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Sample Quantiles via Optimization

Ordinary sample quantiles can be easily computed (without sorting) by
optimizing:

min
ξ∈R

n∑
i=1

ρτ(yi − ξ)

where ρτ(u) = u · (τ− I(u < 0))

ττ − 1

ρτ(u)
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Linear Quantile Regression

Linear (in parameters) conditional quantile functions can be estimated by:

min
β∈Rp

n∑
i=1

ρτ(yi − x
>
i β)

where ρτ(u) = u · (τ− I(u < 0)) denotes the same “check” function.

Median solutions minimize sums of absolute errors.

Some inherent robustness since only signs of residuals matter.

Solutions efficiently computed via linear programming.

Solutions interpolate p points when there are p parameters.
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Nonparametric Quantile Regression

There are several approaches to estimating conditional quantile functions
nonparametrically:

Inversion of some form of local conditional distribution function
estimators: Peracchi (2002), Matzkin (2003), Komunjer and Vuong
(2006), Imbens and Newey (2009)

Locally polynomial weighting: Chaudhuri (1991), Welsh (1996),
Horowitz and Lee (2005), Spokoiny, Wang and Härdle (2012), . . .

Series/Sieve estimation: Shen, Shi and Wong (1999), Wei and He
(2006), Chen (2007)

Penalty methods: K, Ng and Portnoy (1994), Bosch, Ye and
Woodworth (1995), K and Mizera (2004)
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Penalized Quantile Regression

Non-parametric conditional quantile functions can be estimated by solving:

min
g∈G

n∑
i=1

ρτ(yi − g(xi)) + λP(g)

where P denotes a penalty term designed to control the roughness of the
fitted function ĝ.

Typically, in fitting conditional mean models, Wahba, Reinsch, etc.,

P(g) =

∫
(g ′′(x))2dx

or some more exotic Sobolev form, as e.g. Ramsay and Silverman (2005).
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Total Variation Regularization I

There are many possible penalties, ways to measure the roughness of fitted
functions, but total variation of the first derivative of g is particularly
convenient in the context of quantile regression:

P(g) = V(g ′) =

∫
|g ′′(x)|dx

As λ→∞ we force ĝ to be more nearly linear in x. Solutions of

ming∈G

n∑
i=1

ρτ(yi − g(xi)) + λV(g
′)

are continuous and piecewise linear (K, Ng and Portnoy (Biometrika,
1994)). This is a natural analogue of the classical (Wahba) L2 smoothing
spline, and a Lasso penalty avant la lettre.
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Fish in a Bottle

Objective: to study metabolic activity of various fish species in an effort to
better understand the nature of the feeding cycle. Metabolic rates
measured as oxygen consumption by sensors mounted on the tubes.

Three primary aspects are of interest:

1 Basal (minimal) Metabolic Rate, (SMR)

2 Duration and Shape (SDA) of the Feeding Cycle, and

3 Diurnal Cycle.

Roger Koenker (UIUC) Additive Quantile Regression Rome: 9.10.2012 7 / 31



Juvenile Codfish

Experimental data from Denis Chabot, Institut Maurice-Lamontagne, Quebec, Canada.
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Tuning Parameter Selection
There are two tuning parameters:

1 τ = 0.15 the (low) quantile chosen to represent the SMR,

2 λ controls the smoothness of the SDA cycle.

One way to interpret the parameter λ is to note that it controls the number
of effective parameters of the fitted model (Meyer and Woodroofe(2000):

p(λ) = div ĝλ,τ(y1, ...,yn) =
n∑
i=1

∂ŷi/∂yi

This is equivalent to the number of interpolated observations, the number
of zero residuals. Selection of λ can be made by minimizing, e.g. Schwarz
Criterion:

SIC(λ) = n log(n−1
∑

ρτ(yi − ĝλ,τ(xi))) +
1

2
p(λ) logn.

See e.g. Machado (ET, 1993), Li and Zhu (JGCS, 2008), Xu and Ying
(AISM, 2010).
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Total Variation Regularization II

For bivariate functions we consider the analogous problem:

ming∈G

n∑
i=1

ρτ(yi − g(x1i, x2i)) + λV(∇g)

where the total variation variation penalty is now:

V(∇g) =
∫
‖∇2g(x)‖dx

Solutions are again continuous, but now they are piecewise linear on a
triangulation of the x observations, for ‖ · ‖, the Hilbert-Schmidt norm.
Again, as λ→∞ solutions are forced toward linearity.
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Chicago Land Values via TV Regularization

Chicago Land Values: Based on 1194 land sales and 7505 “virtual” sales introduced

to increase the flexibility of the triangulation. K and Mizera (JRSS-B, 2004).
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Additive Models: Putting the pieces together

We can now combine such models:

ming∈G

n∑
i=1

ρτ(yi −
∑
j

gj(xij)) +
∑
j

λjV(∇gj)

Components gj can be univariate, or bivariate.

Additivity is intended to muffle the curse of dimensionality.

