Censored Quantile Regression and Survival Models

Roger Koenker

University of Illinois, Urbana-Champaign
University of Minho 12-14 June 2017

Quantile Regression for Duration (Survival) Models

A wide variety of survival analysis models, following Doksum and Gasko (1990), may be written as,

$$
h\left(T_{i}\right)=x_{i}^{\top} \beta+u_{i}
$$

where h is a monotone transformation, and

- T_{i} is an observed survival time,
- x_{i} is a vector of covariates,
- β is an unknown parameter vector
- $\left\{u_{i}\right\}$ are iid with df F.

The Cox Model

For the proportional hazard model with

$$
\log \lambda(t \mid x)=\log \lambda_{0}(t)-x^{\top} \beta
$$

the conditional survival function in terms of the integrated baseline hazard $\Lambda_{0}(\mathrm{t})=\int_{0}^{\mathrm{t}} \lambda_{0}(\mathrm{~s}) \mathrm{ds}$ as,

$$
\log (-\log (S(t \mid x)))=\log \Lambda_{0}(t)-x^{\top} \beta
$$

so, evaluating at $t=T_{i}$, we have the model,

$$
\log \Lambda_{0}(T)=\chi^{\top} \beta+u
$$

for u_{i} iid with df $F_{0}(u)=1-e^{-e^{u}}$.

The Bennett (Proportional-Odds) Model

For the proportional odds model, where the conditional odds of death $\Gamma(\mathrm{t} \mid \mathrm{x})=\mathrm{F}(\mathrm{t} \mid \mathrm{x}) /(1-\mathrm{F}(\mathrm{t} \mid \mathrm{x}))$ are written as,

$$
\log \Gamma(\mathrm{t} \mid x)=\log \Gamma_{0}(\mathrm{t})-\chi^{\top} \beta
$$

we have, similarly,

$$
\log \Gamma_{0}(T)=x^{\top} \beta+u
$$

for u iid logistic with $F_{0}(u)=\left(1+e^{-u}\right)^{-1}$.

Accelerated Failure Time Model

In the accelerated failure time model we have

$$
\log \left(T_{i}\right)=x_{i}^{\top} \beta+u_{i}
$$

so

$$
\begin{aligned}
P(T>t) & =P\left(e^{u}>t e^{-x \beta}\right) \\
& =1-F_{0}\left(t e^{-x \beta}\right)
\end{aligned}
$$

where $F_{0}(\cdot)$ denotes the df of e^{u}, and thus,

$$
\lambda(t \mid x)=\lambda_{0}\left(t e^{-x \beta}\right) e^{-x \beta}
$$

where $\lambda_{0}(\cdot)$ denotes the hazard function corresponding to F_{0}. In effect, the covariates act to rescale time in the baseline hazard.

Beyond the Transformation Model

The common feature of all these models is that after transformation of the observed survival times we have:

- a pure location-shift, iid-error regression model
- covariate effects shift the center of the distribution of $h(T)$, but
- covariates cannot affect scale, or shape of this distribution

An Application: Longevity of Mediterrean Fruit Flies

In the early 1990's there were a series of experiments designed to study the survival distribution of lower animals. One of the most influential of these was:

Carey, J.R., Liedo, P., Orozco, D. and Vaupel, J.W. (1992) Slowing of mortality rates at older ages in large Medfly cohorts, Science, 258, 457-61.

- 1,203,646 medflies survival times recorded in days
- Sex was recorded on day of death
- Pupae were initially sorted into one of five size classes
- 167 aluminum mesh cages containing roughly 7200 flies
- Adults were given a diet of sugar and water ad libitum

Major Conclusions of the Medfly Experiment

- Mortality rates declined at the oldest observed ages. contradicting the traditional view that aging is an inevitable, monotone process of senescence.
- The right tail of the survival distribution was, at least by human standards, remarkably long.
- There was strong evidence for a crossover in gender specific mortality rates.

Lifetable Hazard Estimates by Gender

Smoothed mortality rates for males and females.

