
SOME NOTES ON HOTELLING TUBES

ROGER KOENKER

1. Introduction

We begin with the two examples of Johansen and Johnstone. The first is
Hotelling’s (1939) original example, and the second is closely related to our even-
tual goal of nonparametric applications.

1.1. Hotelling’s Original Example. Consider the nonlinear regression model

Yi = z>i α+ λi(τ)β + εi

where α, β, τ are unknown parameters, λi(·) are known functions and εi ∼ N (0, σ2).
We want to test H0 : β = 0. By the usual Frisch and Waugh (1933) trickery we
can eliminate the α effect∗ and after redefining the notation, we are left with the
likelihood ratio statistic

L = inf
τ

∑
(Yi − β̂τλi(τ))2/

∑
Y 2
i

Here β̂τ = Y >λ(τ)/|λ(τ)|2 so we can rewrite

L = inf
τ
|Y |−2(|Y |2 − 2(Y >λ)2/|λ|2 + (Y >λ)2/|λ|2)

= 1− sup
τ

(
Y >λ(τ)

|λ(τ)||Y |

)2

≡ 1− sup
τ

(γ(τ)>U)2

Now U = Y/|Y | is uniformly distributed on the sphere Sn−1 and γ(τ) = λ(τ)/|λ(τ)|
is a curve in Sn−1. Thus, the test rejects when W = supτ γ(τ)>U exceeds† some
value w = cos θ which is equivalent to

U ∈ γθ = {u ∈ Sn−1 : sup
t
u>γ(t) ≥ cos θ}

= {u ∈ Sn−1 : d(u, γ) ≤ (2(1− w))1/2}

Version: May 4, 2012. These notes are intended as a readers guide to Johansen and Johnstone
(1990) and thus to serve as a starting point for some work on uniform confidence bands for additive

quantile regression models as currently implemented in quantreg by the function rqss.
∗Hotelling obviously knew all about how to do this, and one doubts that he learned it from

Frisch, but this would probably be hard to establish.
†Note that the original definition of L is such that we reject for small values, so L < c, implies

we reject for supτ γ(τ)>U > w = cos θ for some critical value of θ.
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Figure 1. Angular distance from γ(t) to u = (1, 0).

This is illustrated by Figure 1 of Johansen and Johnstone, reproduced above. They
call this the “angular or geodesic radius θ about γ:”

d2(u, γ) = sin2(θ) + (1− cos(θ))2

= 1− 2 cos θ + cos2 θ + sin2 θ

= 2(1− cos θ).

So when the distance is small, U falls inside tube, and we reject. This seems a
bit counterintuitive, but is nonetheless correct. There are probably many ways to
make this sound more intuitive. Let’s try one possibility: Since it all boils down
to a cosine, that is the simple correlation between λ(τ) and Y , we want to reject
H0 : β = 0 if this correlation/cosine is too large, but Y ’s that make it too large are
the Y ′s that fall inside the tube.

So how do we compute the critical w or equivalently the critical θ? Since W >
w ≡ cos θ is equivalent to U ∈ tube, we need the volume of the tube. Let |γ| denote
the length of the arc γ(τ) on the sphere. (This can be approximated by the finite
difference formula,

|γ| =
∫
‖γ̇(τ)‖dτ ≈

m∑
i=2

‖(γ(τi)− γ(τi−1))‖,

with ‖ · ‖ the usual Euclidean norm, and the τ ’s on some relatively fine grid of m
points. Note that in the finite difference approximation the τi − τi−1 that would
normally appear in the difference quotient inside the norm expression cancels with
the contribution of the dτ .)

Theorem 1. If γ is a nonclosed regular curve in Sd−1 then for w near 1,

(1) P(W ≥ w) =
|γ
2π

(1− w2)
d−2
2 +

1

2
P(B

(
1

2
,
d− 1

2

)
≥ w2)

where B(1/2, (d − 1)/2) is a beta random variable. If γ is closed then the second
“cap” term is omitted.

This follows from a result of Hotelling (1939).
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Theorem 2. Let γ be a regular closed curve in Sd−1 with length |γ|. And

γθ = {u ∈ Sd−1
∣∣ sup

t
u>γ(t) ≥ θ}

= {u ∈ Sd−1
∣∣d(u, γ) ≤ (2(1− w))1/2}

where w = cos θ. If θ is sufficiently small, then the volume of the tube V (γθ) is
given by

(2) V (γθ) = |γ|Ωd−2 sind−2 θ

where Ωd−2 = π(d−2)/2Γ(d/2) is the volume of the unit ball in Rd−2.

Heuristic: The formula is just

V (γθ) = (length of tube) · (Volume of unit ball) · radiusd−2

Recall that the volume of the unit ball in dimension d is V = πd/2/Γ((d + 2)/2).
When θ is larger, or γ is twisty, then the tube intersects itself and the formula needs
some refinement.

