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Quantile Regression for Duration (Survival) Models

A wide variety of survival analysis models, following Doksum and Gasko
(1990), may be written as,

h(Ti) = x
>
i β+ ui

where h is a monotone transformation, and

Ti is an observed survival time,

xi is a vector of covariates,

β is an unknown parameter vector

{ui} are iid with df F.
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The Cox Model

For the proportional hazard model with

log λ(t|x) = log λ0(t) − x
>β

the conditional survival function in terms of the integrated baseline hazard
Λ0(t) =

∫t
0 λ0(s)ds as,

log(− log(S(t|x))) = logΛ0(t) − x
>β

so, evaluating at t = Ti, we have the model,

logΛ0(T) = x
>β+ u

for ui iid with df F0(u) = 1 − e−e
u

.
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The Bennett (Proportional-Odds) Model

For the proportional odds model, where the conditional odds of death
Γ(t|x) = F(t|x)/(1 − F(t|x)) are written as,

log Γ(t|x) = log Γ0(t) − x
>β,

we have, similarly,
log Γ0(T) = x

>β+ u

for u iid logistic with F0(u) = (1 + e−u)−1.
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Accelerated Failure Time Model

In the accelerated failure time model we have

log(Ti) = x
>
i β+ ui

so

P(T > t) = P(eu > te−xβ)

= 1 − F0(te
−xβ)

where F0(·) denotes the df of eu, and thus,

λ(t|x) = λ0(te
−xβ)e−xβ

where λ0(·) denotes the hazard function corresponding to F0. In effect, the
covariates act to rescale time in the baseline hazard.
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Beyond the Transformation Model

The common feature of all these models is that after transformation of the
observed survival times we have:

a pure location-shift, iid-error regression model

covariate effects shift the center of the distribution of h(T), but

covariates cannot affect scale, or shape of this distribution
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An Application: Longevity of Mediterrean Fruit Flies

In the early 1990’s there were a series of experiments designed to study
the survival distribution of lower animals. One of the most influential of
these was:

Carey, J.R., Liedo, P., Orozco, D. and Vaupel, J.W. (1992) Slowing of

mortality rates at older ages in large Medfly cohorts, Science, 258, 457-61.

1,203,646 medflies survival times recorded in days

Sex was recorded on day of death

Pupae were initially sorted into one of five size classes

167 aluminum mesh cages containing roughly 7200 flies

Adults were given a diet of sugar and water ad libitum
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Major Conclusions of the Medfly Experiment

Mortality rates declined at the oldest observed ages. contradicting the
traditional view that aging is an inevitable, monotone process of
senescence.

The right tail of the survival distribution was, at least by human
standards, remarkably long.

There was strong evidence for a crossover in gender specific mortality
rates.
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Lifetable Hazard Estimates by Gender

0 20 40 60 80 100 120

0.
00

0.
05

0.
10

0.
15

days

m
or

ta
lit

y 
ra

te

M

F

Smoothed mortality rates for males and females.

Roger Koenker (UIUC) CRQ Redux Braga 12-14.6.2017 9 / 34



Medfly Survival Prospects

Lifespan Percentage Number
(in days) Surviving Surviving

40 5 60,000
50 1 12,000
86 .01 120

146 .001 12
Initial Population of 1,203,646

Human Survival Prospects∗

Lifespan Percentage Number
(in years) Surviving Surviving

50 98 591,000
75 69 413,000
85 33 200,000
95 5 30,000

105 .08 526
115 .0001 1

∗ Estimated Thatcher (1999) Model
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Quantile Regression Model (Geling and K (JASA,2001))

Criticism of the Carey et al paper revolved around whether declining
hazard rates were a result of confounding factors of cage density and initial
pupal size. Our basic QR model included the following covariates:

Qlog(Ti)(τ|xi) = β0(τ) + β1(τ)SEX + β2(τ)SIZE

+ β3(τ)DENSITY + β4(τ)%MALE

SEX Gender

SIZE Pupal Size in mm

DENSITY Initial Density of Cage

%MALE Initial Proportion of Males
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Base Model Results with AFT Fit
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Base Model Results with Cox PH Fit
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What About Censoring?

