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Overview of the Course

Some Basics: What, Why and How?

Inference and Quantile Treatment Effects

Nonparametric Quantile Regression

Quantile Autoregression

Risk Assessment and Choquet Portfolios

Course outline, lecture slides, an R FAQ, and even some proposed exercises
can all be found at:

http://www.econ.uiuc.edu/~roger/courses/RMetrics.

A somewhat more extensive set of lecture slides can be found at:

http://www.econ.uiuc.edu/~roger/courses/LSE.
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Motivation

What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of of x’s.
We could go further and compute several different regression
curves corresponding to the various percentage points of the
distributions and thus get a more complete picture of the set.

Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture
of a single distribution, so the regression curve gives a
correspondingly incomplete picture for a set of distributions.

Mosteller and Tukey (1977)
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Motivation

Francis Galton in a famous passage defending the “charms of statistics”
against its many detractors, chided his statistical colleagues

[who] limited their inquiries to Averages, and do not seem to
revel in more comprehensive views. Their souls seem as dull to
the charm of variety as that of a native of one of our flat English
counties, whose retrospect of Switzerland was that, if the
mountains could be thrown into its lakes, two nuisances would
be got rid of at once. Natural Inheritance, 1889
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Univariate Quantiles
Given a real-valued random variable, X, with distribution function F, we
define the τth quantile of X as

QX(τ) = F−1
X (τ) = inf{x | F(x) > τ}.

This definition follows the usual convention that F is CADLAG, and Q is
CAGLAD as illustrated in the following pair of pictures.
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Univariate Quantiles

Viewed from the perspective of densities, the τth quantile splits the area
under the density into two parts: one with area τ below the τth quantile
and the other with area 1 − τ above it:
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Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ:

ττ − 1

ρτ(u)
τ

τ − 1

ψτ(u)

The subgradient of a convex function f(u) at a point u consists of all the
possible “tangents.” Sums of convex functions are convex.
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Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

α̂(τ) = argmin E ρτ(Y − α)

Proof: Let ψτ(u) = ρ
′
τ(u), so differentiating wrt to α:

0 =

∫∞
−∞ψτ(y− α)dF(y)

= (τ− 1)

∫α
−∞ dF(y) + τ

∫∞
α
dF(y)

= (τ− 1)F(α) + τ(1 − F(α))

implying τ = F(α) and thus α̂ = F−1(τ).
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Sample Quantiles as Optimizers

For sample quantiles replace F by F̂, the empirical distribution function.
The objective function becomes a polyhedral convex function whose
derivative is monotone decreasing, in effect the gradient simply counts
observations above and below and weights the sums by τ and 1 − τ.
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Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

µ = argminmE(Y −m)2

The conditional mean µ(x) = E(Y|X = x) solves

µ(x) = argminmEY|X=x(Y −m(X))2.

Similarly, the unconditional τth quantile solves

ατ = argminaEρτ(Y − a)

and the conditional τth quantile solves

ατ(x) = argminaEY|X=xρτ(Y − a(X))
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Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into
positive and negative parts and sum with appropriate weights:

min{τ1>u+ (1 − τ)1>v|y = Xb+ u− v, (b,u, v) ∈ |Rp × |R2n
+ }

Dual Formulation as a Linear Program

max{y ′d|X>d = (1 − τ)X>1,d ∈ [0, 1]n}

Solutions are characterized by an exact fit to p observations.
Let h ∈ H index p-element subsets of {1, 2, ...,n} then primal solutions
take the form:

β̂ = β̂(h) = X(h)−1y(h)
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Least Squares from the Quantile Regression Perspective
Exact fits to p observations:

β̂ = β̂(h) = X(h)−1y(h)

OLS is a weighted average of these β̂(h)’s:

β̂OLS = (X>X)−1X>y =
∑
h∈H

w(h)β̂(h),

w(h) = |X(h)|2/
∑
h∈H

|X(h)|2

The determinants |X(h)| are the (signed) volumes of the parallelipipeds
formed by the columns of the the matrices X(h). In the simplest bivariate
case, we have,

|X(h)|2 =

∣∣∣∣ 1 xi
1 xj

∣∣∣∣2 = (xj − xi)
2

so pairs of observations that are far apart are given more weight.
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Quantile Regression: The Movie

Bivariate linear model with iid Student t errors

Conditional quantile functions are parallel in blue

100 observations indicated in blue

Fitted quantile regression lines in red.