Medfly Survival Prospects

Lifespan (in days)	Percentage Surviving	Number Surviving
40	5	60,000
50	1	12,000
86	.01	120
146	.001	12
Initial	Population of $1,203,646$	

Human Survival Prospects*

Medfly Survival Prospects

Lifespan	Percentage	Number	Lifespan (in years)	Percentage Surviving	Number Surviving
(in days)	Surviving	Surviving	50	98	591,000
40	5	60,000	75	69	413,000
50	1	12,000	85	33	200,000
86	.01	120	95	5	30,000
146	.001	12	105	.08	526
Initial Population of $1,203,646$	115	.0001	1		

Quantile Regression Model (Geling and K (JASA, 2001))

Criticism of the Carey et al paper revolved around whether declining hazard rates were a result of confounding factors of cage density and initial pupal size. Our basic QR model included the following covariates:

$$
\begin{aligned}
\mathrm{Q}_{\log \left(\mathrm{T}_{\mathrm{i}}\right)}\left(\tau \mid \mathrm{x}_{\mathrm{i}}\right) & =\beta_{0}(\tau)+\beta_{1}(\tau) \text { SEX }+\beta_{2}(\tau) \text { SIZE } \\
& +\beta_{3}(\tau) \text { DENSITY }+\beta_{4}(\tau) \% \text { MALE }
\end{aligned}
$$

- SEX Gender
- SIZE Pupal Size in mm
- DENSITY Initial Density of Cage
- \%MALE Initial Proportion of Males

Base Model Results with AFT Fit

Base Model Results with Cox PH Fit

What About Censoring?

There are currently 3 approaches to handling censored survival data within the quantile regression framework:

- Powell (1986) Fixed Censoring
- Portnoy (2003) Random Censoring, Kaplan-Meier Analogue
- Peng/Huang (2008) Random Censoring, Nelson-Aalen Analogue Available for R in the package quantreg.

Powell's Approach for Fixed Censoring

Rationale Quantiles are equivariant to monotone transformation:

$$
\mathrm{Q}_{\mathrm{h}(\mathrm{Y})}(\tau)=\mathrm{h}\left(\mathrm{Q}_{Y}(\tau)\right) \text { for } h \nearrow
$$

Model $Y_{i}=T_{i} \wedge C_{i} \equiv \min \left\{T_{i}, C_{i}\right\}$

$$
\mathrm{Q}_{\mathrm{Y}_{i} \mid x_{i}}\left(\tau \mid x_{i}\right)=x_{i}^{\top} \beta(\tau) \wedge \mathrm{C}_{\mathrm{i}}
$$

Data Censoring times are known for all observations

$$
\left\{Y_{i}, C_{i}, x_{i}: i=1, \cdots, n\right\}
$$

Estimator Conditional quantile functions are nonlinear in parameters:

$$
\hat{\beta}(\tau)=\operatorname{argmin} \sum \rho_{\tau}\left(Y_{i}-x_{i}^{\top} \beta \wedge C_{i}\right)
$$

Portnoy's Approach for Random Censoring I

Rationale Efron's (1967) interpretation of Kaplan-Meier as shifting mass of censored observations to the right:
Algorithm Until we "encounter" a censored observation KM quantiles can be computed by solving, starting at $\tau=0$,

$$
\hat{\xi}(\tau)=\operatorname{argmin}_{\xi} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\xi\right)
$$

Once we "encounter" a censored observation, i.e. when $\hat{\xi}\left(\tau_{i}\right)=y_{i}$ for some y_{i} with $\delta_{i}=0$, we split y_{i} into two parts:

- $y_{i}^{(1)}=y_{i}$ with weight $w_{i}=\left(\tau-\tau_{i}\right) /\left(1-\tau_{i}\right)$
- $y_{i}^{(2)}=y_{\infty}=\infty$ with weight $1-w_{i}$.

Then denoting the index set of censored observations "encountered" up to τ by $\mathrm{K}(\tau)$ we can solve
$\min \sum_{i \notin K(\tau)} \rho_{\tau}\left(Y_{i}-\xi\right)+\sum_{i \in K(\tau)}\left[w_{i}(\tau) \rho_{\tau}\left(Y_{i}-\xi\right)+\left(1-w_{i}(\tau)\right) \rho_{\tau}\left(y_{\infty}-\xi\right)\right]$.

