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Abstract. Stochastic frontier models and methods as pioneered by Peter

Schmidt in Aigner, Lovell, and Schmidt (1977), Horrace and Schmidt (1996),
Amsler, Prokhovov, and Schmidt (2016), constitute a rare departure from the

usual econometric obsession with models for conditional means. They also pro-

vided an early stimulus for the development of quantile regression methods.
After a brief tutorial on Hotelling tube methods for constructing confidence

bands for nonparametric quantile regression, strengthened performance guar-

antees for such bands are described based on recent developments in conformal
inference. These methods may be considered to be a rather idiosyncratic new

approach to nonparametric inference for stochastic frontier models.

One of my indelible memories of Peter Schmidt was a conversation we had in
my kitchen at a party for Midwest Econometrics Group participants in 1993 about
the uneasy relationship between statistics and econometrics. “If a statistical tree
falls in the forest, but no econometrician sees it,” Peter said matter-of-factly, “then
it never happened.” In 1939 Harold Hotelling, arguably one of the most eminent
statisticians and econometricians of the 20th century witnessed such an event and
wrote about in Hotelling (1939). The paper inspired Hermann Weyl to write a
highly influential paper, Weyl (1939) generalizing it. Hotelling’s idea has attracted
a small coterie of admirers in statistics, but it is fair to say that it remains almost
unknown in econometrics.

My quixotic aim in this paper is to rescue Hotelling’s idea from econometric
obscurity. I will begin by describing a simple setting in which the idea can be
employed to construct a confidence interval for a scalar parameter that enters awk-
wardly in a standard regression problem. Then I will describe how it can be used
to construct uniform confidence bands for nonparametric regression using penalty
methods, and finally I will compare performance with confidence bands constructed
with recently developed methods of conformal inference.

1. Hotelling’s Regression Problem

Consider the nonlinear regression model

Yi = x>i α+ λi(τ)β + εi

where α, β, τ are unknown parameters, λi(·) are known functions and εi ∼ N (0, σ2).
For the sake of concreteness we might interpret λi(τ) as a Box-Cox transformation
of another covariate, say (zτi − 1)/τ . We would like to test H0 : β = 0. Under the

Version: December 1, 2022. Code to reproduce the numerical results reported here is available
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null, the Box-Cox parameter τ is not identified, so we need to consider strategies
that properly account for this.∗

By the familiar Frisch and Waugh (1933) trickery we can eliminate the α effect.†

Redefining the notation and assuming for convenience that σ2 = 1, we are left with
the likelihood ratio statistic

L = inf
τ

∑
(Yi − β̂τλi(τ))2/

∑
Y 2
i

Now, denoting the n-vectors, Y = (Yi), λ = (λi), and the Euclidean norm by ‖ · ‖,
β̂τ = Y >λ(τ)/‖λ(τ)‖2 so we can rewrite,

L = inf
τ
‖Y ‖−2(‖Y ‖2 − 2(Y >λ)2/‖λ‖2 + (Y >λ)2/‖λ‖2)

= 1− sup
τ

(
Y >λ(τ)

‖λ(τ)‖‖Y ‖

)2

≡ 1− sup
τ

(γ(τ)>U)2

Now U = Y/‖Y ‖ is uniformly distributed on the sphere Sn−1 and γ(τ) = λ(τ)/‖λ(τ)‖
is a curve in Sn−1. Thus, the test rejects when W = supτ γ(τ)>U exceeds some
value w = cos θ which is equivalent to

U ∈ γθ = {u ∈ Sn−1 : sup
t
u>γ(t) ≥ cos θ}

= {u ∈ Sn−1 : d(u, γ) ≤ (2(1− w))1/2}.

Note that the original definition of L is such that we reject for small values, so
L < c, implies we reject for supτ γ(τ)>U > w = cos θ for some critical value of θ.
This is illustrated in Figure 1 of Johansen and Johnstone (1990), reproduced here
as Figure 1. They call this the “angular or geodesic radius θ about γ:”

d2(u, γ) = sin2(θ) + (1− cos(θ))2

= 1− 2 cos θ + cos2 θ + sin2 θ

= 2(1− cos θ).

So when the distance d(u, γ) is small, U falls inside tube, and we reject. This may
seem a bit counter-intuitive, but is nonetheless correct. There are probably many
ways to it sound more intuitive. Here is one possibility. Since it all boils down
to a cosine, that is the simple correlation between λ(τ) and Y , we want to reject
H0 : β = 0 if this correlation/cosine is too large, but Y ’s that make it too large are
the Y ′s that fall inside the tube.

