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1. Introduction

As someone who has been advocating “living beyond one’s means” since before the
Reagan administration, I welcome Thomas’s endorsement of the idea. If we embrace
the maxim that statistics is about variation then we should stand ready to explore
how that variation varies with covariates. Assuming, as theory may tempt us to do,
that covariates shift only the central tendency of the response, while variation around
the central tendency remains unperturbed is rarely plausible. Signal plus iid noise is
a dangerous fiction.

Nonparametric regression methods have encouraged us to think much more flexi-
bly about how covariate effects vary over x-space, slicing design space into segments
that each deserve their own local estimate. Quantile regression seeks to do some-
thing similar, slicing the range of the response variable into local conditional quantile
functions. Combining the two approaches by estimating nonparametric conditional
quantile functions offers a flexible way of characterizing the entire conditional distri-
bution of Y |X.

While I find myself completely in accord with the ends set forth in “Beyond,” I
cannot condone many of the means employed to achieve them. While not descending
to the depths of the Cheneyesque – rendition, black ops, waterboarding – there is an
element of (data) torture that risks undermining the whole enterprise. I’ll begin by
explaining some of my reservations about parametric alternatives and their Bayesian
elaborations for nonparametric quantile regression. To conclude there will be some
malicious comments about expectiles.

2. The Paranormal and the Parametric

There is a strong tradition in statistics, going back at least to Karl Pearson, of
what might be called distributional hybridization, grafting new parametric models
onto old root stock. This can be very successful, we need look no further than the
Box-Cox transformation, but it rarely proves to be the panacea enthusiasts claim.
The attraction of global parametric models and their associated likelihood based
estimation and inference methods is undeniable, but these siren songs have their
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2 Beyond Our Means

dangers and it may be safer to follow the advice of Circe to plug our ears with
beeswax, tie ourselves to the mast and sail nonparametrically on by.

Quantile regression was intended to be an exploratory data analysis tool. Often it
enables us to see things that conventional parametric models render obscure, or even
invisible. D. R. Cox concluding his discussion of a paper on Bayesian inference read
to the Royal Statistical Society by Jimmy Savage wrote:

A final general comment is that the discussion above is of the question
of how to reach conclusions about parameters in a model on which we
are agreed. It seems to me, however, that a more important matter is
how to formulate more realistic models that will enable scientifically
more searching questions to be asked of data. (Cox (1962))

Once we have taken a broader view we can always try to construct a narrower para-
metric view of the same material, hopefully one that doesn’t do too much violence to
what we first saw. But without the initial, exploratory look it is hard to be confident
of the second stage.

Thus, I have nothing against gamlss as long as one is aware of its limitations: the
inherent non-robustness due to sensitivity of moment-based estimators to tail behav-
ior, the difficulty of interpreting higher order moment parameters and the difficulties
of effectively linking the dependence of these parameters to observable covariates.
These difficulties were all brought home to me while working on Wei, Pere, Koenker,
and He (2005) in which we compared the elegant Cole and Green (1992) paramet-
ric Box-Cox procedure for estimating reference growth charts with a nonparametric
quantile regression procedure. The Cole-Green method employed conventional L2

smoothing penalties on the second derivatives of the parameters {µ(t), σ(t), λ(t)}
that were assumed to characterize the age specific distribution of childrens’ heights.
With considerable fine tuning we managed to adjust the smoothing parameters of
this model to achieve growth charts that resembled the nonparametric charts we had
estimated with conventional quantile regression on a few B-spline basis functions,
but only at the cost of highly variable estimates of the Box-Cox λ(t) trajectory that
seemed highly implausible. In more complicated settings with more covariates these
difficulties would be compounded.

