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Risk as Pessimism?

In expected utility theory risk is entirely an attribute of the utility function:

Risk Neutrality ⇒ u(x) ∼ affine
Risk Aversion ⇒ u(x) ∼ concave
Risk Attraction ⇒ u(x) ∼ convex

Locally, the risk premium, i.e. the amount one is willing to pay to accept a
zero mean risk, X, is

π(w,X) = 1
2A(w)V(X)

where A(w) = −u ′′(w)/u ′(w) is the Arrow-Pratt coefficient of absolute
risk aversion and V(X) is the variance of X. Why is variance a reasonable
measure of risk?
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A Little Risk Aversion is a Dangerous Thing

Would you accept the gamble:

G1 50 − 50

〈
win $110
lose $100

Suppose you say “no”, then what about the gamble:

G2 50 − 50

〈
win $700, 000
lose $1, 000

If you say “no” to G1 for any initial wealth up to $300,000, then you must
also say “no” to G2.
Moral: A little local risk aversion over small gambles implies implausibly
large risk aversion over large gambles. Reference: Rabin (2000)
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Are Swiss Bicycle Messengers Risk Averse?

When Veloblitz and Flash bicycle messengers from Zurich were confronted
with the bet:

50 − 50

〈
win 8 CHF
lose 5 CHF

More than half (54%) rejected the bet.
Reference: Fehr and Götte (2002)
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Coherent Risk

Definition (Artzner, Delbaen, Eber and Heath (1999)) For real valued random
variables X ∈ X on (Ω, A) a mapping ρ : X→ R is called a coherent risk measure
if,

1 Monotone: X, Y ∈ X, with X 6 Y ⇒ ρ(X) > ρ(Y).

2 Subadditive: X, Y,X+ Y ∈ X, ⇒ ρ(X+ Y) 6 ρ(X) + ρ(Y).

3 Linearly Homogeneous: For all λ > 0 and X ∈ X, ρ(λX) = λρ(X).

4 Translation Invariant: For all λ ∈ R and X ∈ X, ρ(λ+ X) = ρ(X) − λ.

Many conventional measures of risks including those based on standard deviation

are ruled out by these requirements. So are quantile based measures like “value at

risk.”

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 5 / 24



Coherent Risk

Definition (Artzner, Delbaen, Eber and Heath (1999)) For real valued random
variables X ∈ X on (Ω, A) a mapping ρ : X→ R is called a coherent risk measure
if,

1 Monotone: X, Y ∈ X, with X 6 Y ⇒ ρ(X) > ρ(Y).

2 Subadditive: X, Y,X+ Y ∈ X, ⇒ ρ(X+ Y) 6 ρ(X) + ρ(Y).

3 Linearly Homogeneous: For all λ > 0 and X ∈ X, ρ(λX) = λρ(X).

4 Translation Invariant: For all λ ∈ R and X ∈ X, ρ(λ+ X) = ρ(X) − λ.

Many conventional measures of risks including those based on standard deviation

are ruled out by these requirements. So are quantile based measures like “value at

risk.”

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 5 / 24



Choquet α-Risk

The leading example of a coherent risk measure is

ρνα(X) = −α−1

∫α
0
F−1(t)dt

Variants of this risk measure have been introduced under several names

Expected shortfall (Acerbi and Tasche (2002))

Conditional VaR (Rockafellar and Uryasev (2000))

Tail conditional expectation (Artzner, et al (1999)).

Note that ρνα(X) = −Eνα,F(X), so Choquet α-risk is just negative
Choquet expected utility with the distortion function να.
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Pessimistic Risk Measures

Definition A risk measure ρ will be called pessimistic if, for some
probability measure ϕ on [0, 1]

ρ(X) =

∫1

0
ρνα(X)dϕ(α)

By Fubini

ρ(X) = −

∫1

0
α−1

∫α
0
F−1(t)dtdϕ(α)

= −

∫1

0
F−1(t)

∫1

t
α−1dϕ(α)dt

≡ −

∫1

0
F−1(t)dν(t)
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Approximating General Pessimistic Risk Measures

We can approximate any pessimistic risk measure by taking

dϕ(t) =
∑

ϕiδτi(t)

where δτ denotes (Dirac) point mass 1 at τ. Then

ρ(X) = −ϕ0F
−1(0) −

∫1

0
F−1(t)γ(t)dt

where γ(t) =
∑
ϕiτ

−1
i I(t < τi) and ϕi > 0, with

∑
ϕi = 1.
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An Example
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dϕ(t) = 1
2δ1/3(t) + 1

3δ2/3(t) + 1
6δ1(t)
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A Theorem

Theorem (Kusuoka (2001)) A regular risk measure is coherent in the
sense of Artzner et. al. if and only if it is pessimistic.

Pessimistic Choquet risk measures correspond to concave ν, i.e.,
monotone decreasing dν.

Probability assessments are distorted to accentuate the probability of
the least favorable events.

The crucial coherence requirement is subadditivity, or submodularity,
or 2-alternatingness in the terminology of Choquet capacities.
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An Example

Samuelson (1963) describes asking a colleague at lunch whether he would
be willing to make a

50 − 50 bet

〈
win 200
lose 100

The colleague (later revealed to be E. Cary Brown) responded
“no, but I would be willing to make 100 such bets.”

This response has been interpreted not only as reflecting a basic confusion
about how to maximize expected utility but also as a fundamental
misunderstanding of the law of large numbers.
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Payoff Density of 100 Samuelson trials
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Odds of losing money on the 100 trial bet is 1 chance in 2300.
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Was Brown really irrational?