So how do we compute the critical w or equivalently the critical θ? Since W >
w ≡ cos θ is equivalent to U being in the tube, we need the volume of the tube. Let

∗There is of course a large literature on such problems, notably: Davies (1977), Davies (1987),

Andrews and Ploberger (1994), Hansen (1996), none of whom mention Hotelling. An exception

that justifies the qualified “almost unknown” above is Kim, Naiman, Li, and Stengos (1998). I
don’t claim that the Hotelling approach is “best” in any sense, only that it is worthy of further

consideration. To this end, software to compute the confidence bands described below is available

in the R package quantreg, Koenker (1999–) for a general class of total variation penalized,
additive, nonparametric quantile regression models.
†Hotelling obviously knew all about how to do this, and one doubts that he learned it from

Frisch, but this would probably be hard to establish.
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Figure 1. Angular distance from γ(t) to u = (1, 0).

|γ| denote the length of the arc γ(τ) on the sphere. This can be approximated by
the finite difference formula,

|γ| =
∫
‖γ̇(τ)‖dτ ≈

m∑
i=2

‖(γ(τi)− γ(τi−1))‖,

and the τ ’s are chosen on some relatively fine grid of m points. Note that in the
finite difference approximation the τi − τi−1 that would normally appear in the
denominator of the difference quotient inside the norm expression cancels with the
contribution of the dτ .

Theorem 1. If γ is a non-closed regular curve in Sd−1 then for w near 1,

(1) P(W ≥ w) =
|γ|
2π

(1− w2)
d−2
2 +

1

2
P(B

(
1

2
,
d− 1

2

)
≥ w2)

where B(1/2, (d−1)/2) is a beta random variable. If γ is closed, i.e. forms a closed
loop without end points, then the second “cap” term is omitted.

We ignore pathological complications involving self-intersections of the curve, γ.
This follows from a result of Hotelling (1939), as does the next theorem.

Theorem 2. Let γ be a regular closed curve in Sd−1 with length |γ|. And

γθ = {u ∈ Sd−1
∣∣ sup

t
u>γ(t) ≥ θ}

= {u ∈ Sd−1
∣∣d(u, γ) ≤ (2(1− w))1/2}

where w = cos θ. If θ is sufficiently small, then the volume of the tube V (γθ) is
given by

(2) V (γθ) = |γ|Ωd−2 sind−2 θ

where Ωd−2 = π(d−2)/2Γ(d/2) is the volume of the unit ball in Rd−2.

Heuristically, the formula is,

V (γθ) = (length of tube) · (Volume of unit ball) · radiusd−2
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Figure 2. A Hotelling tube on a 2-sphere.

Recall that the volume of the unit ball in dimension d is V = πd/2/Γ((d + 2)/2).
When θ is larger, or γ is twisty, then the tube may intersect itself and the formula
would need some refinement. Figure 2 is a crude attempt to depict tube on the
2-sphere, those with enhanced geometric imagination may try to visualize a three
dimensional tube on the 3-sphere embedded in 4-space.

When the curve isn’t closed, then it needs “caps” on each end. These caps are
given by

wd−2

∫ 1

cos θ

(1− z2)(d−3)/2dz

where wd−2 = 2π(d−1)/2/Γ((d− 1)/2) is the (d− 2)-volume of Sd−2. Note that the
volume of the sphere, V (Sd−1) = 2πd/2/Γ(d/2), is not the same as the volume of
the ball. Note also that (1− z2)1/2 is again the radius and integrating out the rd−3

yields a d − 2 dimensional volume. A useful reference for this sort of geometry is
Kendall (1961).

How do we get from (2) to (1)? Recall that U is uniform on the (d− 1) sphere
so we need to divide by the volume of that sphere to evaluate the probability of
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being in the tube, so for closed curves,

V (tube)

V (sphere)
=
|γ|Ωd−2 sind−2 θ

2πd/2/Γ(d/2)

=
|γ|(π(d−2)/2/Γ(d/2)) sind−2 θ

2π(π(d−2)/2/Γ(d/2))

=
|γ|
2π

(1− w2)(d−2)/2.

To include caps we also need to divide by the volume of the sphere. Note that

P(B1/2, d−1
2
≥ w2) =

∫ 1

w2

[x1/2−1(1− x)
d−1
2 −1/B(1/2,

d− 1

2
)]dx

=

∫ 1

w2

[x−1/2(1− x)
d−3
2 /B]dx.