3. Bayes in the Baño

Recent interest in Bayesian nonparametric methods has spawned considerable work
on various forms of Bayesian quantile regression. The usual knock about Bayesian
methods focuses on the difficulty of coming up with sensible priors. I’ve never quite
understood this complaint; of course it isn’t easy especially in high dimensional prob-
lems, anyone who thinks it is should consult the recent exchange between Larry
Wasserman and Chris Sims. But everyone is entitled to the courage of their own
convictions provided that they are not too dogmatic. It is just this last proviso that
really worries me about the other crucial ingredient of the Bayesian paradigm: how
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is it that one can be so ignorant about model parameters but so confident about the
specification of the likelihood? Likelihoods are especially problematic for quantile
regression: if you are brave, or foolhardy, enough to write

QY (τ |x) = x>β(τ) τ ∈ (0, 1),

then implicitly you have written a global model with log likelihood,

`(β|y, x) = −
∑

log(x>i β̇(τi))

where β̇(τ) = (dβj(τ)/dτ). But this is not especially tractible, one would need
inter alia to replace the mysterious, τi’s by something like FY (yi|xi), the conditional
distribution of Y evaluated at the observed yi’s, or less hypothetically, by an estimate
thereof. This parametric dilemma has led to several more ad hoc proposals, many of
which fall back upon the asymmetric Laplace distribution, or ALD, model. As fond as
I might be of the logarithm of this density, it doesn’t serve very well as a likelihood. Of
course, it does when logged bring us back to the familiar quantile regression objective
function, but no one ever intended this to be a plausible global description of how data
was generated. The whole point is that it is only a local description. It was simply
a convenient gimmick that delivered the sample quantiles in univariate samples, and
miraculously gave estimates of conditional quantile functions in various regression
settings.

It is sometimes claimed that Bayesian posteriors based on such likelihoods deliver,
as foretold by the Bernstein-von-Mises theorem, consistent estimates. This is true
insofar as we are willing to accept the multitude of consistency results for quantile
regression in its original form, but as soon as one would like to do inference, construct
confidence, or credibility regions, all bets are off. And as we know: a Bayesian without
betting, is like a monk without praying. We might at least consider that such a
likelihood should have a free scale parameter, but once we start down this road there
is no stopping. The parametric quagmire deepens and we sink slowly into it, left
wondering if we could pull ourselves out by our hair, or our bootstraps if they aren’t
already submerged.

An interesting alternative to this ALD morass is a recent proposal of Reich, Fuentes,
and Dunson (2011), who suggest in effect to replace the data by the point estimates
of the quantile regression process, {β(τ) : τ ∈ (0, 1)}, and to use the (estimated!

asymptotic!) distribution of β̂(τ) as a likelihood. Remarkably, this proposal can be
traced back to one of the sacred texts of Bayesianism, see Jeffreys (1939). Check the
index for “median.” It seems safe to bet that this will remain a Bayesian heresy well
into the next millenium.

My reservations about Bayesian likelihoods for quantile regression notwithstanding,
penalty methods for disciplining the at times unruly behavior of quantile regression
estimates are quite indispensable. Call them priors if you wish, or just invoke Tukey’s
“borrowing strength” dictum, and let 1000 of these flowers bloom. My personal
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preference leans toward the total variation penalties of Koenker, Ng, and Portnoy
(1994) and Koenker and Mizera (2004), which are simply L1 variants of the more
familiar Wabha-esque, L2 penalties appearing in “Beyond.” The TV penalties yield
piecewise linear fitted functions and have the advantage that it is relatively easy to
incorporate shape constraints like monotonicity and/or convexity/concavity. Additive
models of the type advocated in “Beyond” can be estimated using quantile fidelity
and total variation penalties with the rqss( ) in my quantreg R package. This
framework keeps us well within the briar patch of linear programming, which when
one is careful to exploit the inherent sparsity of the linear algebra is computationally
very efficient.

There is always a lingering concern that the local nature of quantile regression
estimation may produce non-monotone estimates of the conditional quantile function
at some design points. This is the price we pay for the flexibility of local fitting; there
is no free lunch. Global models, in contrast, deliver happy families of non-crossing
quantile functions at the cost of imposing a potentially overly restrictive structure.
Fortunately, there are several excellent remedies for non-monotonicity when it arises.
Dette and Volgushev (2008) and Chernozhukov, Fernàndez-Val, and Galichon (2010)
have shown that rearrangement can be employed without altering the asymptotic
behavior of the quantile regression process, while improving its higher order bias
properties. More traditional monotonization methods such as pool adjacent violators
can be used similarly, and joint estimation of quantile regression parameters over
several τ ’s has also be explored in several recent papers. Of course, in extreme
circumstances where crossing of estimated conditional quantile functions is severe,
one should seriously reconsider the specification of the model, often the linearity
assumption can be highly suspect. In such cases non-monotonic estimates serve a
valuable diagnostic purpose.

