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Quantile Regression: What is it?
Quantile regression is an evolving set of tools for estimation and statistical
inference about models for conditional quantile functions:

ĝ = argming∈G

n∑
i=1

ρτ(yi − g(xi))

where ρτ(u) = u(τ− I(u < 0)). Sorting is replaced by optimization.

ττ − 1

ρτ(u)
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Quantile Regression: How does it work?

In the simplest univariate setting asymmetric linear loss requires that,

n−1
n∑
i=1

ρ′τ(yi − g(xi)) ≡ n−1
n∑
i=1

ψτ(yi − g(xi))

= τ#{yi > α̂}/n+ (τ− 1)#{yi 6 α̂}/n

≈ 0

so α̂ must be chosen so that the proportion of {yi > α̂} is (1 − τ) and the
proportion of {yi 6 α̂} is τ. i.e. α̂ is chosen to balance (counteract) the
asymmetry of the loss, Edgeworth (1888).
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Quantile Regression: For the Linear Model

When we restrict the class, G, of conditional quantile functions to affine
functions we have,

β̂(τ) = argmin
β∈|R

p

n∑
i=1

ρτ(yi − x
>
i β).

Solutions can be efficiently computed by linear programming methods, and
are characterized by exact fits to p-element subsets of the data. These fits
can be viewed as p-dimensional analogues of the order statistics for the
linear model.
As in other forms of regression the covariates, xi may be expressed as
basis expansions in terms of lower dimensional covariates, e.g. xi = ϕi(z).
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Quantile Regression Inference

Because β̂(τ) targets the τth conditional quantile only locally, its precision
depends crucially only on the conditional density of the response at the
τth quantile. Asymptotically,

√
n(β̂(τ) − β(τ)) N(0,H−1

n JnH
−1
n ),

where
Jn = τ(1 − τ)n−1

∑
xix
>
i

and
Hn = n−1

∑
fi(x

>
i β(τ))xix

>
i

The latter quantity can be directly estimated, or this can be circumvented
by various forms of the bootstrap.
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Quantile Regression and Rank Statistics

The linear quantile regression problem has formal dual problem:

â(τ) = max{y>a | X>a = (1 − τ)X>1, a ∈ [0, 1]n}

These functions act somewhat like residuals in the quantile regression
setting.

For each observation they indicate the range of τ ∈ [0, 1] for which yi
lies above or below the fitted quantile regression hyperplane.

They generalize the rank generating functions of Hájek(1968), and
can be used to construct a wide variety of extended rank tests for the
linear model as first shown by Gutenbrunner and Jurečková(1992).
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Nonparametric Quantile Regression

There are several approaches to the treatment of nonparametric covariate
effects,

Local polynomials (Chaudhuri (1991))

ĝ(τ|x) = argminβ

n∑
i=1

ρτ(yi −

p−1∑
j=0

βj(xi − x)
j)

Penalization

ĝλ(τ) = argming∈G

n∑
i=1

ρτ(yi − g(xi)) + λP(g).

Various penalties are possible. Additive models with total variation
roughness penalties have been implemented in the R package quantreg
employing the function rqss.
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Quantile Autoregression
Simple autoregressive time-series models can be estimated,

θ̂(τ) = argmin
∑

ρτ(yt −
∑

ϕ(yt−j, θ)))
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Even in the linear ϕ case there are intriguing stationarity properties of
these models. Recently, there has been considerable interest in related
frequency domain methods with work by Li, Hagemann, Kley, Hallin and
Volgushev, among others.
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Quantile Regression for Longitudinal Data

Models for longitudinal data with incidental parameters pose some
challenges for quantile regression applications. Initial work on methods for
estimating models of the form,

QYit(τ|xit) = αi + x
>
itβ(τ),

has been done by several authors including Galvao, Lamarche and Kato.
Recently, Arellano and Bonhomme have proposed a promising variant on
these methods in which incidental parameters are explicitly modeled as
functions of covariates.

