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“We will all be Bayesians in 2020,and then we can be a united profession.”
D.V. Lindley’s 1995 interview with A.F.M Smith, Statistical Science.

“I have lamented that Bayesian statisticians do not stick closely enough to
the pattern laid down by Bayes himself: if they would only do as he did
and publish posthumously we should all be saved a lot of trouble.” [M.
Kendall, On the Future of Statistics, JRSS(A), (1968), 131, 182-204].

1. Introduction

The seed from which the great forest of Bayesian statistics grew and was cut down to
produce journal articles is the Gaussian mean model with conjugate priors. We briefly
review some simple instances of this type before venturing into the “new growth” forest.

Article 18 of the UN Universal Declaration of Human Rights asserts that we are all
entitled to our own opinions. However, Bayesians are encouraged to formulate opinions
that are conjugal to their models for how observations of the world arise. (Religious dogma
usually dictates how we see the world and what we believe about it, so this should hardly
be surprising.)

Conjugal prior opinions have the property that they are capable of procreation when
suitably coupled with associated probabilistic expressions of the likelihood of observed data.
Offspring so generated must take the same form as the parental prior opinion, otherwise they
are regarded as sterile, like a mule. We now illustrate this notion of mathematico-sexual
compatibility with a serious of conjugal examples.

Example 1. Gaussian mean, known scale. Suppose we have observationsX1, · · · , Xn

drawn iid from a N (µ, σ2) model with unknown µ and known σ2. If our prior opin-
ion about µ happens to be expressed as N (µ0, σ

2
0) then a simple computation reveals

that our updated opinion about µ should be N (µ1, σ
2
1) where σ2

1 = (nσ−2 + σ−2
0 )−1 and

µ1 = σ2
1(nX̄σ−2 +σ−2

0 µ0). If, to make things even more convenient, σ2
0 = σ2, then the prior

acts just like we have one more observation, Xn+1 = µ0. But more generally X̄ and µ0 get
weighted according to their respective precisions, n/σ2 for X̄ and σ−2

0 for µ0 and combined
accordingly. A curious feature of this schema is that if X̄ and µ0 differ considerably relative
to their respective precisions, then the updated posterior opinion may express the puzzling
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view that we now believe that µ lies, with high probability, in a region that neither the
observations, nor the prior, suggest is very plausible.

The proof of this result relies on the following elementary algebraic identity:

γ0(x− µ0)2 + γ1(x− µ1)2 = (γ0 + γ1)

(
x− γ0µ0 + γ1µ1

γ0 + γ1

)2

+
γ0γ1

γ0 + γ1
(µ1 − µ0)2.

Example 2. Gaussian mean, unknown scale I. Suppose that we don’t presume to
know σ2 in the previous example, what then? There are many ways to express our prior
ignorance about the joint distribution of µ and σ2, but of these only a few are conjugal.
A curious aspect of all this is that we are about to replace our admitted ignorance about
σ2, with a very precise expression of its probability distribution. The simplest of these
conjugal priors is probably the joint density, f(µ, σ2) = g(µ|σ2)h(σ2) with g the conditional
Gaussian density

g(µ|σ2) =
√
n0φ(n0(µ− µ0)2/σ2)/σ

and σ2 as inverse gamma, invΓ, with density,

h(σ2) = K(σ2)−(ν0+2)/2 exp{−νσ2
0/(2σ

2)}.