Intervals for τ ∈ (0, 1) for which the solution is optimal.
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Virtual Quantile Regression II

Bivariate quadratic model with Heteroscedastic χ2 errors

Conditional quantile functions drawn in blue

100 observations indicated in blue

Fitted quadratic quantile regression lines in red

Intervals of optimality for τ ∈ (0, 1).
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Conditional Means vs. Medians
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Minimizing absolute errors for median regression can yield something quite
different from the least squares fit for mean regression.
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Equivariance of Regression Quantiles

Scale Equivariance: For any a > 0, β̂(τ;ay,X) = aβ̂(τ;y,X) and
β̂(τ; −ay,X) = aβ̂(1 − τ;y,X)

Regression Shift: For any γ ∈ |Rp β̂(τ;y+ Xγ,X) = β̂(τ;y,X) + γ

Reparameterization of Design: For any |A| 6= 0,
β̂(τ;y,AX) = A−1β̂(τ;yX)

Robustness: For any diagonal matrix D with nonnegative elements.
β̂(τ;y,X) = β̂(τ,y+Dû,X)
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Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions QY(τ|x) are
equivariant in the sense that

Qh(Y)|X(τ|x) = h(QY|X(τ|x))

In contrast to conditional mean functions for which, generally,

E(h(Y)|X) 6= h(EY|X)

Examples:
h(y) = min{0,y}, Powell’s (1985) censored regression estimator.
h(y) = sgn{y} Rosenblatt’s (1957) perceptron, Manski’s (1975) maximum
score estimator. estimator.
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Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount ∆(x) when the
response of the untreated subject would be x. Then the
distribution G of the treatment responses is that of the random
variable X+ ∆(X) where X is distributed according to F.”
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Lehmann QTE as a QQ-Plot

Doksum (1974) defines ∆(x) as the “horizontal distance” between F and
G at x, i.e.

F(x) = G(x+ ∆(x)).

Then ∆(x) is uniquely defined as

∆(x) = G−1(F(x)) − x.

This is the essence of the conventional QQ-plot. Changing variables so
τ = F(x) we have the quantile treatment effect (QTE):

δ(τ) = ∆(F−1(τ)) = G−1(τ) − F−1(τ).
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Lehmann-Doksum QTE
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Lehmann-Doksum QTE
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An Asymmetric Example
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Treatment shifts the distribution from right skewed to left skewed making
the QTE U-shaped.
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QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

δ̂(τ) = Ĝ−1
n (τ) − F̂−1

m (τ)

where Ĝn and F̂m denote the empirical distribution functions of the
treatment and control observations, Consider the quantile regression model

QYi
(τ|Di) = α(τ) + δ(τ)Di

where Di denotes the treatment indicator, and Yi = h(Ti), e.g.
Yi = log Ti, which can be estimated by solving,

min
n∑
i=1

ρτ(yi − α− δDi)
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.
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A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:
I Mother’s Education
I Mother’s Prenatal Care
I Mother’s Smoking
I Mother’s Age
I Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II
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Marginal Effect of Mother’s Age
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Marginal Effect of Mother’s Weight Gain
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Daily Temperature in Melbourne: AR(1) Scatterplot
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Daily Temperature in Melbourne: Nonlinear QAR(1) Fit

10 15 20 25 30 35 40

10
20

30
40

yesterday's max temperature

to
da

y'
s 

m
ax

 te
m

pe
ra

tu
re

Roger Koenker (UIUC) Introduction Meielisalp: 28.6.2011 56 / 58



Conditional Densities of Melbourne Daily Temperature
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Review

Least squares methods of estimating conditional mean functions

were developed for, and

promote the view that,

Response = Signal + iid (Gaussian Measurement Error

In fact the world is rarely this simple. Quantile regression is intended to
expand the regression window allowing us to see a wider vista.
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