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Abstract

Since Quetelet’s work in the 19th century social science has iconified

“the average man,” that hypothetical man without qualities who is

comfortable with his head in the oven, and his feet in a bucket of ice.

Conventional statistical methods, since Quetelet, have sought to esti-

mate the effects of policy treatments for this average man. But such

effects are often quite heterogenous: medical treatments may improve

life expectancy, but also impose serious short term risks; reducing class

sizes may improve performance of good students, but not help weaker

ones or vice versa. Quantile regression methods can help to explore

these heterogeneous effects. Some recent developments in quantile re-

gression methods are surveyed below.
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1. Introduction

Quantiles offer a convenient way to summarize univariate probability distributions as exem-

plified by Tukey’s ubiquitous boxplots. In contrast to moments, which characterize global

features of the distribution and are consequently strongly influenced by tail behavior, quan-

tiles are inherently local and are nearly impervious to small perturbations of distributional

mass. We can move mass around above and below the median without disturbing it at

all, provided of course that mass is not transferred from above the median to below, or

vice-versa. This locality of the quantiles is highly advantageous for the same reasons that

locally supported basis functions are advantageous in nonparametric regression, because it

assures a form of robustness that is lacking in many conventional statistical procedures,

notably those based on minimizing sums of squared residuals.

When there are covariates – and there are almost always covariates when econometric

problems get interesting – we can’t rely on sorting as a strategy for computing quantiles.

Instead, fortunately, there is a simple, elegant optimization alternative. Univariate quantiles

emerge as solutions to the piecewise linear expected loss problem,

min
a

Eρτ (Y − a),

where ρτ (u) = (τ − I(u < 0))u and τ ∈ (0, 1). When the distribution of Y admits a unique

τth quantile we may differentiate,

Eρτ (Y − a) = τ

∫ ∞
a

(y − a)dFY (y) + (τ − 1)

∫ a

−∞
(y − a)dFY (y)

to obtain the first order condition,

0 = τ

∫ ∞
α

dFY (y) + (τ − 1)

∫ α

−∞
dFY (y)

= FY (α)− τ,
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so α = F−1
Y (τ). When there are multiple values such that FY (y) = τ , it is conventional to

choose the smallest, i.e., α = inf{y : FY (y) ≥ τ}. Corresponding to these population quan-

tiles are analogous expressions for the sample quantiles with FY replaced by the empirical

distribution function Fn(y) = n−1∑n
i=1 I(Yi ≤ y). Admissibility of the univariate sample

quantile under the loss ρτ was considered by Fox and Rubin (1964), but the origin of such

solutions under asymmetric linear loss go back at least to Edgeworth (1888a).

Regression estimators minimizing sums of absolute residuals also have a long history.

Already in the 18th century, Boscovich, and somewhat later Laplace, advocated a form

of bivariate regression that constrained the mean residual to be zero, and minimized the

sum of absolute residuals to find the remaining slope parameter estimate. A century later

Edgeworth (1888b) proposed removing the intercept constraint and determining both slope

and intercept parameters by minimizing the sum of absolute residuals. He provided an

effective algorithm for computing the estimator that anticipates modern simplex methods.

For further details see Koenker (2017). Edgeworth’s proposal languished until it was re-

vived in the 1950’s when it was recognized as a linear program. An early application of

median regression in economics appears in the work of Arrow and Hoffenberg (1959) who

found it convenient for estimating input-output coefficients subject to positivity constraints.

Although there was a general recognition that the median, or `1, or LAD approach had the

advantage that it was more resistant to outliers than the usual least squares estimator, a

drawback of the approach in addition to the unfamiliarity of its computational methods

was the absence of a formal inference apparatus.

Nor, as far as I am aware, was there any recognition that it might be interesting to

consider quantile regression models other than the median. Gib Bassett and I began ex-

ploring this territory in the mid-1970’s. We started with the observation that as long as the

model “contained an intercept,” that is that the linear span of the covariate/design matrix,

X, included a constant vector, then solutions to the regression analogue of our elementary

problem,

min
b∈Rp

n∑
i=1

ρτ (yi − x>i b),

had the property that roughly τn of the residuals, ri = yi − x>i b̂, i = 1, · · · , n would be

positive and (1 − τ)n would be negative. This follows immediately from the subgradient

condition requiring that at the optimum, β̂(τ),

0 ∈ ∂b
n∑
i=1

ρτ (yi − x>i b)|b=β̂(τ).

Here, ∂bρτ (yi − x>i b) = −ψτ (yi − x>i b)xi with ψτ (u) = τ − I(u < 0) for u 6= 0, and

is set-valued, with ∂bρτ (yi − x>i b) = [−τ, 1 − τ ]xi, when the residual is zero. When the

observations are in “general position” so no more than p observations lie on a hyperplane

of of dimension p in the regression sample space, the subgradient condition implies that τ

must lie between N/n and (N+p)/n where N is the number of observations below the fitted

hyperplane, i.e., having strictly negative residuals. This seemed to justify our conjecture

that solutions β̂(τ) of such problems could be considered analogues of the sample quantiles

for the linear model, estimating the parameters of models that specified affine conditional

quantile functions for Y |X.

Inference proved to be a somewhat harder nut to crack. We began be deriving a com-

binatorial expression for the finite sample density of β̂(τ) based on the foregoing gradient
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optimality condition. Since this involved a summation over all
(
n
p

)
elementary subset solu-

tions that corresponded to exact fits of p observations, it didn’t seem to be terribly practical

at first. But eventually we were able to show that this density had a simple Gaussian lim-

iting form that fully justified the regression quantile terminology that we had begun to use.

In due course these results appeared in Koenker and Bassett (1978).

Since then many people have contributed to an effort that has gradually built an ex-

tensive toolbox for estimation and inference about conditional quantile models. In the

remaining pages I will try to briefly survey these developments and suggest a few areas that

seem ripe for future development.

2. Inference for Conditional Quantile Models

A fundamental precept of statistics is that estimates of effect magnitudes should be accom-

panied by some assessment of the precision of these estimates. In this section we will review

a variety of methods that have evolved to address this task for quantile regression.