There are currently 3 approaches to handling censored survival data within
the quantile regression framework:

Powell (1986) Fixed Censoring

Portnoy (2003) Random Censoring, Kaplan-Meier Analogue

Peng/Huang (2008) Random Censoring, Nelson-Aalen Analogue

Available for R in the package quantreg.
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Powell’s Approach for Fixed Censoring

Rationale Quantiles are equivariant to monotone transformation:

Qh(Y)(τ) = h(QY(τ)) for h↗

Model Yi = Ti ∧ Ci ≡ min{Ti,Ci}

QYi|xi(τ|xi) = x
>
i β(τ)∧ Ci

Data Censoring times are known for all observations

{Yi,Ci, xi : i = 1, · · · ,n}

Estimator Conditional quantile functions are nonlinear in parameters:

β̂(τ) = argmin
∑

ρτ(Yi − x
>
i β∧ Ci)
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Portnoy’s Approach for Random Censoring I

Rationale Efron’s (1967) interpretation of Kaplan-Meier as shifting
mass of censored observations to the right:

Algorithm Until we “encounter” a censored observation KM quantiles can be
computed by solving, starting at τ = 0,

ξ̂(τ) = argminξ

n∑
i=1

ρτ(Yi − ξ)

Once we “encounter” a censored observation, i.e. when
ξ̂(τi) = yi for some yi with δi = 0, we split yi into two parts:

I y
(1)
i = yi with weight wi = (τ− τi)/(1 − τi)

I y
(2)
i = y∞ = ∞ with weight 1 −wi.

Then denoting the index set of censored observations
“encountered” up to τ by K(τ) we can solve

min
∑
i/∈K(τ)

ρτ(Yi−ξ)+
∑
i∈K(τ)

[wi(τ)ρτ(Yi−ξ)+(1−wi(τ))ρτ(y∞−ξ)].
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Portnoy’s Approach for Random Censoring II

When we have covariates we can replace ξ by the inner product x>i β and solve:

min
∑
i/∈K(τ)

ρτ(Yi−x
>
i β)+

∑
i∈K(τ)

[wi(τ)ρτ(Yi−x
>
i β)+(1−wi(τ))ρτ(y∞−x>i β)].

At each τ this is a simple, weighted linear quantile regression problem.

The
following R code fragment replicates an analysis in Portnoy (2003):

require(quantreg)

data(uis)

fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 + TREAT +

FRAC + RACE + AGE * SITE, data = uis, method = "Por")

Sfit <- summary(fit,1:19/20)

PHit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis)

plot(Sfit, CoxPHit = PHit)
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Reanalysis of the Hosmer-Lemeshow Drug Relapse Data
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Peng and Huang’s Approach for Random Censoring I

Rationale Extend the martingale representation of the Nelson-Aalen
estimator of the cumulative hazard function to produce an
“estimating equation” for conditional quantiles.

Model AFT form of the quantile regression model:

Prob(log Ti 6 x
>
i β(τ)) = τ

Data {(Yi, δi) : i = 1, · · · ,n} Yi = Ti ∧ Ci, δi = I(Ti < Ci)
Martingale We have EMi(t) = 0 for t > 0, where:

Mi(t) = Ni(t) −Λi(t∧ Yi|xi)

Ni(t) = I({Yi 6 t}, {δi = 1})

Λi(t) = − log(1 − Fi(t|xi))

Fi(t) = Prob(Ti 6 t|xi)
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Peng and Huang’s Approach for Random Censoring II

The estimating equation becomes,

En−1/2
∑

xi[Ni(exp(x>i β(τ))) −

∫τ
0
I(Yi > exp(x>i β(u)))dH(u) = 0.