Koenker, He and Wang Quantile Regression JSM Baltimore: 2.8.2017 10 / 55



Quantile Regression Survival Models

Many survival models take the form of transformation models,

h(Ti|xi) = x
>
i β+ ui, with ui ∼ iid F.

However, the iid error assumption is often questionable. It can be relaxed
as,

Qh(Ti|xi)(τ|xi) = x
>
i β(τ).

Censoring can be accommodated as in Portnoy (2003) or Peng and Huang
(2008). More general censoring schemes can be accommodated employing
recent work of Yang, Narisetty and He.
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Portfolio Optimization

It is well known that classical Markowitz (mean-variance) portfolio
optimization can be reduced to least squares regression. Similarly,
optimization of the class of “coherent” measures of risk, like expected
shortfall, or lower tail expectation subject to a mean return constraint can
be reduced to quantile regression. Note that

min
α

EYρτ(Y − α) =

∫
ρτ(y− α̂)dF(y)

= τµ(F) −

∫ α̂
−∞(y− α̂)dF(x)

= τµ(F) −

∫τ
0
F−1
Y (t)dt.
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Portfolio Optimization II

Now if we set Y = Xπ where X denotes a vector of asset returns and π a
vector of portfolio weights, solving,

min
π,α

{

T∑
t=1

ρτ(x
>
t π− α) | x̄>π = µ0},

minimizes lower tail risk subject to a mean return constraint. More
generally, we can use a weighted formulation like this,

min
π,α

{

J∑
j=1

T∑
t=1

wjρτj(x
>
t π− αj) | x̄

>π = µ0},

This is a form of composite quantile regression as in Zou and Yuan
(2008), and produces a process πT indexed by the class of concave
functions C : [0, 1] 7→ [0, 1] that may prove to be interesting from a
multivariate analysis viewpoint.
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Borrowing Strength and the QRious Likelihood

The local nature of quantile regression fitting is usually viewed as a
feature, but it can be a bug when the data is sparse; then some form of
composite QR method can improve efficiency by borrowing strength across
adjacent quantiles. In the most extreme form we can view the model,

QYi|xi(τ|xi) − x
>
i β(τ),

as a global model that delivers a global likelihood with associated
opportunities to impose additional prior information across quantiles. This
approach is is well illustrated in recent work by Wang, Li and He (2012),
Carroll and Wei (2009) and Arellano and Bonhomme (2016).
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Software

Early development of computational methods for quantile regression was
carried out at Bell Labs in the S language, and has continued to be
developed in R in my package quantreg available from CRAN. Included
are functions:

rq Basic linear model fitting and inference,

nlrq Nonlinear model fitting and inference,

crq Censored linear model fitting and inference

rqss Nonparametric model fitting via total variation penalties

dynrq Time-series model fitting

qrisk Portfolio optimization via QR methods

Some of this functionality is also available in SAS Proc Quantreg, and to a
lesser extent in Stata.
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Further Developments

More about recent developments will be provided by my colleagues
Xuming He and Lan Wang, but I can’t resist a brief advertisement:

Koenker, He and Wang Quantile Regression JSM Baltimore: 2.8.2017 16 / 55



Resampling Methods for Quantile Regression Inference
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Why resampling methods?

The asymptoptic variance-covariance of quantile regression estimator
involves

Hn = n−1
∑

fi(x
>
i β(τ))xix

>
i

and a direct estimation is challenging.

Resamping methods have advantages:

take advantage of computer power to replace analytic derivations;

tend to have good finite-sample approximation accuracy;

have the flexibility to work under less stringent model assumptions.
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Two settings

Correlation model: (xi,yi) treated as a random sample.

Regression model: xi treated as fixed.
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Correlation Model

Paired bootstrap: (x∗i ,y∗i ) sampled with replacement from the original
sample

For each bootstrap sample {(xi,yi), i = 1, · · · ,n}, compute the
quantile estimate β∗(τ),

β∗(τ) = argmin
β∈|R

p

n∑
i=1

ρτ(y
∗
i − x

∗>
i β).