Linear terms are easily allowed, or enforced, and penalized by Lasso

Shape restrictions like monotonicity and convexity/concavity as well
as boundry conditions on gj’s can also be easily imposed.
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Implementation in the R quantreg Package

Problems typically yield large, very sparse linear programs.

Optimization via interior point methods are quite efficient,

Exploiting sparsity of the linear algebra problems scale well,

Nonparametric qss components can be either univariate, or bivariate

Each qss component has its own λ,

Linear covariate terms enter formula in the usual way,

The qss components can be shape constrained, monotone, convex,

fit <- rqss(y ∼ qss(x1,lambda = 3, constraint = "I") +

qss(x2,lambda = 8) + x3, tau = .15)
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Pointwise Confidence Bands

It is obviously crucial to have reliable confidence bands for nonparametric
components. Following Wahba (1983) and Nychka(1983), conditioning on
the λ selection, we can construct pointwise bands from the covariance
matrix of the full model:

V = τ(1 − τ)(X̃>Ψ̂X̃)−1(X̃>X̃)(X̃>Ψ̂X̃)−1

with Ψ = diag(fYi|xi(F
−1
Yi|xi

)),

X̃ =


X G1 · · · GJ

λ0HK 0 · · · 0
0 λ1P1 · · · 0
... · · · . . .

...
0 0 · · · λjPJ

 and Ψ̂ = diag(φ(ûi/hn)/hn)

Bands for the nonparametric additive components can be constructed by
extracting diagonal blocks of V.

Roger Koenker (UIUC) Additive Quantile Regression Rome: 9.10.2012 14 / 31



Uniform Confidence Bands

Uniform bands are also important, but more challenging. We would like:

Bn(x) = (ĝn(x) − cασ̂n(x), ĝn(x) + cασ̂n(x))

such that the true curve, g0, is covered with specified probability 1 − α
over a given domain X:

P{g0(x) ∈ Bn(x) | x ∈ X} > 1 − α.

We follow the “Hotelling tube” approach initiated by Hotelling(1939) and
Weyl (1939) and developed by Naiman (1986), Siegmund and Knowles
(1988), Johansen and Johnstone (1990) Sun and Loader (1994),
Krivobokova, Kneib and Claeskens (2010), and others.
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Uniform Confidence Bands

As in Krivobokova, Kneib and Claeskens (2010) we have a fitted
component,

ĝn(x) =

p∑
j=1

ϕj(x)θ̂j

with pointwise standard error σ(x) =
√
ϕ(x)>V−1ϕ(x) and would like to

invert test statistics of the form:

Tn = sup
x∈X

ĝn(x) − g0(x)

σ̂(x)
.

The Hotelling approach requires a critical value, cα solving

P(Tn > c) 6
κ

2π
(1 + c2/ν)−ν/2 + P(tν > c) = α

where κ is the length of the “tube” and tν is a Student random variable
with degrees of freedom ν = n− p.
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Digression on Hotelling Tubes Construction

Suppose that we have an ”partially linear model” of the form:

Yi = z
>
i α+ λi(τ)β+ εi

with parameters, α,β, τ. The functions, λi(τ) are something like Box-Cox
transformations of an observable covariate, e.g. λi(τ) = (xτi − 1)/τ.

Our task is to test the hypothesis:

H0 : β = 0

based on the likelihood ratio statistic,

L = inf
τ

∑
(Yi − β̂τλi(τ))

2/
∑

Y2i

after possible preliminary projection to remove α and an abuse of notation.
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Hotelling Tubes and the Glorified Cosine

Given τ, we have β̂τ = Y>λ(τ)/ ‖ λ(τ) ‖2 so the likelihood ratio is,

L = inf
τ
‖ Y − λ(τ)β̂τ ‖2 / ‖ Y ‖2

= inf
τ
‖ Y ‖−2 (‖ Y ‖2 −2(Y>λ)2/ ‖ λ ‖2 +(Y>λ)2/ ‖ λ ‖2)

= 1 − sup
τ

(
λ(τ)>Y

‖ λ(τ) ‖‖ Y ‖

)2

≡ 1 − sup
τ
(γ(τ)>U)2

Under the null U = Y/ ‖ Y ‖ is uniformly distributed on the sphere Sn−1

and γ(τ) = λ(τ)/ ‖ λ(τ) ‖ is a curve in Sn−1.
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Hotelling Tubes as Rejection Regions

The test rejects when W = supτ γ(τ)
>U exceeds some critical value

w = cos θ which is equivalent to

{U ∈ γθ} = {u ∈ Sn−1 : sup
t
u>γ(t) > cos θ}

= {u ∈ Sn−1 : d(u,γ) 6 (2(1 −w))1/2}

The distance d(u,γ) is called the “angular or geodesic radius θ about γ:”

d2(u,γ) = sin2(θ) + (1 − cos(θ))2

= 2(1 − cos θ).

So when the distance is small, U falls inside the tube, and we reject.
Given the uniformity of U on the sphere it is (relatively) easy to chose the
radius of the tube.
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The curve γ(t) on S2.