2.1. Binary Treatment Effects

The simplest quantile regression setting is the binary treatment response or two-sample

model, where we have a treatment indicator, Di that takes the value 1 for “treated” obser-

vations and 0 for “control” observations. In the classical mean treatment version interest

focuses exclusively on the difference in the means of the two samples,

EYi|Di = α+ βDi

This is typically justified by the location shift model expressed as,

Yi = α+ βDi + ui

where the ui’s are either implicitly or explicitly assumed to be independent and identi-

cally distributed. Thus, effectively, the treatment is thought to shift the entire response

distribution in lockstep by the amount, β.

In contrast, the quantile treatment effect model,

QY |D(τ |D) = α(τ) + β(τ)D

recognizes that the distribution of the response can be arbitrarily different under the treat-

ment and control regimes. In this formulation α(τ) denotes the quantile function of the

response for controls, F−1
Y |D(τ), and β(τ) denotes the difference between the quantile func-

tions of the treatment and control response: F−1
Y |D=1(τ)− F−1

Y |D=0(τ). This QTE is closely

related to the Lehmann (1974) proposal to generalize the mean treatment effect model by

considering the horizontal difference between the treatment and control distribution func-

tions, which he defined as the function ∆(y) such that,

FY |D=1(y) = FY |D=0(y + ∆(y)).

Thus, the scalar mean treatment effect becomes a functional object capable of fully describ-

ing the difference between the treatment and control distributions.

To this point we have been silent about possible endogoneity/selection issues that might

arise regarding treatment assignment, we will address such issues in Section 7 below. Since
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we are almost inevitably unable to observe both treatment and control response for indi-

vidual subjects, we are consequently constrained to inference about marginal distributions.

The presumption underlying the QTE is that a control subject with response α(τ) will,

if treated, have have response α(τ) + β(τ). This presumption is sometimes referred to as

“rank invariance,” as for example, in Heckman, Smith, and Clements (1997).

As long as treatment is randomly assigned estimation of the QTE is easily implemented.

Given a sample {(yi, di) : i = 1, · · · , n} we can simply solve for,

(α̂(τ), β̂(τ)) = argmin(a,b)

n∑
i=1

ρτ (yi − a− bdi).

For this we don’t even need any linear programming machinery since the problem separates

into two distinct problems with solutions given by the ordinary sample quantile for the

control and treatment samples. See Koenker (2005) for further details. As a consequence,

inference about the QTE in the binary treatment model can also rely on classical large

sample theory for the ordinary sample quantiles. Since the two samples are independent

we have that β̂(τ) has finite dimensional asymptotic distributions,

√
n(β̂(τ)− β(τ)) ; N (0, λ0Ω0 + λ1Ω1),

where Ωkij = (τi − τi ∧ τj)/(fk(F−1
k (τi))fk(F−1

k (τj))) for k = 1, 2 and i, j : 1, · · · , p, and

λk = n/nk, provided that the relative sample sizes, nk/n stay bounded away from zero

and one as n→∞. Of course, this begs the question of how to estimate the matrices, Ωk,

since they involve the conditional density functions of the two samples. This has spawned

a rather extensive literature, and a brief overview is provided in Koenker (2005).

The foregoing theory enables us to construct pointwise confidence bands for the QTE

using the estimated covariance matrix. Uniform bands pose somewhat more of a challenge;

one attractive approach would be to employ the asymptotic version of the Hotelling (1939)

approach described in Koenker (2011). Various other resampling approaches have also

been recently suggested notably by Belloni, Chernozhukov, and Kato (2016) and Hagemann

(2016). A recent survey of resampling methods for quantile regression is provided by He

(2017).

Given the traditional emphasis placed on location shift models of treatment response,

e.g. Cox (1984), it is of some interest to explore tests of this hypothetical model. Such tests

are closely related to classical goodness of fit tests involving estimated parameters. One

approach to such testing, following Khmaladze (1981) is described in Koenker and Xiao

(2002).

2.2. Multiple Treatments, Concomitant Covariates and Interactions

Expanding the binary treatment paradigm to permit multiple treatment options raises

some new issues especially from the testing perspective, however QTEs can still be based

on univariate sample quantile differences and therefore confidence regions can be based on

theory essentially similar to that already described. A tantalizing problem of increasing

significance in many fields is that of treatment assignment: Given an estimated model

of treatment effects how should we go about assigning new subjects to various treatment

regimes? Such questions, especially in the medical arena, require answers to thorny risk

assessment questions where a distributional perspective on heterogeneous treatment effects
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can be crucial. A novel perspective on these issues is offered in recent work of Wang, Zhou,

Song, and Sherwood (2016) based partially on Manski (2004).

When there are concomitant covariates in addition to the treatment indicator variables

more new questions arise. If treatment assignment is fully randomized it is tempting to

simply ignore these covariates; this is the viewpoint articulated by Freedman (2008), who

argues that bias induced by misspecified introduction of extraneous covariate effects is likely

to be more damaging than any benefits that may accrue from variance reduction. This argu-

ment has at least equal force in the quantile regression setting as it does for mean regression.

Presumably randomization leaves us with treatment D that is stochastically independent of

other covariates, say X, so further conditioning on X won’t help and may hinder when the

functional form of the X conditioning is ill chosen. Of course when treatment is assigned

“on observables” X then the case for their inclusion is much more compelling. Kadane and

Seidenfeld (1996) provide a nice discussion of this in the light of Student’s (1931) infamous

critique of the Lanarkshire milk experiment. Rather than relying on such selection-on-

observables arguments several authors have opted instead for propensity score reweighting.

An early example of this is the work of Lipsitz, Fitzmaurice, Molenberghs, and Zhao (1997)

with later contributions by Firpo (2007) and others. The extensive recent work on so-called

“doubly-robust” methods that combine these approaches could also be employed as recently

suggested by Diaz (2016).

Somewhat neglected in the econometrics literature on treatment reponse and program

evaluation is the potentially important role of interactions of covariates with treatment

variables. Although interactions feature prominently in the classical analysis of variance

literature and appear in some recent high-dimensional linear model research, econometrics

has tended to focus attention on main effects of treatment. Interactions, if present, must

play an essential role in post-analysis treatment assignment. More work needs to be done

to develop better diagnostic tools to incorporate such effects. Cox (1984) offers an extensive

agenda of open research topics many of which could be fruitfully extended to the quantile

regression setting.