Repeat this B times to get β∗1(τ), · · · ,β∗B(τ)

The distribution of β∗(τ) − β̂(τ) is approximately the same as the
sampling distribution of β̂(τ) − β(τ).
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Correlation Model

Generalized bootstrap: each re-sample is generated through random
weights (w1, · · ·wn) with mean 1;

β∗(τ) = argmin
β∈|R

p

n∑
i=1

wiρτ(yi − x
>
i β).

Reference: Chatterjee and Bose (2005)
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Estimating equation bootstrap

Let

Sn(β) = n
−1/2

n∑
i=1

xi
(
I(yi − x

>
i β < 0) − τ

)
.

Given xi, the distribution of Sn(β) is pivotal when β takes the true
quantile coefficient βτ. Suppose U has the same distribution, then

Sn(βU) = U

provides a resampling distribution for the quantile estimate.

Reference: Parzen, Wei and Ying (1994)
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Markov chain marginal bootstrap

MCMB (He and Hu, 2002): iteratively solve the marginal equations of
Sn(β) = U.

For the iteration from β(k) to β(k+1), with p = 2 for illustration,

Solve β
(k+1)
1 from

n∑
i=1

xi,1
(
I(yi − xi,1β1 − xi,2β

(k)
2 ) − τ

)
= U1.

Solve β
(k+1)
2 from

n∑
i=1

xi,2
(
I(yi − xi,1β

(k+1)
1 − xi,2β2) − τ

)
= U2.

Keep iterating with independent draws of U1 and U2 each time.
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MCMB

Properties of MCMB:

Computational complexity is linear in p.

At each step, the solution is a weighted univariate quantile
calculation.

The MCMB chain is approximately an AR series whose stationary
distribution is the same as the sampling distribution of the quantile
regression estimate.
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Regression Model

How to keep x∗i = xi fixed?

Residual bootstrap: y∗i = x
>
i β̂τ + e

∗
i , where e∗i is a bootstrap

sample of the residuals êi.

Wild bootstrap:
y∗i = x

>
i β̂τ +wi|êi|,

where wi are drawn from an appropriate distribution. One example:
two-point mass distribution with probabilities 1 − τ and τ at
w = 2(1 − τ) and −2τ, respectively.

Reference: Feng, He, and Hu (2011)
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Bayesian Inference

Ingredients: working likelihood for the data D + prior distribution

Asymmetric Laplacian likelihood:

L(β;D) =
τn(1 − τ)n

σn
exp
{
−

∑n
i=1 ρτ(yi − x

>
i β)

σ

}
Reference: Yu and Moyeed (2001)

Empirical likelihood:
Reference: Lancaster and Sun (2009), Yang and He (2012)
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Asymmetric Laplacian likelihood:

Pros:

The quantile regression estimate ˆβ(τ) is the maximum likelihood
estimate under the asymmetric Lapacian.

Efficient MCMC algorithms are available (Kozumi and Kobayashi,
2011; Yue and Rue, 2011).

The posterior is proper even with flat priors on β(τ).

Cons:

The working likelihoods at two different τ’s might not be compatible.

The posterior variance is not approximating the sampling variance of
the quantile regression estimator.
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Posterior Inference from Asymmetric Laplacian likelihood:

The posterior variance from the asymmetric Laplacian likelihood can be
adjusted to provide an asymptotically valid estimate of the sampling
variance.

Σ̂adj =
n

σ2
Σ̂P ĴnΣ̂P ≈ Var(β̂(τ))

where Σ̂P ≈ (σ/n)H−1
n is the posterior variance, and

Jn = τ(1 − τ)n−1
∑

xix
>
i

Hn = n−1
∑

fi(x
>
i β(τ))xix

>
i .
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Posterior Inference (continued):

Σ̂adj =
n

σ2
Σ̂P ĴnΣ̂P ≈ Var(β̂(τ))

Asymptotically, the adjusted variance is invariant in the choice of σ in
the asymmetric likelihood specification.