Changing variables x→ y2 we have

=

∫ 1

y0

[y−1(1− y2)
d−3
2 /B]2ydy

= 2

∫ 1

y0

B−1(1− y2)
d−3
2 dy.

It remains to show that B−1 = wd−2/V(sphere), which follows after a little simpli-
fication and recalling that Γ(1/2) =

√
π.

β0 = 0 β0 = 1 β0 = 2
τ = -0.5 τ = 0 τ = 0.5 τ = -0.5 τ = 0 τ = 0.5 τ = -0.5 τ = 0 τ = 0.5

n = 20 0.056 0.058 0.049 0.313 0.193 0.182 0.781 0.459 0.380

n = 50 0.049 0.051 0.057 0.275 0.225 0.342 0.639 0.577 0.782

n = 100 0.063 0.048 0.056 0.350 0.261 0.281 0.840 0.637 0.704
n = 500 0.048 0.052 0.055 0.298 0.243 0.288 0.747 0.612 0.735

n = 1000 0.063 0.046 0.047 0.299 0.218 0.250 0.724 0.549 0.667

Table 1. Rejection frequencies for the Hotelling likelihood ratio
test for a simple Box-Cox example. Tests are nominal level α =
0.05. Local alternatives are employed of the form: βn = β0/

√
n.

To check how the Hotelling tube procedure performs in moderate sample sizes
Table 1 reports results of a small simulation experiment. Data is generated with
iid xi standard log-normal and

yi = βn(xτi − 1)/τ + εi, u ∼ N (0, 1).

Three values of τ are considered τ ∈ {−0.5, 0, 0.5}. Local alternatives, βn = β0/
√
n,

are considered with β0 ∈ {0, 1, 2}. The nominal level of the Hotelling test is taken
to be 0.05. and 1000 replications of the experiment are made for each parametric
setting. When β = 0 so the null is true, the test delivers quite accurate size for all
of the sample sizes considered, and power is respectable when β deviates from zero.
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2. Uniform Confidence Bands for Nonparametric Regression

Consider the series expansion model

Yi =

d∑
j=1

βjaj(ti) + εi

with εi ∼ N (0, σ2) as before and t ∈ I ⊂ R. Our objective is to find a positive c
such that

Pβ,σ,Σ(|β>a(t)− β̂>a(t)| ≤ cσ(a(t)>Σa(t))1/2 ∀ t ∈ I) ≈ 1− α,

uniformly in β, σ. Johansen and Johnstone (1990) write this as, Pβ,σ,Σ(T < cσ)
where

T = sup
a∈C

a>(β̂ − β)√
a>Σa

Now consider X ∼ N (ξ,Σ), so X plays the role of β̂ and ξ of β. We’d like to
make a confidence statement about {a>ξ|a ∈ C} and C is some sort of “curve.” So
now we write,

T = T (X, ξ) = sup
a∈C

a>(X − ξ)√
a>Σa

.

We want the distribution of T so we can obtain the confidence set

Rx = {{a>ξ}a∈C |T (X, ξ) < c1−ε}

where Pξ,Σ(T < c1−ε) = 1− ε. Write T = RW where,

R2 = (X − ξ)>Σ−1(X − ξ) ∼ χ2
d,

and

W = sup
a∈C

a>(X − ξ)√
a>Σa

√
(X − ξ)Σ−1(X − ξ)

= sup
a∈C

(Σ1/2a)>Σ−1/2(X − ξ)
|Σ1/2a||Σ−1/2(X − ξ)|

.

Now to put things back into the earlier framework of γ and U we set,

γ(a) =
Σ1/2a

|Σ1/2a|
U = Σ−1/2(X − ξ)/|Σ−1/2(X − ξ)|.

So as before, γ = γ(C) ⊂ Sd−1, and U is uniform on Sd−1. R and W don’t
depend on ξ,Σ or they do, but only via γ. R2 is independent of W and R2 ∼ χ2

d

so,

P(T > c) =

∫ ∞
c

P(W > c/r)P(R ∈ dr).

The random variable W has the same form as in the simple example so,

P(W > w) =
|γ|
2π

(1− w2)(d−2)/2 +
1

2
P(B ≥ w2) ≡ bγ(w).

Naiman (1986) bounds this probability by,

P(T > c) ≤
∫ ∞
c

min{bγ(c/r), 1}P(R ∈ dr),



HOTELLING TUBES, CONFIDENCE BANDS AND CONFORMAL INFERENCE 7

and Knowles (1987) suggests ignoring the bγ < 1 constraint and then integrates the
bound to obtain,

P(T > c) ≤ |γ|
2π
e−c

2/2 + 1− Φ(c).