Roger Koenker (UIUC) Additive Quantile Regression Rome: 9.10.2012 20 / 31



The tube γθ on S2.
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Tubes for Sieves

Now suppose that we have the nonparametric sieve model,

Yi =

d∑
j=1

βjaj(ti) + εi

with εi ∼ N(0,σ2) and t ∈ T ⊂ R. Our objective is to find a positive c
such that

Pβ,σ,Σ(|β
>a(t) − β̂>a(t)| 6 cσ(a(t)>Σa(t))1/2 for all t ∈ T) ≈ 1 − α

uniformly in β,σ. That is, we have the test statistic,

T = sup
a∈C

a>(β̂− β)√
a>Σa

≡ T(X, ξ) = sup
a∈C

a>(X− ξ)√
a>Σa

where X ∼ N(ξ,Σ). We’d like to make a confidence statement about
{a>ξ|a ∈ C} when C is some sort 1-dimensional “curve.”
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Tubes for Sieves (2)

Write T = RW where R2 = (X− ξ)>Σ−1(X− ξ) ∼ χ2d and

W = sup
a∈C

a>(X− ξ)√
a>Σa

√
(X− ξ)Σ−1(X− ξ)

= sup
a∈C

(Σ1/2a)>Σ−1/2(X− ξ)

‖ Σ1/2a ‖‖ Σ−1/2(X− ξ) ‖
≡ U>γ(a)

So, as before, γ = γ(C) ⊂ Sd−1 and U is uniform on Sd−1. R and W
don’t depend on ξ,Σ or they do, but only via γ. R2 ⊥⊥W and R2 ∼ χ2d so

P(T > c) =

∫∞
c

P(W > c/r)P(R ∈ dr)
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Tubes for Sieves (3)

The random variable W has the same form as in the previous example so

P(W > w) =
‖ γ ‖

2π
(1 −w2)(d−2)/2 +

1

2
P(B > w2) ≡ bγ(w)

Naiman (1986) suggests the bound

P(T > c) 6
∫∞
c

min{bγ(c/r), 1}P(R ∈ dr)

and Knowles (1987) suggests ignoring the bγ < 1 constraint and
integrates explicitly the bound to get,

P(T > c) 6
‖ γ ‖

2π
e−c

2/2 + 1 −Φ(c)

where again ‖ γ ‖ is the length of γ. Finally, we invert to get the critical
value cα.
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Simulation Design

All the simulations employ the Wand, Ruppert and Carroll (2003) test
function:

g0(x) =
√
x(1 − x) sin

(
2π(1 + 2−7/5)

x+ 2−7/5

)
,

Three model flavors:

iid error Yi = g0(xi) + σ0Ui

linear scale Yi = g0(xi) + σ0(1 + xi)Ui

nuisance covariates Yi = g0(xi) + z
>
i γ+ σ0Ui

Sample size: n = 400, replications R = 1000, Ui ∼ F, and four choices of
the error distribution, F ∈ {Φ, t3, t1,χ23}.
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Confidence Bands in Simulations
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Mean Estimate

Mean bands are based on Krivobokova, Kneib and Claeskens (2010), for
Simon Wood’s mgcv fits, median bands based on quantreg rqss

estimates and SIC λ-selection.
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Simulation Performance

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.063 0.046 12.936 0.960 0.999 0.323 0.920
gam 0.045 0.035 20.461 0.956 0.998 0.205 0.898

t3
rqss 0.071 0.052 11.379 0.955 0.998 0.274 0.929
gam 0.071 0.054 17.118 0.948 0.994 0.159 0.795

t1
rqss 0.099 0.070 9.004 0.930 0.996 0.161 0.867
gam 35.551 2.035 8.391 0.920 0.926 0.203 0.546

χ23
rqss 0.110 0.083 8.898 0.950 0.997 0.270 0.883
gam 0.096 0.074 14.760 0.947 0.987 0.218 0.683

Performance of Penalized Estimators and Their Confidence Bands: IID Error Model
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Simulation Performance

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.081 0.063 10.685 0.951 0.998 0.265 0.936
gam 0.064 0.050 17.905 0.957 0.999 0.234 0.940

t3
rqss 0.091 0.070 9.612 0.952 0.998 0.241 0.938
gam 0.103 0.078 14.656 0.949 0.992 0.232 0.804

t1
rqss 0.122 0.091 7.896 0.938 0.997 0.222 0.893
gam 78.693 4.459 7.801 0.927 0.958 0.251 0.695

χ23
rqss 0.145 0.114 7.593 0.947 0.998 0.307 0.921
gam 0.138 0.108 12.401 0.941 0.973 0.221 0.626

Performance of Penalized Estimators and Their Confidence Bands: Linear Scale
Model
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Conclusions

Flexible nonparametric specifications of conditional quantiles,

Total variation roughness penalties are convenient and natural,

Additive models keep effective dimension in check,

Schwarz model selection criteria are useful for λ selection,

Hotelling tubes are useful for uniform confidence bands,

Lasso Shrinkage is useful for parametric components.
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Sisyphus and the L2 Ball – Statistics in the 20th Century
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Sisyphus and the L1 Ball – Statistics in the 21th Century
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