The asymmetric Laplacian likelihood generalizes to censored quantile
regression.

R package: bayesQR.

Reference: Yang, Wang and He (2016) (with discussions)
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Summary of Computer-intensive Methods

With the bootstrap (and its variants) or Bayesian computation, we can
carry out approximate inference on quantile regression without direct
estimation of the (troublesome?) asymptotic variance.

Computers are our friends for quantile regression, especially with large n
and/or large p problems.
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Quantile Regression Methods for High Dimensional Data
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Motivating example: birth weight data (Votavova et al.,
2011) with genetic information

Response: Birth weight of baby (in kilograms).

Covariates: Age of mother, gestational age, parity, measurement of
the amount of cotinine, a chemical found in tobacco, in the blood and
mother’s BMI, genetic data from the peripheral blood sample (24,539
probes).

Lower quantiles of infant birth weight are of particular interest.



Motivating example (cont’d)

Q-SCAD .1 Q-SCAD .3 Q-SCAD .5

Covariate Frequency Covariate Frequency Covariate Frequency

Gestational Age 82 Gestational Age 86 Gestational Age 69
1687073 (SOGA1) 24 1804451 (LEO1) 33 2334204 (ERCC6L) 57

1755657 (RASIP1) 27 1732467 (OR2AG1) 52
1658821 (SAMD1) 23 1656361 (LOC201175) 31
2059464 (OR5P2) 14 1747184 (PUS7L) 5
2148497 (C20orf107) 6
2280960 (DEPDC7) 3

Frequency of covariates selected at three quantiles among 100 random partitions



Motivating example (cont’d)

Gestational age is identified to be important with high frequency at
all three quantiles under consideration.

The gene SOGA1 is a suppressor of glucose, which is interesting
because maternal gestational diabetes is known to have a significant
effect on birth weight [Gilliam et al. (2003)].

The genes OR2AG1, OR5P2 and DEPDC7 are all located on
chromosome 11, the chromosome with the most selected genes.
Chromosome 11 also contains PHLDA2, a gene that has been
reported to be highly expressed in mothers that have children with
lower birth weight [Ishida et al. (2012)].

The genes selected at the three different quantiles are not
overlapping. This is an indication of the heterogeneity in the data.
The variation in frequency is likely due to the relatively small sample
size.



Advantages of quantile approach in high dimension
(p� n)

Quantile-adaptive sparsity:
A small number of covariates influence the conditional distribution of
the response variable given all candidate covariates; however, the sets
of relevant covariates may be different when we consider different
conditional quantiles.

Weaker conditions on random error distribution:
No need to impose restrictive distributional or moment conditions on
the random errors and allow their distributions to depend on the
covariates.

Robustness with respect to outliers in Y.
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Quantile-adaptive nonlinear variable screening
Quantile-based approach (He, Wang and Hong (2013, AOS)):

I It allows the sets of active variables to vary across quantiles, thus
making it more flexible to accommodate heterogeneity.

I It is model-free and avoids the difficult task of specifying the form of a
statistical model in a high dimensional space.

The R codes can be found at:
https://www.stt.msu.edu/users/hhong/example1b.txt

The set of active variables at quantile level α is define as

Mα = {j : Qα(Y|X) functionally depends on Xj},

where Qα(Y|X) is the αth conditional quantile of Y given
X = (X1, . . . ,Xp)

T .

Example:
Y = m(αT1XA1) + σ(α

T
2XA2)ε,

where m and σ are known or unknown functions, αi (i = 1, 2) are
vectors of nonzero coefficients, Ai are subsets of {1, 2, . . . ,p}, ε has a
standard normal distribution.
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Ranking by marginal quantile utility

Y and Xj are independent⇐⇒ Qα(Y|Xj) −Qα(Y) = 0, ∀ α ∈ (0, 1),

where Qα(Y|Xj) is the αth conditional quantile of Y given Xj and
Qα(Y) is the αth unconditional quantile of Y.