When the curve isn’t closed, then it needs “caps” on each end. These caps are
given by

wd−2

∫ 1

cos θ

(1− z2)(d−3)/2dz

where wd−2 = 2π(d−1)/2/Γ((d−1)/2) is the (d−2)-volume of Sd−2. (Note that the
volume of the sphere, V (Sd−1) = 2πd/2/γ(d/2), is not the same as the volume of
the ball. Note also that (1− z2)1/2 is again the radius and integrating out the rd−3

yields a d− 2 dimensional volume.)
How do we get from (2) to (1)? Recall that U is uniform on the (d− 1) sphere

so we need to divide by the volume of that sphere to evaluate the probability of
being in the tube, so for closed curves,

V (tube)

V (sphere)
=
|γ|Ωd−2 sind−2 θ

2πd/2/Γ(d/2)

=
|γ|(π(d−2)/2/Γ(d/2)) sind−2 θ

2π(π(d−2)/2/Γ(d/2))

=
|γ|
2π

(1− w2)(d−2)/2

To include caps we also need to divide by the volume of the sphere. Note that

P(B1/2, d−1
2
≥ w2) =

∫ 1

w2

[x1/2−1(1− x)
d−1
2 −1/B(1/2,

d− 1

2
)]dx

=

∫ 1

w2

[x−1/2(1− x)
d−3
2 /B]dx

Changing variables x→ y2 we have

=

∫ 1

y0

[y−1(1− y2)
d−3
2 /B]2ydy

= 2

∫ 1

y0

B−1(1− y2)
d−3
2 dy
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It remains to show that B−1 = wd−2/V(sphere), which follows after a little simpli-
fication and recalling that Γ(1/2) =

√
π.

1.2. Uniform confidence bands for nonparametric regression. Consider the
series expansion model

Yi =

d∑
j=1

βjaj(ti) + εi

with εi ∼ N (0, σ2) as before and t ∈ I ⊂ R. Our objective is to find a positive c
such that

Pβ,σ,Σ(|β>a(t)− β̂>a(t)| ≤ cσ(a(t)>Σa(t))1/2 ∀ t ∈ I) ≈ 1− α
uniformly in β, σ. Johansen and Johnstone write this as

Pβ,σ,Σ(T < cσ)

where

T = sup
a∈C

a>(β̂ − β)√
a>Σa

Now consider X ∼ N (ξ,Σ), so X plays the role of β̂ and ξ of β. We’d like to
make a confidence statement about {a>ξ|a ∈ C} and C is some sort of “curve’ ’ .
So now we write

T = T (X, ξ) = sup
a∈C

a>(X − ξ)√
a>Σa

We want the distribution of T so we can obtain the confidence set

Rx = {{a>ξ}a∈C |T (X, ξ) < c1−ε}
where Pξ,Σ(T < c1−ε) = 1− ε. Write T = RW where

R2 = (X − ξ)>Σ−1(X − ξ) ∼ X2
d

and

W = sup
a∈C

a>X − ξ)√
a>Σa

√
(X − ξ)Σ−1(X − ξ)

= sup
a∈C

(Σ1/2a)>Σ−1/2(X − ξ)
|Σ1/2a||Σ−1/2(X − ξ)|

Now to put things back into the earlier framework of γ and U we set

γ(a) =
Σ1/2a

|Σ1/2a|
U = Σ−1/2(X − ξ)/|Σ−1/2(X − ξ)|

So as before γ = γ(C) ⊂ Sd−1 and U is uniform on Sd−1. R and W don’t depend
on ξ,Σ or they do, but only via γ. R2 ⊥⊥W and R2 ∼ χ2

d so

P(T > c) =

∫ ∞
c

P(W > c/r)P(R ∈ dr)

The random variable W has the same form as in the previous example so

P(W > w) =
|γ|
2π

(1− w2)(d−2)/2 +
1

2
P(B ≥ w2)

≡ bγ(w)
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Naiman (1986) bounds this probability by

P(T > c) ≤
∫ ∞
c

min{bγ(c/r), 1}P(R ∈ dr)

and Knowles (1987) ignores the bγ < 1 constraint and integrates the bound to get,

P(T > c) ≤ |γ|
2π
e−c

2/2 + 1− Φ(c)

This integral appears somewhat miraculous, but does actually work out provided
that one carefully observes the P(R ∈ dr) term. Since R2 ∼ χ2

d, letting F denote
the df of χ2

d, we have,

P(R ≤ r) = P(R2 ≤ r2) = F (r2)

so the corresponding density of R is

fR(r) = 2rF ′(r2) = 2rfR2(r2).

Once one has this bound then various other things follow easily. For example

P(|T | > c) ≤ 2P(T > c).

Johansen and Johnstone (1990) give further details on the accuracy of the bounds
and applications.
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