For model selection the analogue of the TV penalty is the ubiquitous “lasso” penalty
which has proven to be an inspiration for countless theoretical papers, and – perhaps
to a lesser degree – a practical tool for applied data analysis. “Beyond” favors boost-
ing over the lasso and I would be very interested to learn more about why? A principle
that I try to drum into students is: Any worthwhile estimate deserves an estimated
measure of precision. This is difficult advice to adhere to, especially in high dimen-
sional nonparametric problems. It was only after I had the opportunity to read the
marvelous paper by Krivobokova, Kneib, and Claeskens (2010) that I felt confident
enough to listen to my own advice, and – following their remarkable lead for additive
models for the conditional mean – try to provide similar inference methods for ad-
ditive modeling of quantile regression in rqss( ). The results of this adventure are
reported in Koenker (2011), and serve to reenforce the encouraging message of ear-
lier work about the effectiveness of Hotelling tube methods for constructing uniform
nonparametric confidence bands. To my knowledge there is no such commensurate
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approach for boosting and I would be curious to know how one might try to rationalize
this sin of omission.

4. Expectiles and Expectoration

There is one final question: Do expectiles clear the bar defining obscenity set by the
U.S. Supreme Court, and immortalized by Lenny Bruce: are they – or are they not –
utterly without any redeeming social value? Its a tough call, but just for the sake of
argument I’ll take the view that expectiles are, indeed, UWARSV. Many aspects of the
case against expectiles are familiar: they are slippery, although they seek to describe a
local property of a distribution, they depend on global properties of that distribution;
they are inherently nonrobust, by manipulating the tails of the distribution one can
make the expectiles dance at your will; and they are not equivariant to monotone
transformations as are the quantiles. I could rest my case here, but why? – when we
are having fun.

In this spirit I suppose one could ask: Why would we ever want to square our errors?
Doesn’t this simply exaggerate the importance of our biggest modeling blunders? I
can hear you thinking: “How could we do without the mean, and didn’t we come
to our beloved mean by squaring errors?” To this one can hardly object, but the
cautionary results of Bahadur and Savage (1956) are always worth keeping in mind.

Over the years I’ve made several (wildly unsuccessful) attempts to dislodge the
loogie of expectorate from the collective statistical throat. The first of these attempts
appeared nearly invisibly as an ET problem, Koenker (1992), asking whether there
was a distribution for which the quantiles and the expectiles coincided. Of course
I knew, because ET required submitted answers to proposed problems, that such a
distribution did exist and that its density took the form,

f(y) = 2|y|/[(4 + y2)2
√

1− 4/(4 + y2)].

At the time I thought that the world would take one look at this, marvel at its absur-
dity and immediately forget about expectiles altogether. Ah, the naiveté of (relative)
youth. Note that the density displayed above has algebraic tails with (Pareto) tail
exponent 2, and consequently the distribution has no variance, so the standard as-
ymptotic theory for expectiles fails totally for this special distribution, the only one
for which interpretation of expectiles as quantiles has validity!

My second attempt at jousting at the expectile windmill appeared as Figure 2.10 of
Koenker (2005) and is reproduced below. It illustrates in grey a family of conditional
quantile functions for a model with linear cqfs for τ ≤ 1/2 and quadratic cqfs for
τ > 1/2. Superimposed on the plot in black are the corresponding family of expectiles
for the same model, and it is apparent that they all exhibit a nonlinearity that they
inherit from the upper tail of the conditional distribution. Can this be a Good Thing?
Hardly. Did it slow the flow of expectorate? Hardly. It is sometimes claimed that the
conditional expectiles can be relabeled to obtain the conditional quantile functions;
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Figure 1. Conditional quantile functions and Conditional Expectile
Functions: A family of conditional quantile functions (in grey) and
the corresponding family of conditional expectile functions (in black).
Note that the conditional quantile functions are linear in x, for τ ≤ 1/2,
and quadratic for τ > 1/2. However, due to the global nature of the
expectiles the lower expectiles inherit the nonlinearity from the upper
tail. The 0.10 expectile is roughly the same as the 0.20 quantile for x
near 0, but it corresponds to the 0.35 quantile when x = 10.

this cannot be done in (generic) cases like the one we have illustrated. In the iid
location-scale shift model, provided there is first moment, relabeling is possible, but
I will argue that even in the simplest univariate cases this is a fool’s errand.