Let β̂j = argminβ∈Rd
∑n
i=1 ρα(Yi − π(Xij)

Tβ), and define

f̂nj(t) = π(t)T β̂j − F
−1
Y,n(α)

where F−1
Y,n(α) is the α-th sample quantile function.

We will select the subset of variables

M̂α = {1 6 j 6 p : ||f̂nj||
2
n > νn}

where ||f̂nj||
2
n = n−1

∑n
i=1 f̂

2
nj(Xij).
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Statistical properties

Sure screening property:

P
(
Mα ⊂ M̂α

)
→ 1, as n→∞.

Controlling false discovery: Under certain regularity conditions,
there exist some positive constants δ1 and δ2 such that for all n
sufficiently large,

P
(
|M̂α| 6 2d2nτλmax

(
Σ
)
/δ∗
)

> 1 − p
{

11 exp
(
− δ1n

1−4τ
)
+ 12d2 exp

(
− δ2d

−3n1−2τ
)}

.

Especially, P
(
|M̂α| 6 2d2nτλmax

(
Σ
)
/δ∗
)
→ 1 as n→∞.
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Penalized/regularized quantile regression in high dimension

Yi = xTi βτ + εi, i = 1, . . . ,n,

where εi are independent random errors such that P(εi 6 0|xi) = τ,
xi = (xi0, xi1, . . . , xip)

T with xi0 = 1, β = (β0,β1, . . . ,βp)
T is the

vector of unknown parameters.

Sparsity: Let A0 = {j : β∗j 6= 0} and |A0| = q. Assume that q� n.

Penalized linear quantile regression:

Q(β) = n−1
n∑
i=1

ρτ(Yi − xTi β) +

p∑
j=1

pλ(|βj|),

where pλ(·) is a penalty function with a tuning parameter λ.
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Difference choices of penalty function

High-dimensional quantile regression p� n with

L1 (or Lasso) penalty (Tibshirani, 1996) was studied by Belloni and
Chernozhukov (2011), Bradic, Fan and Wang (2011), Kato (2011),
Wang (2013), among others

Nonconvex penalty function (e.g., SCAD (Fan and Li, 2001) and
MCP (Zhang, 2010)) was studied by Wang, Wu and Li (2012),
Sherwood and Wang (2016), among others.

Two-stage adaptive penalty: van de Geer (2003), Fan, Fan and
Barut (2014), Fan Xue and Zou (2014) (adaptive L1 penalty); Zheng,
Peng and He (2015, 2017, adaptive regional penalty), among others.
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L1 penalized quantile regression

L1 penalty: pλ(|βj|) = |βj|, j = 1, . . . ,p.

Computationally convenient due to the convex structure.

The use of L1 penalty achieves accurate prediction under relaxed
conditions.

Near-oracle rate of estimation (Belloni and Chernozhukov, 2011):
under regularity conditions:

||β̂
L1

− β0||2 = Op

(√q log p

n

)
,

where q is the unknown sparsity level, p is the number of candidate
covariates; and n is the sample size.
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Non-convex penalized linear quantile regression (p� n)
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A numerical example

Simulation results (n = 300, p = 600, τ = 0.7)

Method Size P1 P2 AE

LS-Lasso 24.30 (0.61) 100% 7% 1.40 (0.03)
Q-Lasso (τ = 0.5) 25.76 (0.94) 100% 10% 1.05 (0.03)
Q-Lasso (τ = 0.7) 32.74 (1.22) 90% 90% 1.78 (0.05)

LS-SCAD 6.04 (0.25) 100% 0% 0.38 (0.02)
Q-SCAD (τ = 0.5) 6.14 (0.36) 100% 7% 0.19 (0.01)
Q-SCAD (τ = 0.7) 9.97 (0.54) 100% 100% 0.38 (0.03)