2.3. Method of Quantiles

It is not uncommon to face quantile regression settings with exclusively discrete covariates.

In such cases, we can consider each cell of the covariate space, that is each distinct vector

of covariates, as determining a separate subsample. As long as the sample sizes in each

of these cells is reasonably large we can compute cell specific sample quantiles, each of

which can be expected to be approximately Gaussian. When one or more of the discrete

covariates arise from binning continuous covariates like age, or job tenure, and we are willing

to consider imposing a linearity condition, or some weaker parametric restriction on these

cell specific quantiles, it is natural to consider weighted least squares estimation of the

restricted model. This is the approach proposed by Chamberlain (1994), and applied more

recently by Bassett, Tam, and Knight (2002) and Knight and Bassett (2007).

Because conditional quantile functions completely characterize all that is observable

about univariate conditional distributions they provide natural building blocks for struc-

tural models. Just as linear least squares estimation of reduced form models constitute a

foundation for structural estimation of Gaussian linear simultaneous equation models, quan-

tile regression provides a foundation for nonparametric structural models. This perspective

has been elaborated in recent work of Matzkin (2015).
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2.4. Nonlinear (in parameters) Quantile Regression

Once in a while we may be faced with specifications of conditional quantile models that are

nonlinear in parameters,

QYi(τ |x) = g(x, θ(τ))

which can be estimated in the immediately obvious manner,

θ̂(τ) = argminθ

n∑
i=1

ρτ (yi − g(xi, θ)).

Prime examples of such circumstances are the Powell (1986) estimator of the (Tobit) cen-

sored regression model, and the Manski (1975) maximum score estimator of the binary

response model. In both cases we have a linear in parameters latent response model that

posits,

QY ∗i (τ |x) = x>β,

but the observable response, Yi = max{0, Y ∗i } in the former case, and Yi = I(Y ∗i > 0) in the

latter. Since Qh(Y )(τ) = h(QY (τ)) for any monotone transformation, h, see e.g. Koenker

(2005) p. 39, it follows that the Powell estimator,

β̂(τ) = argminβ
∑

ρτ (yi −max{0, x>i β})

and the Manski estimator,

β̂(τ) = argmin‖β‖=1

∑
ρτ (yi − I(x>i β > 0))

consistently estimates the parameters of the latent variable model, up to scale in the latter

case.

Other parametric transformation models offer further examples. The venerable Box-Cox

power family of transformations, adapted to the quantile regression setting asserts that,

Qh(Y,λ)(τ |X) = x>β(τ)

where h(y, λ) = (yλ − 1)/λ. Of course if λ is known we can easily estimate the linear

parameters, β(τ), however joint estimation of (λ(τ), β(τ)) requires more effort. Machado

and Mata (2000) propose estimating the nonlinear model,

QY (τ |X) = h−1
λ (x>β(τ)),

where h−1
λ (z) = (λz + 1)1/λ, and Fitzenberger, Wilke, and Zhang (2009) suggest a modi-

fication to account for circumstances in which λx>i β + 1 < 0. More recently Mu and He

(2007) have proposed an alternative estimator in which λ is estimated by minimizing a sum

of squared cumsum residuals. Performance of these methods is sensitive to heterogeneity of

the conditional density of the response as would be expected based of the large sample the-

ory we have already sketched. A third option that doesn’t appear to have been explored in

the literature is to simply rescale the response by dividing by its geometric mean, ỹi = yi/ȳ,

where ȳ = (
∏
yi)

1/n and then estimate λ by solving,

min
λ,β

∑
ρτ (h(ỹi, λ)− x>i β).
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The rescaling of the response accounts for the Jacobian term from the Box-Cox transforma-

tion of the response, as in the conventional mean regression setting. This formulation may

provide a more homogeneous conditional density in some applications. Optimization over

the scalar λ is easily handled via grid search or other naive methods. For more complicated

nonlinear in parameter models it is possible to use iterative versions of the interior point

methods that underlie linear in parameter fitting as described in Koenker and Park (1996).

3. Nonparametric Quantile Regression

There is an extensive literature on nonparametric quantile regression that relaxes the strict

linearity in covariate assumptions of the foregoing methods while preserving the convenient

linear in parameters structure that facilitates efficient computation. Chaudhuri (1991)

considers the asymptotic behavior of locally polynomial quantile regression estimators and

establishes conditions under which these estimators achieve optimal rates of convergence.

Subsequently, work of Lee (2003) and Lee, Mammen, and Park (2010) extended the locally

polynomial approach to partially linear and additive models respectively.

As nonparametric quantile regression models become more conplex local fitting and

backfitting to accommodate new components become more burdensome and the literature

has evolved toward sieve methods. See, for example the influential early work of Stone

(1994) and the survey of Chen (2007). Basis function expansions can be readily adapted

to particular applications and more easily incorporate partially linear and additive com-

ponents. The obvious challenge is the control the parametric dimension of the resulting

models. Penalty methods, particularly the `1 penalty of Donoho, Chen, and Saunders

(1998) and Tibshirani (1996), have emerged as critical tools for dimension reduction. The

lasso is especially convenient in the quantile regression setting since it maintains the linear

programming structure of the original problem. This was a primary motivation for the use

of total variation roughness penalties in Koenker, Ng, and Portnoy (1994) and Koenker and

Mizera (2004) where `1 penalties were imposed on linear transforms of model parameters,

effectively controlling total variation of the derivatives of the fitted functions. A crucial

aspect of the computational strategy underlying these methods is the sparse linear alge-

bra employed to represent high dimensional design matrices and to solve systems of linear

equations required at each iteration of the interior point algorithms used for fitting. This

is particularly evident in applications like that of Koenker (2011) where multiple additive

components result in several thousand model parameters. In such cases there may be sev-

eral Lagrangian parameters controlling the additive nonparametric components as well as

a more conventional lasso λ that controls the effective number of active linear covariate

effects.

A variety of proposals have been made for how to choose these penalty parameters,

but I think that it is fair to say that no consensus has been reached. In prior work I have

recommended some form of information criterion in which model dimension is represented

by an estimate of the number of observations interpolated by the fitted model. This is a

variant of the Meyer and Woodroofe (2000) divergence measure of dimension since,

div(ŷ) =

n∑
i=1

∂ŷi/∂yi,

has summands that take the value one when yi is interpolated and zero otherwise in the

quantile regression setting. However, the proposal of Belloni and Chernozhukov (2011)
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which constructs a reference distribution for λ’s based on a pivotal representation of the

gradient condition seems to be a very attractive alternative approach.