This integration may appear somewhat miraculous, but does actually work out
provided that one carefully observes the P(R ∈ dr) term. Since R2 ∼ χ2

d, letting F
denote the distribution function of χ2

d, we have,

P(R ≤ r) = P(R2 ≤ r2) = F (r2)

so the corresponding density of R is

fR(r) = 2rF ′(r2) = 2rfR2(r2).

Once one has this bound then various other things fall into place. For example,

P(|T | > c) ≤ 2P(T > c).

Johansen and Johnstone (1990) give further details on the accuracy of the bounds
and applications.

3. Additive Models for Total Variation Penalized Nonparametric
Quantile Regression

In (Koenker 2011) I have described a general approach to estimation and infer-
ence for additive nonparametric quantile regression models of the form,

QY i|xi,zi(τ |xi, zi) = x>i θ0 +

J∑
j=1

gj(zij).

The components g = (g1, · · · , gJ) can be univariate or bivariate. Their smoothness
can be controlled by penalizing total variation of the functions themselves or their
gradients. Estimation is carried out by solving the linear program,

(2) min
(θ0,g)

∑
ρτ (yi − x>i θ0 −

∑
gj(zij)) + λ0‖θ0‖1 +

J∑
j=1

λj
∨

(∇gj)

where ρτ (u) = u(τ − 1(u < 0)) is the usual quantile objective function, ‖θ0‖1 =∑K

k=1 |θ0k| and
∨

(∇gj) denotes the total variation of the derivative or gradient of
the function g. Recall that for g with absolutely continuous derivative g′ we can
express the total variation of g′ : R → R as∨

(g′(z)) =

∫
|g′′(z)|dz

while for g : R2 → R with absolutely continuous gradient,∨
(∇g) =

∫
‖∇2g(z)‖dz

where ∇2g(z) denotes the Hessian of g, and ‖ · ‖ denotes the Hilbert-Schmidt norm
for matrices. In contrast total variation penalization of the component functions
themselves yields piecewise constant solutions.

Adapting the Hotelling tube idea to construct uniform confidence bands for these
components is also described in Koenker (2011), as is selection of the smoothing
parameters λj , j = 0, 1, · · · J . It should be stressed that all of this machinery relies
on the validity of Gaussian approximations for the fitted parameters and estimated
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functions and is conditional on selected tuning parameters. This is in accord with
a large strand of earlier literature including Wahba (1983), Nychka (1983), and
Krivobokova, Kneib, and Claeskens (2010), however there are inevitable questions
that can be raised about both aspects. To explore this we consider some recent
proposals for strengthening coverage guarantees based on conformal inference in
the next section.

4. Conformal Quantile Regression

Conformal prediction, and conformal inference more generally, has grown out
of work by Vladimir Volk and colleagues, see e.g. Shafer and Vovk (2008) for an
overview. It has emerged as an essential tool in uncertainty quantification through-
out statistics and machine learning. An essential feature of the conformal inference
approach in regression is a sample splitting device that allows one to adjust a confi-
dence band constructed with training data based on its performance on a validation
sample. Strong finite sample performance guarantees can be proven based on seem-
ingly rather weak exchangeability assumptions. In regression settings early work
presumed conventional iid error structure when constructing the initial bands from
the training data, however Romano, Patterson, and Candès (2019) noted that in
more heterogeneous settings narrower bands could be constructed using quantile
regression methods. This approach has been further developed in Lei and Candès
(2022) In high dimensional regression this typically would involve some form of
random forest or neural network model for the initial bands, but the same methods
can be used in simpler models like the additive models described above.

Construction of conformal prediction bands for additive quantile regression mod-
els can be described briefly as follows:

Algorithm 1 Split Conformal Quantile Regression (CQR)

1: procedure CQR(x, y, τ)
2: Split the sample into training, T , and validation, V , samples.
3: Compute initial lower, q̂0(x) = QY |X(τ0|x) and upper, q̂1(x) = QY |X(τ1|x)

confidence band limits on training sample.
4: Predict response quantiles yi0 and yi1 at τ0 and τ1 for each of the validation

sample observations.
5: Compute conformal scores, Ei = max{ŷi0 − yi, yi − ŷi1}.
6: Compute Q, the τ1 − τ0 quantile of the conformal scores.
7: Return the augmented prediction band C(x) = [q̂0(x)−Q, q̂1(x) +Q].