LS-MCP 5.56 (0.19) 100% 0% 0.38 (0.02)
Q-MCP (τ = 0.5) 5.33 (0.23) 100% 3% 0.18 (0.01)
Q-MCP (τ = 0.7) 7.56 (0.32) 98% 98% 0.37 (0.03)

Size denotes the average number of non-zero regression coefficients; P1 denotes the

proportion of simulation runs including X6, X12, X15 and X20; P2 denotes the proportion

of simulation runs X1 is selected; and AE denotes the absolute estimation error defined

by
∑p
j=0 |β̂j − βj|.
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Non-convex penalized linear quantile regression (cont’d)

SCAD penalty:

pλ(|β|) = λ|β|I(0 6 |β| < λ) +
aλ|β|− (β2 + λ2)/2

a− 1
I(λ 6 |β| 6 aλ)

+
(a+ 1)λ2

2
I(|β| > aλ), for some a > 2.

MCP penalty:

pλ(|β|) = λ
(
|β|−

β2

2aλ

)
I(0 6 |β| < aλ) +

aλ2

2
I(|β| > aλ), a > 1.

Oracle property (Wang, Wu and Li, 2012): Assume some regularity

conditions. The oracle estimator β̂ = (β̂
T

1 , 0T )T satisfies that

P(β̂ ∈ Bn(λ))→ 1 as n→∞.
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High-dimensional semiparametric quantile regression
Partially linear additive quantile regression:

QYi|xi,zi(τ) = x
′
iβ0 + g(zi), i = 1, ...,n,

where xi is a pn-dimensional vector of covariates, zi is a
d-dimensional vector of covariates, g(zi) = g0 +

∑d
j=1 gj(zij),

g0 ∈ R and gj satisfies E(gj(zij)) = 0. Assume β0 = (β ′01, 0 ′) ′ and
β01 is qn-dimensional.
Penalized semiparametric quantile regression estimator:

(β̂, ξ̂) = argmin
(β,γ)

n∑
i=1

ρτ(Yi − X
′
iβ− Π(zi)

′ξ) +

d∑
j=1

pλ(|βj|)

Choose λ that minimizes the following high-dimensional BIC criterion
(Lee, Noh and Park, 2013):

QBIC(λ) = log

(
n∑
i=1

ρτ

(
Yi − X

′
iβ̂λ − Π(zi)

′ξ̂λ

))
+νλ

log(p) log(log(n))

2n
,

Oracle property: Sherwood and Wang (2016).
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Estimation and variable selection for multiple quantiles

Let τ1 < τ2 < ... < τM be the set of quantiles of interest, where
M > 0 is a positive integer. We assume that

QYi|xi,zi(τm) = x ′iβ
(m)
0 + g

(m)
0 (zi), m = 1, ...,M,

where g
(m)
0 (zi) = g

(m)
00 +

∑d
j=1 g

(m)
0j (zij), with g

(m)
00 ∈ R, g

(m)
0j

satisfies E
[
g
(m)
0j (zij)

]
= 0.

We are interested in the high-dimensional case where most of the
linear covariates have zero coefficients across all M quantiles,
for which group selection will help us combine information across
quantiles.



Estimation and variable selection for multiple quantiles
(cont’d)

Write β
(m)
0 =

(
β
(m)
01 ,β

(m)
02 , ...,β

(m)
0pn

) ′
, m = 1, ...,M. Let β̄

0j
be

the M-vector
(
β
(1)
0j , ...,β

(M)
0j

) ′
, 1 6 j 6 pn.

We estimate
(
β
(m)
0 , ξ

(m)
0

)
, m = 1, ...,M, by minimizing

n−1
n∑
i=1

M∑
m=1

ρτm(Yi − x ′iβ
(m) −W(zi)

′ξ(m)) +

p∑
j=1

pλ(||β̄
j
||1),

where β̄
j

is the M-vector
(
β
(1)
j , ...,β

(M)
j

) ′
, 1 6 j 6 p. The penalty

function encourages group-wise sparsity and forces the covariates that
have no effect on any of the M quantiles to be excluded together.