Even more formidable than λ-selection is the task of post-selection inference in these

high dimensional nonparametric settings. Consequently, this topic has spawned considerable

recent research and controversy. Most of this work has focused on resampling methods as

exemplified in the quantile regression context by Belloni, Chernozhukov, and Kato (2015)

and Belloni, Chernozhukov, and Kato (2016). I believe that the Hotelling tube methods

described in Koenker (2011) offer an attractive alternative for some applications. Simulation

evidence on their performance for construction of uniform confidence bands for univariate

nonparametric components is provided there as well as discussion of an application to

modeling sources of malnutrition in India.

4. Time-series Models

Econometric timeseries analysis has traditionally relied on Gaussian models that exclusively

employ first and second moment information. However it is now widely recognized that

asymmetries and heavy tail behavior, features that are essentially invisible when estimating

Gaussian models, can be revealed with the aid of quantile regression methods. Koenker

and Xiao (2006) consider quantile autoregressive (QAR) models of the form,

QYt(τ |Ft) = α0(τ) +

q∑
i=1

αi(τ)Yt−i.

When the αi(τ) do not depend upon τ for i = 1, · · · , q, we have the familiar iid error

autoregression with errors having quantile function α0. More generally, we have a random

coefficient QAR(q) model with Yt generated as,

Yt = α0(Ut) +

q∑
i=1

αi(Ut)Yt−i.

with Ut ∼ U [0, 1]. This is a rather special random coefficient model, however, since all

its coefficients are driven by the same iid uniform random variables. In the terminology

of Schmeidler (1986) the coefficients are comonotonic. The simplest case of the QAR(1)

model,

Yt = α0(Ut) + α1(Ut)Yt−1.

is instructive. Let µi =
∫
0
, 1αi(t)dt and ω2

i =
∫ 1

0
α2
i (t)dt with ω0 <∞ and ω1 < 1, then Yt

is covariance stationary with n−1∑(Yt − µy)2 ; N (0, ω2
y) where µy = µ0/(1 − µ1), and

ω2
y = ω2

0(1 + µ1)/((1− µ0)(1− ω2
1)).

To illustrate, suppose that α1(τ) = min{ 1
2

+ 5τ, 1} and α0 = Φ−1(τ). Simulating the

model by drawing a sequence of iid random uniforms we see that runs of Ut > 0.1 behave

precisely as if the series were a standard Gaussian unit root model. However, as soon as we

see a Ut < 0.1, the model’s mean reversion tendency kicks in, and stationarity is salvaged.

This simple example demonstrates the capability of QAR models to mimic some features

of common nonstationary time series while preserving essential features of stationarity.

In Figure 1 we illustrate the estimated α̂1(τ) process from the augmented Dickey-Fuller

type model,

QYt(τ |Ft) = α0(τ) + α1(τ)Yt−1 +

4∑
j=1

δj(τ)∆Yt−j .
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Figure 1

Estimated QAR α̂1(τ) coefficient for three-month US Treasury bills based on monthly data
1971-2015.

where Yt is the three month US Treasury bill rate observed monthly over the period 1971-

2015. The horizontal solid line represents the least squares estimate of 0.99 strongly suggest-

ing unit root behavior. Evidence from the QAR estimates clearly contradicts the constant

coefficient unit root hypothesis, although in this case the explosive behavior of α̂1(τ) for

τ > 0.5 compensates for the mean reversion tendency when τ < 0.5 and we are left on the

edge of the QAR stationarity conditions in this example.

An obvious critique of the linear QAR model comes from the observation that when

the QAR slope coefficient depends upon τ there must be a sub-region of the support of Yt
for which the ordering of quantiles is reversed. Thus, the linear in lagged Yt’s formulation

must be regarded, at best, as a local approximation. See, for example, the discussion and

response of Koenker and Xiao (2006). One remedy for this predicament is to resort to

nonlinear formulations of the QAR model in lagged Yt’s. Chen, Koenker, and Xiao (2009)

explore one approach to models of this type based on copula specifications.

Complementary to the time domain formulations of the QAR model is the relatively

recent development of frequency domain methods. Building on earlier work of Li (2008) and

Li (2012), Hagemann (2011) and Kley, Volgushev, Dette, and Hallin (2016) have proposed

variants of quantile spectral analysis. The initial proposal of Li considered the harmonic

quantile regression model,

QYt(τ, ωj) = α0(τ, ωj)α1(τ, ωj) cos(tωj) + α2(τ, ωj) sin(tωj)

estimable at the Fourier frequencies, ωj = 2πj/n. Alternatively, we can base the analysis

on the periodogram of the level crossing process, Zt(τ) = I(Xt < F−1
Xn

(τ)) where F−1
Xn

(τ)

denotes the τth unconditional sample quantile of the observed Xt’s. Both approaches allow

researchers to explore frequency domain features of time series by focusing attention on local
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Figure 2

Comparison of LMS and QR Growth Curves: The figure illustrates three families of growth curves, two estimated with the
LMS methods of Cole and Green, and one using quantile regression methods.

behavior at or near specific quantiles, recognizing that cyclic behavior can be quite different

in the upper tail of the distribution than in the middle or in the lower tail. Extensions to

locally stationary time series and cross-spectral relationships among variables are topics of

active current research.

5. Longitudinal Data

Longitudinal, or panel, data poses numerous challenges for anyone contemplating extend-

ing the quantile regression paradigm. My first encounter with these challenges involved

estimation of reference growth charts for height based on a sample of Finnish children and

reported in Wei, Pere, Koenker, and He (2005). Our objective was to develop a practical

approach to estimating growth charts based on quantile regression methods and illustrate

its use on a reference sample of 2305 Finnish children observed, on average, 20 times be-

tween the ages of 0 and 20. At the time the state of the art for estimating such charts

was the LMS method of Cole and Green (1992), which assumed that heights at each age,

Y (t), could be transformed to normality by the classical Box-Cox power transformation,

that is that (Y (t)λ(t) − 1)/λ(t) ∼ N (µ(t), σ2(t)), or at least approximately so. To impose

smoothness on the resulting quantile growth curves penalty functions of the usual cubic

smoothing spline type were appended to the Box-Cox log likelihood.

