =
∑n

i=1 I(−∞,θ](Zi). This is easily generalized as in Lavine (1995) to a vector of
quantiles, θ(τi) for 0 < τ1 < · · · < τm < 1 as

s(θ) =
(

n

k1(θ) · · · km+1(θ)

)∏
∆τki(θ)

i

with kj(θ) =
∑n

i=1 I(θj−1,θj ](Zi). Given this “likelihood” we need only formulate a prior and
construct a proposal distribution for the MCMC iterations.

Dunson and Taylor (2005) adopt a simple Gaussian prior: π(θ) ∼ N (θ0,Ω0), but trun-
cated so that θ1 < θ2 < · · · < θm. The proposal distribution is constructed by simply
updating in the usual conjugal fashion this prior with an estimate of the usual large sample
approximation of the distribution of the sample quantiles. That is, the proposal distribution
is θ ∼ N (θ̂, Ω̂) truncated to assure ordered θi’s with

θ̂ = Ω̂(Ω−1
0 θ0 + Ω̂−1

1 θ̂1)

Ω̂ = (Ω−1
0 + Ω̂−1

1 )−1

θ̂1 is a vector of sample quantiles, and Ω̂1 is an estimate of its asymptotic covariance matrix.
The Metropolis-Hastings iteration proceeds as follows:
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Figure 2. Three Normal Mixture Densities.

0.: Set θ(0) = θ̂.
1.: Draw a candidate θ from N (θ̂, Ω̂)
2.: Reject if θ isn’t monotone,
3.: Else set θ(t) = θ with probability

p = min{1, s(θ)π(θ)
s(θ(t−1))π(θ(t−1))

}

or θ(t) = θ(t−1) with probability 1− p.
A small simulation experiment designed to replicate the simulations of Dunson and Tay-

lor (2005) was carried out. There are three target distributions, all mixtures of normals
illustrated in Figure 1. Four sample sizes, {25, 50, 100, 200} were studied, and 200 repli-
cations per setting were done. Tables 1-3 reports results for the root mean squared error
comparision of the ordinary sample quantiles and the sample mean of the MCMC posterior
iterations. In each simulation setting 5000 MCMC iterations were done with the last 4000
used to compute the posterior means.

There are several remarkable features of these tables. Focusing attention first on Table
1 corresponding to the standard Gaussian setting we see that the Bayes estimates do re-
markably well, consistently outperforming the sample quantiles. The gap in performance
declines with sample size as we would expect from the Bernstein-von-Mises theorem, but is
still apparent at n = 200. A more puzzling feature of the table is that the sample quantiles
themselves seem to be doing quite well, a fact somewhat obscured by the even better perfor-
mance of the Bayes estimates. Take for example estimation of the median with n = 100 in
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Distribution 1 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.353 0.277 0.241 0.265 0.333
n = 50 0.246 0.217 0.164 0.194 0.241
n = 100 0.177 0.127 0.109 0.124 0.160
n = 200 0.125 0.102 0.085 0.100 0.134
BayesQ
n = 25 0.240 0.192 0.183 0.197 0.220
n = 50 0.180 0.169 0.157 0.153 0.177
n = 100 0.153 0.118 0.110 0.109 0.137
n = 200 0.114 0.097 0.086 0.096 0.122

Table 1. Root Mean Square Errors: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 2 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.188 0.173 0.201 0.377 0.472
n = 50 0.144 0.117 0.144 0.272 0.385
n = 100 0.086 0.082 0.104 0.193 0.251
n = 200 0.070 0.059 0.069 0.137 0.179
BayesQ
n = 25 0.239 0.145 0.171 0.235 0.295
n = 50 0.133 0.103 0.135 0.210 0.255
n = 100 0.087 0.077 0.097 0.157 0.197
n = 200 0.066 0.054 0.065 0.123 0.154

Table 2. Root Mean Square Errors: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 3 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.099 0.101 0.228 0.462 0.456
n = 50 0.072 0.068 0.158 0.314 0.352
n = 100 0.051 0.046 0.095 0.219 0.267
n = 200 0.038 0.032 0.060 0.145 0.173
BayesQ
n = 25 0.325 0.104 0.231 0.342 0.293
n = 50 0.164 0.062 0.175 0.276 0.263
n = 100 0.051 0.045 0.124 0.215 0.211
n = 200 0.033 0.031 0.069 0.155 0.154