where H(u) = − log(1 − u) for u ∈ [0, 1), after rewriting:

Λi(exp(x>i β(τ))∧ Yi|xi)) = H(τ)∧H(Fi(Yi|xi))

=

∫τ
0
I(Yi > exp(x>i β(u)))dH(u),
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Peng and Huang’s Approach for Random Censoring III

Approximating the integral on a grid, 0 = τ0 < τ1 < · · · < τJ < 1 yields a
simple linear programming formulation to be solved at the gridpoints,

αi(τj) =

j−1∑
k=0

I(Yi > exp(x>i β̂(τk)))(H(τk+1) −H(τk)),

yielding Peng and Huang’s final estimating equation,

n−1/2
∑

xi[Ni(exp(x>i β(τ))) − αi(τ)] = 0.

Setting ri(b) = log(Yi) − x
>
i b, this convex function for the Peng and

Huang problem takes the form

R(b, τj) =
n∑
i=1

ri(b)(αi(τj) − I(ri(b) < 0)δi) = min!
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Portnoy vs. Peng-Huang
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Some One Sample Asymptotics

Suppose that we have a random sample of pairs, {(Ti,Ci) : i = 1, · · · ,n}
with Ti ∼ F, Ci ∼ G, and Ti and Ci independent. Let Yi = min{Ti,Ci}, as
usual, and δi = I(Ti < Ci). In this setting the Powell estimator of
θ = F−1(τ),

θ̂P = argminθ

n∑
i=1

ρτ(Yi − min{θ,Ci}).

is asymptotically normal,

√
n(θ̂P − θ) N(0, τ(1 − τ)/(f2(θ)(1 −G(θ)))).
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One Sample Asymptotics

In contrast, the asymptotic theory of the quantiles of the Kaplan-Meier
estimator is slightly more complicated. Using the δ-method one can show,

√
n(θ̂KM − θ) N(0, Avar(Ŝ(θ))/f2(θ))

where, see e.g. Anderson et al,

Avar(Ŝ(t)) = S2(t)

∫t
0
(1 −H(u))−2dF̃(u)

and 1 −H(u) = (1 − F(u))(1 −G(u)) and F̃(u) =
∫t
0(1 −G(u))dF(u).

Since the Powell estimator makes use of more sample information than
does the Kaplan Meier estimator it might be thought that it would be
more efficient. But this isn’t true.
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Kaplan Meier vs Powell

Proposition

Avar(θ̂KM) 6 Avar(θ̂P).

Proof:

f2(θ)Avar(θ̂KM) = S(θ)2
∫θ
0
(1−H(s))−2dF̃(s)

= S(θ)2
∫θ
0
(1−G(s))−1(1− F(s))−2dF(s)

6
S(θ)2

1−G(θ)

∫θ
0
(1− F(s))−2dF(s)

=
S(θ)2

1−G(θ)
· 1

1− F(s)

∣∣∣∣θ
0

=
S(θ)2

1−G(θ)
· F(θ)

1− F(θ)

=
F(θ)(1− F(θ))

(1−G(θ))

=
τ(1− τ)

(1−G(θ))
.
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Alice in Asymptopia
Leurgans (1987) considered the weighted estimator of the censored
survival function,

ŜL(t) =

∑
I(Yi > t)I(Ci > t)∑

I(Ci > t)
,

that uses all the Ci’s. Conditioning on the Ci’s, it can be shown that
E(ŜL(t)|C) = S(t), and that the conditional variance is

Var(ŜL(t)|C) =
F(t)(1 − F(t))

1 − Ĝ(t)
.