In Figure 2 we illustrate a comparison of the quantile regression estimates based on a
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Comparison of LMS and QR Growth Velocity Curves: The figure illustrates three families of growth curves of the prior
figure, now representing the estimated velocity of growth.

B-spline basis expansion with 16 knots and two variants of the Cole-Green estimates: one

with penalty parameters chosen with the default setting resulting in effective dimension

of the (λ(t), µ(t), σ(t)) functions of (7, 10, 7), the other with a less restrictive choice of the

penalty parameters with effective dimension (22, 25, 22). The latter closely mimicked the QR

estimates. On the right side of this figure we illustrate the two age dependent paths of the

(λ(t), µ(t), σ(t)) estimates. The default default λ’s tend to oversmooth, whereas the more

flexible model, while quite nicely matching the QR results yields a rather erratic estimate of

the underlying Box-Cox parameter paths. To reenforce this message we illustrate in Figure

3 the corresponding growth velocity curves. Separate estimates were made for infants
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between the ages of 0 and 2, and older children ages 2-18, as well as distinguishing girls and

boys. For the younger children there is generally good agreement between the QR estimates

and the more flexible Cole-Green estimates, however for the older children the Cole-Green

estimates exhibit substantially more variability than the QR estimates of velocity. As has

been already emphasized an advantage of the QR sieve approach is that it makes it relatively

easy to condition on additional covariates. In the growth curve setting this was illustrated

by incorporating an AR(1) component and midparent’s height as additional explanatory

variables.

The econometric literature on panel data has focused considerable attention on un-

observed individual specific effects. Ever since the influential work of Neyman and Scott

(1948) we have struggled to come to terms with these effects. In a rather naive attempt to

introduce them into longitudinal settings for quantile regression, Koenker (2004) considered

the model,

QYit(τ |xit) = αi + x>itβ(τ).

The proposed estimation strategy was to minimize the penalized QR objective,

R(α, β) =

m∑
j=1

n∑
i=1

Ti∑
t=1

ρτj (yit − αi + x>itβ(τj)) + λ‖α‖1.

Two features of the estimator were intended to control the ill effects of the αi’s: first, they

were assumed to be independent of τ , thus representing a pure location shift of the condi-

tional distribution of the response, and second, their `1 norm was controlled by the penalty

parameter λ. We can interpret this procedure in several ways, none terribly compelling.

If we view the αi’s as individual specific fixed effects, then the penalty term is simply a

shrinkage scheme: reduced variability of the vector α may help to improve the precision

of the estimates of primary interest, β. If instead, we view the αi’s as random, then the

Bayesian interpretation of the penalty term suggests that shrinkage could be justified by a

Laplace (double exponential) prior on the vector α. Why double exponential? Aside from

the obvious computational convenience there seems to be little credible motivation. As we

know from the extensive lasso literature the `1 penalty tends to behave like a hard thresh-

holding rule, shrinking some of the αi’s all the way to zero, while leaving others alone. This

may be desirable in some applications, but perhaps not in others.

Subsequent literature has elaborated on this approach as well as introducing a variety

of new alternatives. Lamarche (2010) has clarified the role of the shrinkage parameter λ

and suggested straegies for choosing it. Galvao (2011) has explored dynamic variants of the

model and proposed insturmental variable methods for estimation, and Kato, Galvao, and

Montes-Rojas (2012) have substantially improved upon prior results on rate requirements

for asymptotic inference.

A considerably more sophisticated approach to quantile regression methods for panel

data has been recently proposed by Arellano and Bonhomme (2016). Their approach may be

interpreted as an elaboration of the Chamberlain (1984) correlated random effects approach

to classical mean regression methods for panel data. Rather than specifying individual

specific parametric effects, Arellano and Bonhomme (2016) posit latent variables that enter

the model as if they were observable covariates. Estimation proceeds by a variant of the EM

algorithm in which the latent covariates are imputed by methods similar to those introduced

by Wei and Carroll (2009) for dealing with quantile regression models with measurement

error in the covariates. This approach has several advantages over prior panel methods, not

www.annualreviews.org • Quantile Regression: 40 Years On 13



the least of which is that there is a clear conditional quantile interpretation, albeit one that

conditions on the latent covariates.

6. Duration Models

Quantile regression offers an attractive modeling strategy for duration, or survival, data

where interest focuses on restricted regions of the conditional distribution and censoring

renders identificaiton of mean effects problematic. My first encounter with these issues was

working on Koenker and Geling (2001) where we had the luxury of having a sample of 1.2

million uncensored observations of medfly lifetimes. A simple logarithmic accelerated failure

time model allowed us to consider extreme tail behavior and covariate effects in a more com-

prehensive manner than was possible with other standard modeling strategies. A striking

example of the latter virtue was the gender cross-over in survival functions for medflies. In

most parametric and semiparametric survival models including the Cox proportional hazard

model covariates exert a scalar shift effect on hazards or survival probabilities that must

be either positive or negative over the entire time scale. Such models cannot accommodate

effects like gender cross-over in which a treatment, or a characteristic like gender, has a

positive impact on survival at early ages, but then becomes a negative influence at more

advanced ages.

Of course it is highly unusual to encounter duration data that doesn’t exhibit some form

of censoring. As we have already noted, Powell (1986) showed that quantile regression could

be adapted to various forms of fixed censoring, thereby relaxing the restrictive conditions

imposed by earlier Gaussian likelihood methods. Random censoring of the type typically

encountered in biostatistics resisted quantilification until Portnoy (2003) proposed a shrewd

recursive scheme that generalized the well known Kaplan-Meier estimator to the regression

setting. Observing, as in Efron (1967), that Kaplan-Meier redistributes mass to the right

for right censored response, Portnoy proposed a similar procedure in regression leading to a

sequence of weighted quantile regression estimates. Somewhat later, Peng and Huang (2008)

using a martingale estimating equation formulation like that underlying the Nelson-Aalen

estimator, proposed a closely related procedure. Subsequent work has greatly expanded the

applicability of these methods, to competing risks, recurrent events, double censoring and

other settings. See the recent survey papers of Ying (2017), Peng (2017) and Li and Peng

(2017) for further details.