Table 3. Root Mean Square Errors: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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Distribution 1 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.312 0.259 0.241 0.259 0.332
n = 50 0.223 0.183 0.161 0.201 0.229
n = 100 0.156 0.129 0.114 0.135 0.163
n = 200 0.115 0.094 0.091 0.107 0.131
BayesQ
n = 25 0.204 0.185 0.194 0.196 0.230
n = 50 0.188 0.158 0.160 0.175 0.181
n = 100 0.140 0.117 0.107 0.115 0.140
n = 200 0.107 0.090 0.093 0.098 0.120

Table 4. Root Mean Square Errors: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 2 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.194 0.181 0.215 0.367 0.447
n = 50 0.139 0.112 0.144 0.269 0.388
n = 100 0.099 0.087 0.106 0.211 0.260
n = 200 0.068 0.060 0.074 0.132 0.181
BayesQ
n = 25 0.265 0.140 0.186 0.233 0.278
n = 50 0.148 0.098 0.131 0.212 0.272
n = 100 0.092 0.079 0.099 0.176 0.208
n = 200 0.063 0.054 0.071 0.118 0.160

Table 5. Root Mean Square Errors: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 3 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.091 0.091 0.230 0.416 0.497
n = 50 0.069 0.065 0.115 0.311 0.371
n = 100 0.052 0.052 0.095 0.217 0.264
n = 200 0.034 0.031 0.060 0.148 0.168
BayesQ
n = 25 0.324 0.092 0.215 0.308 0.310
n = 50 0.159 0.066 0.157 0.280 0.263
n = 100 0.047 0.050 0.123 0.212 0.207
n = 200 0.032 0.031 0.071 0.144 0.147

Table 6. Root Mean Square Errors: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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Distribution 1 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.327 0.270 0.230 0.261 0.334
n = 50 0.250 0.200 0.182 0.202 0.243
n = 100 0.174 0.133 0.132 0.147 0.176
n = 200 0.113 0.093 0.080 0.096 0.124
BayesQ
n = 25 4.419 4.164 3.852 1.720 1.031
n = 50 4.103 3.293 0.835 0.627 0.570
n = 100 2.618 0.526 0.351 0.311 0.320
n = 200 0.220 0.163 0.148 0.160 0.170

Table 7. Root Mean Square Errors: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 2 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.188 0.163 0.211 0.375 0.494
n = 50 0.144 0.125 0.157 0.271 0.404
n = 100 0.102 0.082 0.106 0.203 0.269
n = 200 0.069 0.062 0.073 0.128 0.182
BayesQ
n = 25 4.298 3.797 3.156 1.385 1.389
n = 50 3.959 2.712 0.457 0.610 0.873
n = 100 1.676 0.225 0.203 0.363 0.534
n = 200 0.112 0.093 0.110 0.224 0.313

Table 8. Root Mean Square Errors: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 3 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.092 0.100 0.279 0.442 0.465
n = 50 0.072 0.063 0.136 0.323 0.364
n = 100 0.051 0.042 0.080 0.212 0.272
n = 200 0.038 0.032 0.054 0.143 0.178
BayesQ
n = 25 3.815 3.160 2.327 1.213 1.388
n = 50 2.760 1.269 0.224 0.838 0.846
n = 100 0.615 0.089 0.112 0.547 0.454
n = 200 0.047 0.043 0.068 0.322 0.292

Table 9. Root Mean Square Errors: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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Distribution 1 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.331 0.249 0.233 0.271 0.361
n = 50 0.208 0.181 0.162 0.199 0.252
n = 100 0.160 0.141 0.125 0.138 0.156
n = 200 0.127 0.108 0.083 0.089 0.115
BayesQ
n = 25 0.225 0.186 0.184 0.193 0.231
n = 50 0.169 0.157 0.162 0.167 0.191
n = 100 0.143 0.126 0.125 0.125 0.141
n = 200 0.112 0.095 0.083 0.086 0.111

Table 10. Root Mean Square Errors: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 2 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.195 0.150 0.188 0.359 0.483
n = 50 0.126 0.118 0.153 0.302 0.364
n = 100 0.104 0.086 0.106 0.208 0.258
n = 200 0.068 0.055 0.069 0.134 0.174
BayesQ
n = 25 0.254 0.119 0.151 0.215 0.284
n = 50 0.131 0.097 0.139 0.234 0.255
n = 100 0.094 0.080 0.099 0.181 0.206
n = 200 0.067 0.053 0.060 0.121 0.148

Table 11. Root Mean Square Errors: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distribution 3 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
SampleQ
n = 25 0.106 0.094 0.216 0.437 0.471
n = 50 0.068 0.066 0.161 0.281 0.318
n = 100 0.050 0.046 0.071 0.223 0.263
n = 200 0.038 0.034 0.055 0.150 0.173
BayesQ
n = 25 0.401 0.098 0.206 0.335 0.296
n = 50 0.115 0.063 0.177 0.265 0.240
n = 100 0.076 0.047 0.108 0.216 0.198
n = 200 0.037 0.032 0.064 0.159 0.153