Averaging this expression gives the unconditional variance which converges
to

Avar(ŜL(t)|C) =
F(t)(1 − F(t))

1 −G(t)
,

and consequently quantiles based on Leurgan’s estimator behave
(asymptotically) just like those produced by the Powell estimator.
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Alice in Asymptopia

It might be thought that the Powell estimator would be more efficient
than the Portnoy and Peng-Huang estimators given that it imposes more
stringent data requirements. Comparing asymptotic behavior and finite
sample performance in the simplest one-sample setting indicates otherwise.

median Kaplan-Meier Nelson-Aalen Powell Leurgans Ĝ Leurgans G

n= 50 1.602 1.972 2.040 2.037 2.234 2.945
n= 200 1.581 1.924 1.930 2.110 2.136 2.507
n= 500 1.666 2.016 2.023 2.187 2.215 2.742
n= 1000 1.556 1.813 1.816 2.001 2.018 2.569
n= ∞ 1.571 1.839 1.839 2.017 2.017 2.463

Scaled MSE for Several Estimators of the Median: Mean squared error estimates
are scaled by sample size to conform to asymptotic variance computations. Here,
Ti is standard lognormal, and Ci is exponential with rate parameter .25, so the
proportion of censored observations is roughly 30 percent. 1000 replications.
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Simulation Settings I
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Simulations I-A

Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0032 0.0638 0.0988 0.0025 0.0702 0.1063
n = 400 -0.0066 0.0406 0.0578 0.0036 0.0391 0.0588
n = 1000 -0.0022 0.0219 0.0321 0.0006 0.0228 0.0344

Peng-Huang
n = 100 0.0005 0.0631 0.0986 0.0092 0.0727 0.1073
n = 400 -0.0007 0.0393 0.0575 0.0074 0.0389 0.0598
n = 1000 0.0014 0.0215 0.0324 0.0019 0.0226 0.0347

Powell
n = 100 -0.0014 0.0694 0.1039 0.0068 0.0827 0.1252
n = 400 -0.0066 0.0429 0.0622 0.0098 0.0475 0.0734
n = 1000 -0.0008 0.0224 0.0339 0.0013 0.0264 0.0396

GMLE
n = 100 0.0013 0.0528 0.0784 -0.0001 0.0517 0.0780
n = 400 -0.0039 0.0307 0.0442 0.0031 0.0264 0.0417
n = 1000 0.0003 0.0172 0.0248 -0.0001 0.0165 0.0242

Comparison of Performance for the iid Error, Constant Censoring Configuration
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Simulations I-B

Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0042 0.0646 0.0942 0.0024 0.0586 0.0874
n = 400 -0.0025 0.0373 0.0542 -0.0009 0.0322 0.0471
n = 1000 -0.0025 0.0208 0.0311 0.0006 0.0191 0.0283

Peng-Huang
n = 100 0.0026 0.0639 0.0944 0.0045 0.0607 0.0888
n = 400 0.0056 0.0389 0.0547 -0.0002 0.0320 0.0476
n = 1000 0.0019 0.0212 0.0311 0.0009 0.0187 0.0283

Powell
n = 100 -0.0025 0.0669 0.1017 0.0083 0.0656 0.1012
n = 400 0.0014 0.0398 0.0581 -0.0006 0.0364 0.0531
n = 1000 -0.0013 0.0210 0.0319 0.0016 0.0203 0.0304

GMLE
n = 100 0.0007 0.0540 0.0781 0.0009 0.0470 0.0721
n = 400 0.0008 0.0285 0.0444 -0.0008 0.0253 0.0383
n = 1000 -0.0004 0.0169 0.0248 0.0002 0.0150 0.0224

Comparison of Performance for the iid Error, Variable Censoring Configuration
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Simulation Settings II
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Simulations II-A
Intercept Slope

Bias MAE RMSE Bias MAE RMSE
Portnoy L
n = 100 0.0084 0.0316 0.0396 -0.0251 0.0763 0.0964
n = 400 0.0076 0.0194 0.0243 -0.0247 0.0429 0.0533
n = 1000 0.0081 0.0121 0.0149 -0.0241 0.0309 0.0376