Suppose, for the sake of simplicity that

dϕ(t) = 1
2δ1/2(t) + 1

2δ1(t)

so for one Samuelson coin flip we have the unfavorable evaluation,

Eν,F(X) = 1
2(−100) + 1

2(50) = −25

but for S =
∑100
i=1 Xi ∼ Bin(.5, 100) we have the favorable evaluation,

Eν,F(S) = 1
22

∫1/2

0
F−1
S (t)dt+ 1

2(5000)

= 1704.11 + 2500

= 4204.11
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How to be Pessimistic

Theorem Let X be a real-valued random variable with EX = µ < ∞, and
ρα(u) = u(α− I(u < 0)). Then

min
ξ∈R

Eρα(X− ξ) = αµ+ ρνα(X)

So α risk can be estimated by the sample analogue

ρ̂να(x) = (nα)−1 min
ξ

∑
ρα(xi − ξ) − µ̂n

I knew it! Eventually everything looks like quantile regression to
this guy!
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Pessimistic Portfolios

Now let X = (X1, . . . ,Xp) denote a vector of potential portfolio asset
returns and Y = X>π, the returns on the portfolio with weights π.
Consider

min
π
ρνα(Y) − λµ(Y)

Minimize α-risk subject to a constraint on mean return.

This problem can be formulated as a linear quantile regression problem

min
(β,ξ)∈Rp

n∑
i=1

ρα(xi1 −

p∑
j=2

(xi1 − xij)βj − ξ) s.t. x̄>π(β) = µ0,

where π(β) = (1 −
∑p
j=2 βj,β

>)>.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 15 / 24



Pessimistic Portfolios

Now let X = (X1, . . . ,Xp) denote a vector of potential portfolio asset
returns and Y = X>π, the returns on the portfolio with weights π.
Consider

min
π
ρνα(Y) − λµ(Y)

Minimize α-risk subject to a constraint on mean return.
This problem can be formulated as a linear quantile regression problem

min
(β,ξ)∈Rp

n∑
i=1

ρα(xi1 −

p∑
j=2

(xi1 − xij)βj − ξ) s.t. x̄>π(β) = µ0,

where π(β) = (1 −
∑p
j=2 βj,β

>)>.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 15 / 24



An Example
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Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 16 / 24



An Example

−0.1 0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

30

return

de
ns

ity

Asset  3
Asset  4

Two more asset return densities with identical mean and variance.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 17 / 24



An Example

−0.1 0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

30

return

de
ns

ity

Asset  1
Asset  2
Asset  3
Asset  4

Two pairs of asset return densities with identical mean and variance.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 18 / 24



Optimal Choquet and Markowitz Portfolio Returns
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Markowitz portfolio minimizes the standard deviation of returns subject to mean

return µ = .07. The Choquet portfolio minimizes Choquet risk (for α = .10)

subject to earning the same mean return. The Choquet portfolio has better

performance in both tails than mean-variance Markowitz portfolio.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 19 / 24



Optimal Choquet and Markowitz Portfolio Returns

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

return

de
ns

ity

Markowitz
Choquet

Markowitz portfolio minimizes the standard deviation of returns subject to mean

return µ = .07. The Choquet portfolio minimizes Choquet risk (for α = .10)

subject to earning the same mean return. The Choquet portfolio has better

performance in both tails than mean-variance Markowitz portfolio.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 19 / 24



Optimal Choquet and Markowitz Portfolio Returns

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

return

de
ns

ity

Markowitz
Choquet

Now, the Markowitz portfolio minimizes the standard deviation of returns subject

to mean return µ = .07. The Choquet portfolio maximizes expected return

subject to achieving the same Choquet risk (for α = .10) as the Markowitz

portfolio. Choquet portfolio has expected return µ = .08 a full percentage point

higher than the Markowitz portfolio.

Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 20 / 24



Optimal Choquet and Markowitz Portfolio Returns

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

return

de
ns

ity

Markowitz
Choquet

Now, the Markowitz portfolio minimizes the standard deviation of returns subject

to mean return µ = .07. The Choquet portfolio maximizes expected return

subject to achieving the same Choquet risk (for α = .10) as the Markowitz

portfolio. Choquet portfolio has expected return µ = .08 a full percentage point

higher than the Markowitz portfolio.
Roger Koenker (UIUC) Portfolios Meielisalp: 28.6.2011 20 / 24



A Unified Theory of Pessimism

Any pessimistic risk measure may be approximated by

ρν(X) =

m∑
k=1

ϕkρναk (X)

where ϕk > 0 for k = 1, 2, ...,m and
∑
ϕk = 1.

Portfolio weights can be estimated for these risk measures by solving linear
programs that are weighted sums of quantile regression problems:

min
(β,ξ)∈Rp

m∑
k=1

n∑
i=1

νkραk(xi1 −

p∑
j=2

(xi1 −xij)βj−ξk) s.t. x̄>π(β) = µ0,

Software in R is available on from my web pages.
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Conclusions

Expected Utility is unsatisfactory both as a positive, i.e., descriptive,
theory of behavior and as a normative guide to behavior.

Choquet (non-additive, rank dependent) expected utility provides a
simple, tractable alternative.

Mean-variance Portfolio allocation is also unsatisfactory since it relies
on unpalatable assumptions of Gaussian returns, or quadratic utility.

Choquet portfolio optimization can be formulated as a quantile
regression problem thus providing an attractive practical alternative to
the dominant mean-variance approach of Markowitz (1952).
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