Note that the conformal adjustment of the initial band can make it wider or
narrower. When Q < 0 it indicates that the validation sample fell well inside the
initial band indicating that it is safe to shrink the width of the initial band.

There are several potential difficulties with the foregoing recipe.

• Predictions based on the training sample typically aren’t equipped to ex-
trapolate beyond the empirical support of the training data, so if the val-
idation data, or new data requiring a conformal interval, lie outside that
support some accommodation must be made.
• Performance guarantees are based on marginal coverage of the band, so it

may happen that in certain regions of design space there may be failures
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Figure 3. Example 1 of Romano, Patterson and Candès: As de-
scribed in the text the response is concentrated in bands deter-
mined by a Poisson component with some quite extreme outliers
that are (mostly) invisible in this plot. The Poisson rate is peri-
odic accounting for the obvious heteroscedasticity. The red curves
depict the predicted 0.05 and 0.95 conditional quantile estimates
based on the training data, using penalization of the derivative of
the fitted function, while the blue curves depict the conformally
modified estimates. In this example the conformity scores Ei are
quite small and the conformal modification is almost negligible.

of coverage that are compensated by satisfactory coverage elsewhere. As
shown by Foygel Barber, Candès, Ramdas, and Tibshirani (2020), condi-
tional coverage is not achievable in any generality.
• All of the familiar challenges of penalty methods for regression smooth-

ing persist, so choice of smoothing parameters, in particular, can cause
headaches, even though poor λ selection can in principle be ameliorated by
the conformal adjustment.

We conclude this section by illustrating the use of the conformal method in an
artificial data example taken from Romano, Patterson, and Candès (2019). Simu-
lated data are generated as,

X ∼ U [0, 5]

Y |X ∼ Pois(sin2(X) + 0.10) + V

V ∼ 0.03XZ0 + 251(U < 0.01)Z1

U ∼ U [0, 1]

(Z0 ⊥⊥ Z1) ∼ N (0, 1)
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Figure 4. Example 1 of Romano, Patterson and Candès: In con-
trast to the earlier piecewise linear fit obtained by total variation
penalization of the first derivative of g, in this figure total varia-
tion of the fitted function itself is penalized resulting in a piecewise
constant fit. Clearly this penalty is better suited to the example
and mimics quite well the fit depicted in that paper. Again the
conformal adjustment is only barely visible.

There are 7000 observations plotted in grey. The Poisson contribution to the
response produces a banded structure to the scatterplot with pronounced het-
eroscedasticity. There are a small number of extreme outliers many of which lie
outside the frame of the figure; such outliers are harmless since we are estimating
conditional quantile functions. Penalizing total variation of g′ yields a piecewise
linear fit that doesn’t fit the scatter as well as the piecewise constant estimate
obtained by penalizing the total variation of g itself. It is striking here that the
conformal adjustment in both figures is almost imperceptible. Thus, if interest
focuses on prediction intervals for the response, the initial estimates provided by
the penalized quantile regression estimates are fine, even though they are based on
only half the original sample.

Prediction bands for Y are fine as far as they go, but what if we wanted confidence
bands for the conditional quantile functions? Some might argue, e.g. Geiser (1993),
Clarke and Clarke (2018), that it is pointless to predict quantities that can never
be observed, but I subscribe to the principle: every decent estimate deserves a
standard error. Figure 5 illustrates confidence bands for the lower, τ = 0.05 and
upper, τ = 0.95 conditional quantile functions as estimated using penalization of
g′. The dark grey bands are the pointwise bands, while the lighter grey bands
are those based on the Hotelling tube approach. Note that the bands for the 0.05
estimate are extremely narrow since the data is very concentrated in this region so
the τ = 0.05 conditional quantile is very precisely estimated.
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Figure 5. Pointwise and Uniform Confidence Bands for RPC Ex-
ample: In contrast to the conformal prediction band, pointwise and
uniform bands for the 0.05 and 0.95 conditional quantile functions
are considerably wider. The uniform band is based on the Hotelling
tube construction described in Koenker (2011) and is depicted as
the light grey shaded band enclosing the darker grey pointwise
band.

5. Discussion

The large literature in econometrics about stochastic frontier models is mostly
concerned with parametric models of the tail behavior of the response “near the pro-
duction frontier.” Nonparametric quantile regression offers yet another perspective
on estimating such models. It would be extremely foolish to make any claims for
alternative methodology described here on the basis of the flimsy evidence offered,
let me conclude simply by saying that it might be worthy of further consideration.
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