Table 12. Root Mean Square Errors: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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the first table. The RMSE is 0.114. The efficient estimator of the median in this case is the
sample mean, which would have RMSE of 1/

√
100 = 0.100, and the sample median would

be expected to have RMSE approximately equal to
√
π/200 ≈ 0.125 based on its asymp-

totic theory. In the process of investigating this anomaly, it was discovered that computing
sample quantiles with rq(x ∼ 1, taus) when the solution is non-unique, that is when nτ
is an integer, tends to choose the order statistic closest to zero.2 Thus, when the target
density has median zero, this produces a desirable “shrinkage effect.” Whether this slight
shrinkage is responsible to a significant degree for the unexpectedly good performance in
Table 1 is unclear.

In the other tables we see that the Bayes estimates are also performing quite well, but
in a few cases there seems to be a serious enough bias problem to dominate the variance
reduction advantage that they offer. To explore these findings further, three new variants
of the experiment were run with results presented in Tables 4-12. Tables 4-6 are simply
a reproduction of the first set of experiments with exactly the same settings, but a new
random number seed. Tables 7-9 centers the target distribution at x = 5, but leaves
the prior unchanged. And Tables 10-12 return the centering of the target densities to
zero, but increase the prior variance from 1 to 10. Shifting the location of the target
densities has a disastrous effect on the Bayes estimator, underlining the need for a prior
that doesn’t conflict dramatically with reality. Finally, increasing the dispersion of the prior
attentuates the shrinkage advantage exhibited in Tables 1-6 for the Bayes estimators, but
not as much as one might have expected. It is worth noting that the performance of the
sample median for n = 100 in Table 10 is much closer to asymptotic expectations. Since
the seeds in Tables 4 and 10 are identical it may seem troubling that the sample medians
have different performance, but further reflection reveals that different priors for the Bayes
estimators implies different MCMC sequences and therefore different data for the whole
simulation. This suggests that the differences in the performance observed across the 4 sets
of tables in the sample quantiles reflects the inherent variability of the simulation dictated
by the relatively small number (200) of replications. Since each table requires almost 3
hours of cpu time for the MCMC one is reluctant to increase the number of replications
in such circumstances. This is one of the most troubling aspects of the MCMC revolution:
computing effort is often so substantial that thorough evaluation of the sensitivity of results
to the plethora of tuning parameters is quite difficult.

A more stringent test of the success of the Bayesian approach involves examination of the
credible intervals produced by the MCMC iterations. To examine this we computed both
0.90 and 0.95 intervals for each of the quantiles for all of the experiments described above.
Tables 13-24 report coverage frequencies for these experiments.

The 0.95 intervals are quite good, but the 0.90 intervals are quite horrible. Recall that
the third group of tables corresponds to the shifted location version of the model, and there
both sets of intervals are awful. It would be interesting to know whether increasing the
length of the MCMC chain would improve the performance of the 0.90 intervals.

2The simplex algorithm used by rq must choose one of the two central order statistics when computing
the median from an even sample of distinct observations.
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Distn 1 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.355 0.020 0.635 0.030 0.255 0.990 1.000 1.000 1.000 1.000
n = 50 0.100 0.050 0.925 0.040 0.050 0.975 1.000 1.000 1.000 0.985
n = 100 0.000 0.035 1.000 0.025 0.000 0.980 1.000 1.000 1.000 0.995
n = 200 0.000 0.050 1.000 0.070 0.000 0.980 1.000 1.000 1.000 0.975

Table 13. Credible Interval Coverage: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 2 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.495 0.025 0.645 0.020 0.130 0.985 1.000 1.000 1.000 0.970
n = 50 0.120 0.040 0.900 0.025 0.030 1.000 1.000 1.000 1.000 1.000
n = 100 0.005 0.050 1.000 0.025 0.000 0.985 1.000 1.000 1.000 0.990
n = 200 0.000 0.065 1.000 0.030 0.000 0.995 1.000 1.000 1.000 0.980

Table 14. Credible Interval Coverage: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 3 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.690 0.020 0.655 0.010 0.075 0.995 1.000 1.000 1.000 0.985
n = 50 0.160 0.055 0.935 0.020 0.045 0.995 1.000 1.000 1.000 0.985
n = 100 0.005 0.035 1.000 0.075 0.000 0.980 1.000 1.000 1.000 0.995
n = 200 0.000 0.040 1.000 0.035 0.000 0.985 1.000 1.000 1.000 0.985