Portnoy Q
n = 100 0.0018 0.0418 0.0527 0.0144 0.1576 0.2093
n = 400 -0.0010 0.0228 0.0290 0.0047 0.0708 0.0909
n = 1000 -0.0006 0.0122 0.0154 -0.0027 0.0463 0.0587

Peng-Huang L
n = 100 0.0077 0.0313 0.0392 -0.0145 0.0749 0.0949
n = 400 0.0064 0.0193 0.0240 -0.0125 0.0392 0.0493
n = 1000 0.0077 0.0120 0.0147 -0.0181 0.0279 0.0342

Peng-Huang Q
n = 100 0.0078 0.0425 0.0538 0.0483 0.1707 0.2328
n = 400 0.0035 0.0228 0.0291 0.0302 0.0775 0.1008
n = 1000 0.0015 0.0123 0.0155 0.0101 0.0483 0.0611

Powell
n = 100 0.0021 0.0304 0.0385 -0.0034 0.0790 0.0993
n = 400 -0.0017 0.0191 0.0239 0.0028 0.0431 0.0544
n = 1000 -0.0001 0.0099 0.0125 0.0003 0.0257 0.0316

GMLE
n = 100 0.1080 0.1082 0.1201 -0.2040 0.2042 0.2210
n = 400 0.1209 0.1209 0.1241 -0.2134 0.2134 0.2173
n = 1000 0.1118 0.1118 0.1130 -0.2075 0.2075 0.2091

Comparison of Performance for the Constant Censoring, Heteroscedastic Configu-
ration
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Simulations II-B
Intercept Slope

Bias MAE RMSE Bias MAE RMSE
Portnoy L
n = 100 0.0024 0.0278 0.0417 -0.0067 0.0690 0.1007
n = 400 0.0019 0.0145 0.0213 -0.0080 0.0333 0.0493
n = 1000 0.0016 0.0097 0.0139 -0.0062 0.0210 0.0312

Portnoy Q
n = 100 0.0011 0.0352 0.0540 0.0094 0.1121 0.1902
n = 400 0.0002 0.0185 0.0270 -0.0012 0.0510 0.0774
n = 1000 -0.0005 0.0116 0.0169 -0.0011 0.0337 0.0511

Peng-Huang L
n = 100 0.0018 0.0281 0.0417 0.0041 0.0694 0.1017
n = 400 0.0013 0.0142 0.0212 0.0035 0.0333 0.0490
n = 1000 0.0012 0.0096 0.0139 0.0002 0.0208 0.0310

Peng-Huang Q
n = 100 0.0044 0.0364 0.0550 0.0322 0.1183 0.2105
n = 400 0.0026 0.0188 0.0275 0.0154 0.0504 0.0813
n = 1000 0.0007 0.0113 0.0169 0.0077 0.0333 0.0520

Powell
n = 100 -0.0001 0.0288 0.0430 0.0055 0.0733 0.1105
n = 400 0.0000 0.0147 0.0226 0.0001 0.0379 0.0561
n = 1000 -0.0008 0.0095 0.0146 0.0013 0.0237 0.0350

GMLE
n = 100 0.1078 0.1038 0.1272 -0.1576 0.1582 0.1862
n = 400 0.1123 0.1116 0.1168 -0.1581 0.1578 0.1647
n = 1000 0.1153 0.1138 0.1174 -0.1609 0.1601 0.1639

Comparison of Performance for the Variable Censoring, Heteroscedastic Configura-
tion
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Conclusions

Simulation evidence confirms the asymptotic conclusion that the
Portnoy and Peng-Huang estimators are quite similar.

The martingale representation of the Peng-Huang estimator yields a
more complete asymptotic theory than is currently available for the
Portnoy estimator.

The Powell estimator, although conceptually attractive, suffers from
some serious computational difficulties, imposes strong data
requirements, and has an inherent asymptotic efficiency disadvantage.

Quantile regression provides a flexible complement to classical survival
analysis methods, and is now well equipped to handle censoring.
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