This formulation of the prior essentially asserts that our prior belief about µ is based on
having already seen n0 observations from exactly the same process generating the Xi with µ0

taken to be the sample mean from this “precognition.” Cf. Spielberg (2002) Under these
circumstances Bayesian mating of prior and likelihood yield the normal/inverse gamma
posterior progeny:

µ|σ2, X ∼ N (µ1, σ
2/n1)

σ2|X ∼ invΓ(ν1/2, ν1σ
2
1/2),

where µ1 = (n0µ0+nX̄)/(n0+n), n1 = n0+n, ν1 = ν0+n, ν1σ
2
1 = ν0σ

2
0+S+n0n(µ0−X̄)/n1,

and S =
∑

(Xi − X̄)2. The proof of this involves some fairly tedious algebra.
Note that this posterior no longer has a fixed scale; our prior belief revealed that we were

uncertain about σ2 and after seeing the data we are still uncertain. If we are interested in
the posterior marginal distribution of µ it is easily approximated by simulation: draw σ2’s
from the specified inverse gamma distribution and plug them into the expressions for µ1

and σ2
1 to draw Gaussians. Now mumble the magical Bayesian incantation: Simulation is

Revelation.
A limiting case of the foregoing takes ν0 = 0, in which case σ1 = S/n and we are back

to something closely resembling classical likelihood based results. However, ν0 = 0, while
yielding a proper inverse gamma posterior, is not itself proper, and therefore does not satisfy
the conditions set forth above for conjugality.

Note also that in contrast to the previous example, the scale parameter of the posterior
for σ2 has a term involving (µ−X̄)2, so when the prior and the data disagree the uncertainty
about both µ and σ2 are increased.

Example 3. Gaussian mean, unknown scale II. Suppose instead of prior beliefs
about µ depending on σ2 as in the previous example, we were to assume that µ and σ2
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were stochastically independent with µ ∼ N (µ0, σ
2
0) and σ2 ∼ invΓ(ν0/2, νσ

2
0/2). With this

prior, Bayesian copulation yields the posterior,

µ|σ2, X ∼ N (µ1, σ
2
2/n1)

σ2|X ∼ invΓ(ν1/2, ν1σ
2
1/2),

where ν1 = ν0 +n, µ1 = σ2
1(nσ−2X̄ + σ−2

0 µ0), σ2
2 = (nσ−2 + σ−2

0 )−1, and S =
∑

(Xi− X̄)2.
Note that when the prior takes this independent form, the gap between µ0 and X̄ is no
longer contributing to the scale of the posterior for σ2.

Example 4. Gaussian Regression, unknown scale I. Expanding slightly on the
earlier Example 2, suppose that we now have observations Y1, · · · , Yn that are multivariate
Gaussian, N (Xβ, σ2In) where X is a matrix of full column rank, p. We now need a
multivariate Gaussian prior for the p-vector, β, which we will take to be N (β0, σ

2Ω0) and
retain the inverse gamma prior for σ2. The posterior becomes,

σ2|Y ∼ invΓ(ν1/2, ν1σ
2
1/2),

but now,
β|σ2Y ∼ N (β1, σ

2Ω1)

where β1 = Ω1(Ω−1
0 β0 +X>Xβ̂), Ω1 = (Ω−1

0 +X>X)−1, ν1 = ν0 +n, ν1σ
2
1 = ν0σ

2
0 +S+R,

β̂ = (X>X)−1X>Y , S = ‖Y −Xβ̂‖2, and R = ‖β0 − β̂‖2Ω1
. This matrix weighted average

is a natural generalization of the earlier Example 2.

Example 5. Gaussian Regression, unknown scale II. Similarly we can extend
Example 3 to the regression setting. With independent priors, β ∼ N (β0,Ω0) and σ2 ∼
invΓ(ν0/2, ν0σ

2
0/2), Bayesian updating yields the posterior,

σ2|Y ∼ invΓ(ν1/2, ν1σ
2
1/2),

β|σ2Y ∼ N (β1, σ
2Ω1)

with ν1 = ν0 + n, ν1σ
2
1 = ν0σ

2
0 + S, β1 = Ω1(Ω−1

0 β0 + σ−2X>Xβ̂), and Ω1 = (Ω−1
0 +

σ−2X>X)−1.

Such examples can be expanded ad nauseum typically continuing with Student t priors
for β̂, but we will resist the temptation to move in this direction.
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