Table 15. Credible Interval Coverage: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 1 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.290 0.015 0.600 0.015 0.285 0.990 1.000 1.000 1.000 0.990
n = 50 0.100 0.025 0.950 0.045 0.070 0.995 1.000 1.000 1.000 0.985
n = 100 0.000 0.040 1.000 0.030 0.000 0.995 1.000 1.000 1.000 0.995
n = 200 0.000 0.050 1.000 0.055 0.000 0.985 1.000 1.000 1.000 0.985

Table 16. Credible Interval Coverage: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 2 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.520 0.035 0.580 0.030 0.125 0.975 1.000 1.000 1.000 0.985
n = 50 0.115 0.040 0.945 0.045 0.040 0.995 1.000 1.000 1.000 0.965
n = 100 0.000 0.035 0.995 0.025 0.005 0.985 1.000 1.000 1.000 0.975
n = 200 0.000 0.030 1.000 0.035 0.000 0.985 1.000 1.000 1.000 0.965

Table 17. Credible Interval Coverage: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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Distn 3 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.775 0.055 0.595 0.015 0.090 1.000 1.000 1.000 0.995 0.975
n = 50 0.235 0.060 0.945 0.015 0.045 1.000 1.000 1.000 1.000 0.975
n = 100 0.005 0.055 1.000 0.055 0.000 0.995 1.000 1.000 1.000 0.985
n = 200 0.000 0.030 1.000 0.040 0.000 0.985 1.000 1.000 1.000 0.990

Table 18. Credible Interval Coverage: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 1 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.145 0.000 0.000 0.825 0.970 0.935 0.955 0.070 0.650 0.980
n = 50 0.030 0.000 0.000 0.000 0.000 0.905 0.950 0.005 0.120 0.940
n = 100 0.000 0.000 0.000 0.000 0.000 0.490 0.580 0.000 0.000 0.000
n = 200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 19. Credible Interval Coverage: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 2 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.355 0.000 0.000 0.650 0.785 0.805 0.840 0.015 0.295 0.925
n = 50 0.060 0.000 0.000 0.000 0.000 0.765 0.800 0.005 0.060 0.735
n = 100 0.000 0.000 0.000 0.000 0.000 0.150 0.170 0.000 0.000 0.000
n = 200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 20. Credible Interval Coverage: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 3 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.270 0.000 0.000 0.380 0.460 0.575 0.585 0.010 0.245 0.735
n = 50 0.010 0.000 0.000 0.000 0.000 0.240 0.270 0.000 0.020 0.225
n = 100 0.000 0.000 0.000 0.000 0.000 0.010 0.005 0.000 0.000 0.000
n = 200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 21. Credible Interval Coverage: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 1 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.295 0.030 0.575 0.010 0.305 0.990 1.000 1.000 1.000 0.975
n = 50 0.060 0.060 0.935 0.025 0.080 0.990 1.000 1.000 1.000 0.990
n = 100 0.005 0.020 1.000 0.055 0.005 0.995 1.000 1.000 1.000 0.985
n = 200 0.000 0.040 1.000 0.040 0.000 0.980 1.000 1.000 1.000 0.990

Table 22. Credible Interval Coverage: Normal Mixture 1 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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Distn 2 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.505 0.030 0.710 0.010 0.095 0.985 1.000 1.000 1.000 0.980
n = 50 0.115 0.050 0.955 0.050 0.055 0.995 1.000 1.000 1.000 0.985
n = 100 0.005 0.050 1.000 0.040 0.005 0.990 1.000 1.000 1.000 0.980
n = 200 0.000 0.050 1.000 0.030 0.000 0.995 1.000 1.000 1.000 0.975

Table 23. Credible Interval Coverage: Normal Mixture 2 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood

Distn 3 Credibility 0.9 Credibility 0.95
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

n = 25 0.715 0.050 0.620 0.010 0.080 0.995 1.000 1.000 1.000 0.985
n = 50 0.240 0.045 0.935 0.050 0.030 0.990 1.000 1.000 1.000 1.000
n = 100 0.015 0.070 1.000 0.030 0.000 0.990 1.000 1.000 1.000 0.965
n = 200 0.000 0.065 1.000 0.050 0.000 0.995 1.000 1.000 1.000 0.965

Table 24. Credible Interval Coverage: Normal Mixture 3 , 200 replications,
5000 Metropolis-Hastings steps with Jeffreys substitute Likelihood
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