Noting that censoring shares many features with recent work on missing data models,

Yang, Narisetty, and He (2016) have recently proposed a clever data augmentation approach

that encompasses a wide variety of censored quantile regression models. This approach

seems very promising especially for settings like interval censoring that seem otherwise

quite intractable.

7. Causal Models and Instrumental Variables

Causal inference, not to be confused with casual empiricism, has been a longstanding focus

of econometrics. Indeed it is sometimes claimed that causal modeling is what distinguishes

econometric analysis from the “merely descriptive” subject of statistics. This has always

seemed to me to be a little self-serving, but there is an element of truth to it. It has become

increasingly difficult to maintain this monopoly, as not only the statisticians but also the

computer scientists have taken up the banner of causal inference.
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Once one abandons the comfortable world of mean effects and linear structural models

and embraces the diversity inherent in nonlinear, nonseparable models of distributional

effects many open problems present themselves. To my mind the most compelling general

approach to these problems is that set out by Chesher (2003). This approach draws on the

Rosenblatt (1952) transform and may also be viewed as an extension of the influential, if

somewhat controversial, work of Strotz and Wold (1960) on recursive, or triangular, models

of linear structural equations.

If X is a scalar random variable with absolutely continuous distribution function F ,

then Z = F (X) ∼ U [0, 1], that is Z is uniformly distributed on the unit interval. Rosen-

blatt noted that this simple idea could be extended to k-variate random variables having

absolutely continuous distribution F (x1, · · · , xk) by defining the transformation z = Tx by

recursive conditioning,

z1 = P{X1 ≤ x1} ≡ F1(x1)

z2 = P{X2 ≤ x2|X1 = x1} ≡ F2(x2|x1)

...

zk = P{Xk ≤ xk|X1 = x1, · · · , Xk−1 = xk−1} ≡ Fk(xk|x1, · · · , xk−1),

so the random vector, Z = TX is uniformly distributed on the unit cube in Rk. This leads us

immediately to recursively conditioned quantile functions, QY1|X)(τ |x), QY2|Y1,X)(τ |y1, x),

. . . , QYk|Y1,...Yk−1,X)(τ |y1, · · · , yk−1, x), as an equivalent way to characterize the distribu-

tion. Of course there are k! ways of doing this, one for each ordering of the Y ’s so we require

a causal ordering of the response vector. Chesher provides an elegant nonparametric elabo-

ration of this approach with general identification and estimation results. Ma and Koenker

(2006) considers more restrictive parametric formulations, and suggests a control variate

estimation strategy. Wei (2008) illustrates the approach for estimating bivariate children’s

growth contours for height and weight where there is a compelling biological argument for

the causal precedence of height.

When some components of Y are discrete point identification generally fails, and one

must resort to bounds analysis and set valued identification results as demonstrated in

Chesher (2005). Since many econometric applications involve discrete endogonous vari-

ables alternative approaches framed in terms of instrumental variables have proven to be

very influential. The first of these approaches was that of Abadie, Angrist, and Imbens

(2002) who considered the very typical case of binary treatment with a binary instrumen-

tal variable. This setting is often encountered in experimental settings where treatment is

offered to a randomly selected group, but participants cannot be compelled to accept the

treatment, so there is voluntary compliance. This is usually described as the “intent to

treat” model.

Abadie, Angrist, and Imbens (2002) adopt the potential outcome framework underlying

earlier work on local average treatment effects as in Imbens and Angrist (1994). Given a

vector of conditioning covariates, X, and a binary treatment indicator D, suppose we have a

binary instrumental variable, Z, independent of outcome and treatment status conditional

on X. Let D1 denote (random) treatment status when Z = 1, and D0 when Z = 0, and

assume that P(D1 ≥ D0|X) = 1. The objective is to identify the treatment effect on the

compliers, that is on the subpopulation with D1 > D0, those that actually switch to the

treatment option when given the opportunity to do so. Compliers are not individually

recognizable in the sample, but they are probabilistically recognizable via the following
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subterfuge. Let

κ(D,Z,X) = 1− D(1− Z)

1− π0(X)
− Z(1−D)

π0(X)

with π0(X) = P(Z = 1|X). When D = Z, κ = 1, otherwise it is negative. Weighting

the usual quantile regression objective function by consistent estimates of the κ’s yields a

consisten estimator of the quantile treatment effect, α̂, solving,

min
α,β

n∑
i=1

κ̂iρτ (yi − αdi − x>i β).

Negative weights are, however, problematic from a computational point of view since they

contribute concave summands to what is otherwise a nice, convex objective. So Abadie, An-

grist, and Imbens (2002) propose replacing the κ̂i’s by estimates of the modified, conditional

weights,

κν = E(κ|Y,D,X) = 1− D(1− ν0)

1− π0(X)
− ν0(1−D)

π0(X)

where ν0 = E(Z|Y,D,X) = P(Z = 1|Y,D,X), which is shown under the specified conditions

to satisfy κν = P(D1 > D0|Y,D,X) > 0. Obviously, there are still significant challenges

in estimating the weights, κν , but at least their positivity restores the convexity of the

objective function facilitating the minimization step.

In a series of papers Chernozhukov and Hansen (2004, 2005, 2006, 2008) have

introduced a broader framework for instrumental variable methods for quantile regression.

Their approach has been thoroughly reviewed in Chernozhukov and Hansen (2013), so I

will be rather brief here. Again, the potential outcomes formalism is adopted and for each

potential outcome, Yd for d ∈ D, there is a quantile function QYd(τ |d, x) = q(d, x, τ) so

Yd = q(d, x, Ud) with Ud ∼ U [0, 1]. Conditional on X and for each d ∈ D, Ud is independent

of the instrumental variable, Z. The treatment, D, is determined as D = δ(Z,X, V ) for

some random vector, V , and conditional on (X,Z, V ), the Ud are iid. This last condition,

which Chernozhukov and Hansen (2013) refer to as “rank similarity.” may be viewed as

a somewhat relaxed version of the rank invariance condition we have described earlier as

underlying more naive interpretations of the QTE. Rank similarity does not require that

subjects have the same rank under each treatment regime, but only that “the expectation

of any function of the rank Ud does not vary across the treatment states.” Charnozhukov

and Hansen (2013, p 65). This precludes systematic differences in subjects’ ranks across

treatments as would occur for example if a medical treatment rather miraculously made

the most frail patients most robust, and vice versa, or helped only the most frail and most

robust leaving intermediate cases unimproved.