New algorithms for large-scale data

QICD algorithm: iterative coordinate-descent algorithm for
high-dimensional nonconvex penalized quantile regression (Peng and
Wang, 2015, JCGS. R package: QICD

Parallel-computing based algorithms:
Yu, Lin and Wang (2017+) A parallel algorithm for large-scale
nonconvex penalized quantile regression. To appear in JCGS.
Gu et al. (2017) ADMM for high-dimensional sparse penalized
quantile regression. Technometrics.
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High-dimensional quantile regression with focus on an
interval of quantile levels (Zheng, Peng and He, 2015,
AOS)

Motivation: simultaneously estimating and selecting variables over a
set of quantile levels ∆ ∈ (0, 1).

The active/relevant set of covariates is defined as

S∆ = support(β0(τ), τ ∈ ∆) =
{
j ∈ 2, . . . ,p : ∃ τ ∈ ∆, |βj0(τ)| > 0|

}
.

Adaptively weighted L1 penalized quantile regression:

Q(β, τ) = n−1
n∑
i=1

ρτ(Yi − xTi β) + λn

p∑
j=2

wj(τ)|β
(j)|,

Ŝ∆ =
{
j ∈ 2, . . . ,p : ∃ τ ∈ ∆, |β̂(j)(τ)| > 0|

}
.
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High-dimensional quantile regression with focus on an
interval of quantile levels (cont’d)

Examples of weights that reflect regional focus:

wj(τ) =
1

supτ∈∆ |β̃(j)(τ)|
, and wj(τ) =

1∫
∆ |β̃(j)(τ)|dτ

,

where β̃(j)(τ) is an initial estimator of β
(j)
0 (τ).

It’s recommended to use L1 penalized quantile regression for the
initial estimator.
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High-dimensional quantile regression with focus on an
interval of quantile levels (cont’d)

Oracle property: with probability approaching one, the proposed
estimator can successfully identify the set of relevant covariates,
including those having effects on some or all quantile levels in ∆.

A GIC criterion for tuning parameter selection:

GIC(λ) =

∫
∆

log σ̂λ(τ)dτ+ |Ŝλ|φ(n),

where σ̂λ(τ) = n
−1
∑n
i=1 ρτ(Yi − xiβ̂λ(τ)), φ(n) is a sequence

converging to zero with n.

Extended to censored data in Zheng, Peng and He (2017+, AOS).
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Discussions and conclusions

Discussion 1: Could we further refine the theory for high-dimensional
quantile regression?

The classical theory for quantile regression requires regularity
conditions comparable with those for LS (e.g., Chapter 4, Koenker,
2005).

More complex conditions on the design matrix (e.g., the restricted
nonlinear impact condition) are required for high-dimensional quantile
regression comparing to penalized least squares regression.
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Discussions and conclusions (cont’d)

Discussion 2: Could we further bridge the gap between convex and
nonconvex penalty approaches?

Adaptive weighting is a nice idea to use L1 penalized quantile
regression as an initial estimator to further reduce the bias. Minimal
signal strength assumption is needed to ensure model selection
consistency.

Loh and Wainwright (2015 JMLR; 2017+, AOS) proved that any
local solution of non-convex penalized M-estimator will lie within
statistical precision of the underlying parameter vector but requires
smooth loss function.
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Discussions and conclusions (cont’d)

Quantile regression is useful for modeling high-dimensional
heterogeneous data: quantile-specific sparsity, weaker error
distribution assumptions.

Still an active area for research:
I Statistical inference for high-dimensional quantile regression: Belloni,

Chernozhukov, Kato (2015, Biometrika), Zhao, Kolar and Liu (2014,
on arXiv), Bradic and Kolar (2017+, on arXiv)

I Lee, Liao, Seo and Shin (2017+, JASA): high-dimensional
change-point quantile regression

I Lv, Lin, Lian and Huang (2017+, AOS): oracle inequality for sparse
additive quantile regression in reproducing kernel hilbert space.

I Many others...
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