A frequent justification of expectiles seems to be that they are “easy to compute,”
implying I suppose that they are easier to compute than quantiles. This is hard
to dispute since it depends on so many unspecified factors. Easy for whom? For
what problems? With what tools, what languages? In practice “easy” seems to
translate as “programmable as iteratively reweighted least squares.” As noted by
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Schabel and Eilers (2009) L2 smoothing penalties can be easily incorporated via data
augmentation, and this leads to a convenient smoothing approach for both univariate
and bivariate additive components. While IWLS may be easy for the programmer,
it is certainly not so easy for the poor machine. Modern quadratic programming
methods like second order cone programming would be far more efficient. It would
also enable investigators to consider much larger applications by exploiting sparse
linear algebra. Of course quantile regression estimation with L2 smoothing penalties
can also be formulated as SOCP just as well as expectiles, and the computational
difficulty of the two problems are thus essentially identical.

“Beyond” offers one last claim for the superiority of expectiles over quantiles, a
claim so preposterous that it probably needs no refutation, but just for the sake of
completeness it seems imperative to offer some response. I quote,

However, as Kauermann, Schulze-Waltrup, Sobotka, and Kneib (2012)
have shown, expectiles can be easily transformed to calculate quantiles
and may then also be more efficient.

Let’s try to deconstruct this. First, we must be talking about univariate situations
since as we have seen conditional expectile functions have different functional form
than conditional quantiles so the transformation project must be conducted design
point by design point. Second, even for univariate expectiles we will need to estimate
many expectiles in order to infer something useful about any one quantile. Of course
there are special cases: for symmetric distributions, F with density f the mean can be
a more (asymptotically) efficient estimator of the median provided that the variance
of the distribution is less than 1/(4f(F−1(1/2))). This result was already established
by Laplace, and was reprised by Edgeworth and Kolmogorov, but it is evident that
the condition for an efficiency improvement is very special; at the normal model there
is an asymptotic relative efficiency gain from using the mean of about one third, but
if we encounter heavier tails the efficiency loss can be arbitrarily large. As soon as we
move away from this symmetric setting there is no simple mapping from expectiles to
quantiles, instead we have a linear operator that maps the whole expectile function
back to the quantile function. In practice, what is proposed in Kauermann et. al.
is to evaluate this operator on a grid. One can view this as a smoothing operation
imposed on a modified version of the empirical distribution function.

The “easy” transformation from expectiles to quantiles developed in Kauermann,
Schulze-Waltrup, Sobotka, and Kneib (2012) relies on a characterization of the τth
expectile, say µ(τ), of a random variable with distribution function, F as,

(1) µ(τ) =
(1− τ)G(µ(τ)) + τ(µ(1/2)−G(µ(τ))

(1− τ)F (µ(τ)) + τ(1− F (µ(τ))
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where G(τ) =
∫ τ
0
F−1(u)du. Given a vector of estimated expectiles, µ̂(τj) : j =

1, · · · , J , for 0 < τ1 < · · · < τJ < 1, they write,

F̂ (µ̂(τk)) =
k∑
j=1

γ̂j

and

Ĝ(µ̂(τk)) =
k∑
j=1

ĉj γ̂j

where ĉj = (µ̂(τj) + µ̂(τj−1))/2 for j = 1, · · · , J . The grid of estimated expectiles
is extended to define µ̂(0) = X(1) and µ̂(1) = X(n), the minimal and maximal order

statistics of the sample, respectively. Substituting the foregoing expressions for F̂
and Ĝ into (1), yields, with a little adjustment to delete an uninformative mean
equation and add an equation in the upper tail, a linear system of J equations in the
J unknown γ̂j’s. Given this surrogate estimate of F at the specified expectile grid
points, linear interpolation is used to invert to obtain quantile estimates. In Figure 2
I’ve illustrated two estimates of the quantile function based on 199 standard Gaussian
observations. The darker, more jagged curve is the expectile estimate using the
Kauermann, Schulze-Waltrup, Sobotka, and Kneib (2012) procedure. As the figure
illustrates these estimates of the quantile function are typically not monotone, but
this can be rectified quite easily as we have discussed above. An even more disturbing
aspect is the discrepancy one sees in the tails, which is caused by the fact that extreme
Gaussian expectiles are actually much more central than the corresponding quantiles
so there is typically a long interpolated segment in the tails. This effect is accentuated
by using fewer expectiles, like the 25 suggested in Kauermann et al. The real question
is: how is all this leading to an improvement over classical methods? Do we really
expect an improvement over inverting the empirical distribution function? If so under
what conditions?