Under the foregoing assumptions the moment condition, P{Y ≤ q(D,X, τ)|X,Z} = τ

can be employed to construct an estimator of the structural QTE. In practice such moment

conditions, lacking both smoothness and convexity, are rather awkward; fortunately, a more

tractable alternative is provided. Consider the linear specification q(D,X, τ) = D>α(τ) +

X>β(τ). By the independence, or exclusion, assumption on Z, we may consider estimating

the model,

QY−D>α|X,Z(τ |X,Z) = X>β(τ) + Z>γ(τ, α),

for various α and trying to minimize ‖γ(τ, α)‖W = γ(τ, α)>Wγ(τ, α with respect to α.

Ideally, one would like to choose W to be the inverse of a reasonable estimate of the

covariance matrix of γ̂. It is a useful exercise to show that the mean regression analogue
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of this procedure is equivalent to classical two stage least squares. Weaker forms of the

Chernozhukov and Hansen conditions lead to moment inequality conditions and back toward

the theory of Chesher (2005).

8. Errors in Variables, Missing Data and Sample Selection

Going back to the earliest days of econometrics it has been recognized that conventional least

squares estimates can be badly biased when covariates are measured with error. Wald (1940)

and Durbin (1954) review this early literature and describe instrumental variable methods

intended to ameliorate these effects. I will briefly describe some recent developments for

treating measurement errors of this type in quantile regression methods.

Wei and Carroll (2009) consider the linear quantile regression model,

QY (τ |x) = x>β0(τ), (1)

however, x, is not observed, instead we observe a surrogate, w, that satisfies the condition

that fY (y|x,w) = fY (y|x). This surrogacy condition implies that w is uninformative about

Y conditional on X. Since the usual estimating equations,

n−1
∑

ψτ (yi − x>i β)xi = 0,

are unavailable, we must instead consider the revised equations,

n−1
∑∫

x

ψτ (yi − x>β)xf(x|yi, wi)dx = 0,

which replaces the xi by their conditional expectations. We are unlikely to know anything

about the conditional density f(x|yi, wi) a priori, however under the surrogacy condition,

f(x|yi, wi) =
f(yi|x)f(x|wi)∫

x
f(yi|x)f(x|wi)dx

.

Assuming that the linear conditional quantile model holds for all τ ∈ (0, 1), we can express

f(y|x) in terms of the difference quotient,

f(y|x) = lim
h→0

h

x>(β0(τy + h)− β0(τy))
,

where τy = {τ ∈ (0, 1)|x>β(τ) = y}. Estimation proceeds by what Wei and Carroll refer

to as a nonparametric analogue of the EM algorithm. There is assumed to be a reliable

estimator of f(x|w), perhaps based on replicated observations and a parametric model of

the measurement error. Then θ ≡ (β(τ1), · · · , β(τm)) is initialized using the naive estimator

that simply replaces x by its surrogate w, in (1). Weights are then constructed on a grid of

x values, and θ is reestimated from the weighted quantile regression objective function at

each of the τk’s, and the process is repeated until convergence is achieved.

Gridding for τ ∈ (0, 1) isn’t worrisome, but the gridding on x may be more so, especially

when the dimension of x is large, say bigger than one. What matters of course is the

“affected” dimension of x, the number of coordinates subject to measurement error; this

is accounted for in f(x|w), which admits the possibility that some coordinates of x are

accurately measured.
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The approach of Wei and Carroll (2009) reveals an important but somewhat paradoxical

feature of the quantile regression paradigm. It is usually emphasized that a cardinal virtue

of these methods is that they are local, relying only on data near a particular conditional

quantile, and undisturbed by what may be going on elsewhere in the conditional distribu-

tion. But when we assert that (1) holds for all τ ∈ (0, 1), we have taken a leap of faith into

the quagmire of global semiparametric models. Although Wei and Carroll (2009) restrict

estimation of their original model to a discrete grid of τ ∈ (0, 1), they explicitly tie these

estimates together with the assumption that the coordinates βj(τ) can be approximated by

linear splines with algebraic tail behavior. Indeed, when we compute the weights we require

estimates of the global conditional density. Obviously, there are several other strategies that

might be employed to produce alternative estimates of such conditional densities. What,

if anything, makes quantile regression advantageous for this purpose? I would argue that

the main advantages are the linear parameterization, perhaps in some form of basis expan-

sion, and the efficient computation that this facilitates. Given a family of independently

estimated conditional quantile functions it is also easy to impose further structure such as

smoothness, or particular forms of tail behavior as illustrated in the Wei-Carroll approach.

These advantages are also apparent in the recent work of Chernozhukov, Fernndez-Val, and

Galichon (2010), Wang, Li, and He (2012) and Arellano and Bonhomme (2016).

Several other approaches to estimation of quantile regression models with errors in

variables have been proposed. An analogue of orthogonal least squares regression is con-

sidered in He and Liang (2000). Wang, Stefanski, and Zhu (2012) propose a modification

of the usual quantile regression objective function adapted to the Gaussian measurement

error model. And Schennach (2008) constructs an elegant general approach to deal with

nonparametric measurement error employing deconvolution methods.

It is common especially in applications based on survey data to encounter missing covari-

ates. Two general approaches have emerged for dealing with this eventuality: reweighting

a la propensity score methods, and multiple imputation. Both approaches have been ex-

plored in the quantile regression setting, the former approach requires reliable estimation of

a model for missingness, the latter requires a model for the conditional distribution of the

missing observations. Both approaches and their combination are discussed in Wei (2017),

and the references provided there.