To answer these questions let’s briefly review some established theory. Pfanzagl
(1976) has proven that:

No translation equivariant and asymptotically uniformly median unbi-
ased estimator is asymptotically more concentrated about the distri-
bution quantile than the sample quantile.

Thus, we cannot expect improvements in the leading (O(n−1)) term of the asymptotic
expansion of the mean square error of estimators of the τth quantile over that achieved
by the τth sample quantile. However, there is an extensive literature exploring the
possibility of lower order improvements. Reiss (1980) considers quasi-quantiles of the
form,

Q̃m(τ) = (X([nτ ]−m) +X([nτ ]+m))/2,

and shows that for appropriate choice of m = mn = O(n2/3), one can ahieve MSE
improvements of O(n−4/3), which are negligible relative to the n−1τ(1− τ)[Q′(τ)]2 =
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Figure 2. Two estimates of a standard Gaussian quantile function
based on 199 observations: The grey curve depicts the classical quantile
function based on inversion of the empirical distribution function. The
darker, non-monotone curve is the estimate based on the Kauermann et
al procedure of “inverting” the estimate of distribution function based
on the expectiles. The latter curve is based on 160 equally spaced
expectiles.

O(n−1) leading term, but nevertheless of interest. Parzen (1979), Falk (1984) and
others have considered kernel smoothing of nearby order statistics as an alternative
to these linear interpolents. Sheather and Marron (1990) provide an overview of this
literature and show that for smooth quantile functions, with continuous Q′′(t) in a
neighborhood of t = τ , and kernel k, a compactly supported density symmetric about
0, the optimal bandwidth, h∗ for such kernel estimates,

Q̃h(τ) =
n∑
i=1

h−1(

∫ i/n

(i−1)/n
k((t− τ)/h)dt)X(i)
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is h∗ = α(k)β(Q)n−1/3, where

α(k) = [2

∫ ∞
−∞

uk(u)K(u)du/(

∫ ∞
−∞

u2k(u)du)2]1/3

K(u) =
∫ u
−∞ k(u)du and β(Q) = (Q′(τ)/Q′′(τ))2/3. With this choice of bandwidth,

MSE(Q̃h(τ)) = n−1τ(1− τ)[Q′(τ)]2 +O(n−4/3),

so again we have, at least potentially, some improvement over what is achievable with
the ordinary sample quantile, but the improvement is asymptotically negligible. As
is usual in such circumstances, it is handy to know about the local behavior of Q
near τ , in particular the factor, β(Q), in choosing the bandwidth, but based on their
extensive simulations Sheather and Marron (1990) conclude that “even if one knew
the best estimator [i.e. bandwidth] for each situation, one can expect an average
improvement in efficiency of only 15%.”

In Koenker (2005) such kernel smoothing methods are considered in the quantile
regression context and a small simulation experiment is described that confirms the
modest MSE gains seen in the univariate setting. Where does this leave the claim
from “Beyond?” With careful attention to the monotonization of the Kauermann,
Schulze-Waltrup, Sobotka, and Kneib (2012) procedure, it seems possible to recon-
struct something close to the usual empirical distribution function, and thus with
further careful choice of bandwidth one might be able to capture some of the benefits
of these earlier smoothing proposals. But we cannot expect to improve upon the
empirical distribution function, so if the modest improvement due to smoothing is
deemed worthwhile, why not start there and dispense with the expectiles entirely?

I don’t want to leave the impression that I am opposed to smoothing, or in the
Tukey jargon “borrowing strength,” in estimating either conditional or unconditional
quantile models. Indeed, this can be a valuable way to increase the precision of
estimates. In the center of the distribution these benefits are necessarily modest, but
in the tails such smoothing is really essential. Recent work by Chernozhukov (2005)
and Wang, Li, and He (2012) vividly illustrate this point. What I fail to see is any
benefit derived from introducing the expectiles. Expectiles belong in the spittoon.
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