Sample selection is a potentially serious source of bias in many applications as stressed

in the seminal work of Heckman (1974) and Gronau (1974). While the parametric approach

of Heckman (1979) has been enormously influential, attention as gradually shifted towards

models with less stringent conditions. The Frechet bounds analysis of Manski (1993) con-

stitutes an attractive, if pessimistic, option, while the additive control variate approach

of Buchinsky (2001) is more pragmatic. In recent work Arellano and Bonhomme (2015)

have sought to bridge this gap and proposed an intriguing copula based approach that ul-

timately relies on a novel modification of the usual quantile regression objective function

in which each observation is assigned an individual specific τ̂i that depends upon the esti-

mated copula linking the outcome and selection models evaluated at the covariate vector

of the selection model. Given these τ̂i’s, the efficient computational machinery of quantile

regression can be employed, but specification and estimation of the copula and the selection

model remain serious challenges.
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9. Multivariate and Functional Data

It is hardly surprising that the problem of extending the simple idea of estimating con-

ditional quantile functions for a univariate response to multivariate response has proven

difficult. Even without any conditioning covariates, it is unclear how one should go about

“inverting” a distribution function F : Rd → (0, 1). Even the notion of the multivariate

median is controversial. We have already described one proposal based on the Rosenblatt

transform that relies on a causal ordering of the coordinates of the response. This formu-

lation gives us a way, for example, to ask: How do changes in the τ1 quantile of height

impact changes in the τ2 quantile of weight? But what if we would like to reverse the

causal direction? Maybe we should just resist this temptation, but the question is almost

irresistible so let’s briefly describe some current options.

Suppose for the moment we have no covariates, only our Y ∈ Rd response. Let u be a

d-vector with ‖u‖ = 1, and denote Yu = u>Y and its orthogonal complement as Y ⊥u . Then,

γ(τ, u) = argminγ=(α,β)Eρτ (Yu − α− β>Y ⊥u )

defines a family of hyperplanes indexed by (τ, u). Of course since γ(τ, u) = γ(1 − τ,−u)

we need only consider τ ∈ (0, 1/2]. Kong and Mizera (2012) consider contour sets de-

termined by the empirical analogues of these directional conditional quantile hyperplanes

and show that the resulting polyhedral contour sets correspond to Tukey halfspace depth

contours. This formulation easily accommodates additional linear covariates as shown in

Hallin, Paindaveine, and Šiman (2010) who also provide a nice computational refinement

based on parametric linear programming. Further extensions to nonparametric formulations

are provided in Hallin, Lu, Paindaveine, and Šiman (2015).

In an exciting new development Carlier, Chernozhukov, and Galichon (2016) have pro-

posed a vector quantile regression notion motivated by classical Monge-Kantorovich optimal

transport theory. Their approach maintains two essential properties of the univariate con-

ditional quantile functions: namely that the map (u, x) 7→ QY |X(u|x) be monotone in u,

and satisfy the representation,

Y = QY |X(U |X), U |X ∼ U(0, 1)d.

For d = 1 this is all very familiar, but how should we interpret monotonicity in u, for u ∈
Rd? Carlier, Chernozhukov, and Galichon (2016), employing earlier results of McCann and

Brenier, show that there is a unique mapping satisfying these conditions with monotonicity

in u interpreted as the requirement that the map u 7→ QY |X(u|x) is the gradient of a convex

function, so,

(QY |X(u|x)−QY |X(u′|x))(u− u′) ≥ 0,

for all u and u′ in (0, 1)d and x ∈ X , the support of the conditioning covariates.

As in the univariate setting it is convenient to consider linear parameterizations,

QY |X(u|x) = β0(u)>f(x),

so we would have the representation, Y = β0(U)>f(X), with U |X ∼ U(0, 1)d. Here

β(u) is a p by d matrix of coefficients, and f(X) is a p vector of conditioning covariates,

possibly including basis expansion and interaction terms. This formulation leads to a linear

programming problem for computing β(u) for both population and sample settings.
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The inherent ambiguity of the multivariate quantile problem arises from the fact that

there are many maps Q such that if U ∼ U(0, 1)d then Q(U |x) ∼ FY |X=x, any one of which

determine a transport from the d dimensional uniform distribution function FU to FY |X=x.

Among these choices, the vector quantile regression selection of Carlier, Chernozhukov, and

Galichon (2016) is the one that minimizes the Wasserstein distance E‖Q(U |X)−U‖2. Many

interesting questions remain about this appealing formulation. A valuable introduction to

optimal transport from a broad economic perspective may be found in the monograph of

Galichon (2016).

Functional data analysis has become increasingly important since the appearance of

Ramsay and Silverman (1997), but it is received only limited attention in the quantile

regression setting, despite the fact that applications to growth curves, pollution concentra-

tions and shape analysis seem to cry out for more flexible methods. A notable exception to

this neglect is the work of Kato (2012) who considers function valued covariates and scalar

response as an ill-posed inverse problem regularized by truncation of a principal compo-

nent derived basis expansion. Function valued response poses new challenges closely related

to the problems of vector response. A novel recent attack on these issues is described in

Choudhury and Chaudhuri (2017).

10. Computational Methods

More data and more complex models have put increased stress on computational resources

thoughout statistics and led to many innovations including computational methods for

quantile regression. Early simplex based methods of linear programming have gradually

given way to interior point methods as described in Portnoy and Koenker (1997), and sparse

algebra has further expanded the scope of these methods allowing models with several

thousand parameters to be efficiently estimated as illustrated in Koenker (2011). But

new demands exceed the capabilities of even these methods and the advent of distributed

computing has shifted attention toward gradient descent methods. Koenker (2017) briefly

describes one approach to such strategies for quantile regression based on the alternating

direction method of multipliers (ADMM) approach of Parikh and Boyd (2014).

I have tried to maintain a comprehensive package of quantile regression software for the

R language, R Core Team (2016), acessible on the CRAN network as quantreg, Koenker

(2016), And other R contributors have extended its capabilities. SAS has now cloned some

of the features of the quantreg package, including some of the survival analysis methods.

Stata has a more limited quantile regression capabilities based on the original simplex

algorithm implementation described in Koenker and d’Orey (1987). Implementations of

the interior point algorithm described in Portnoy and Koenker (1997) for Matlab and Ox

are available from my website.

11. Conclusion

Gaussian models and methods have encouraged the misconception that all things empiri-

cal are revealed by conditional means, and perhaps one or two more moments. Quantile

regression offers a set of complementary methods designed to explore data features invisi-

ble to the inveiglements of least-squares. As data sources become richer and awareness of

the importance of heterogeneity increases, quantile regression methods have become more

relevant. The scope of quantile regression methods has broadened considerably in recent
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years, thanks to the efforts of numerous researchers. I hope that this constructive process

will continue.
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