Portnoy's Approach for Random Censoring II

When we have covariates we can replace ξ by the inner product $x_{i}^{\top} \beta$ and solve: $\min \sum_{i \notin K(\tau)} \rho_{\tau}\left(Y_{i}-x_{i}^{\top} \beta\right)+\sum_{i \in K(\tau)}\left[w_{i}(\tau) \rho_{\tau}\left(Y_{i}-x_{i}^{\top} \beta\right)+\left(1-w_{i}(\tau)\right) \rho_{\tau}\left(y_{\infty}-x_{i}^{\top} \beta\right)\right]$.

At each τ this is a simple, weighted linear quantile regression problem.

Portnoy's Approach for Random Censoring II

When we have covariates we can replace ξ by the inner product $x_{i}^{\top} \beta$ and solve:

$$
\min \sum_{i \notin K(\tau)} \rho_{\tau}\left(Y_{i}-x_{i}^{\top} \beta\right)+\sum_{i \in K(\tau)}\left[w_{i}(\tau) \rho_{\tau}\left(Y_{i}-x_{i}^{\top} \beta\right)+\left(1-w_{i}(\tau)\right) \rho_{\tau}\left(y_{\infty}-x_{i}^{\top} \beta\right)\right] .
$$

At each τ this is a simple, weighted linear quantile regression problem. The following R code fragment replicates an analysis in Portnoy (2003):

```
require(quantreg)
data(uis)
fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 + TREAT +
    FRAC + RACE + AGE * SITE, data = uis, method = "Por")
Sfit <- summary(fit,1:19/20)
PHit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +
    TREAT + FRAC + RACE + AGE * SITE, data = uis)
plot(Sfit, CoxPHit = PHit)
```


Reanalysis of the Hosmer-Lemeshow Drug Relapse Data

Peng and Huang's Approach for Random Censoring I

Rationale Extend the martingale representation of the Nelson-Aalen estimator of the cumulative hazard function to produce an "estimating equation" for conditional quantiles.
Model AFT form of the quantile regression model:

$$
\operatorname{Prob}\left(\log T_{i} \leqslant x_{i}^{\top} \beta(\tau)\right)=\tau
$$

$$
\text { Data }\left\{\left(Y_{i}, \delta_{i}\right): i=1, \cdots, n\right\} Y_{i}=T_{i} \wedge C_{i}, \delta_{i}=I\left(T_{i}<C_{i}\right)
$$

Martingale We have $E M_{i}(\mathrm{t})=0$ for $\mathrm{t} \geqslant 0$, where:

$$
\begin{aligned}
M_{i}(\mathrm{t}) & =\mathrm{N}_{\mathrm{i}}(\mathrm{t})-\Lambda_{i}\left(\mathrm{t} \wedge Y_{i} \mid x_{i}\right) \\
\mathrm{N}_{\mathrm{i}}(\mathrm{t}) & =\mathrm{I}\left(\left\{\mathrm{Y}_{\mathrm{i}} \leqslant \mathrm{t}\right\},\left\{\delta_{i}=1\right\}\right) \\
\Lambda_{i}(\mathrm{t}) & =-\log \left(1-\mathrm{F}_{\mathfrak{i}}\left(\mathrm{t} \mid x_{i}\right)\right) \\
\mathrm{F}_{\mathfrak{i}}(\mathrm{t}) & =\operatorname{Prob}\left(\mathrm{T}_{\mathrm{i}} \leqslant \mathrm{t} \mid x_{i}\right)
\end{aligned}
$$

Peng and Huang's Approach for Random Censoring II

The estimating equation becomes,

$$
E n^{-1 / 2} \sum x_{i}\left[N_{i}\left(\exp \left(x_{i}^{\top} \beta(\tau)\right)\right)-\int_{0}^{\tau} I\left(Y_{i} \geqslant \exp \left(x_{i}^{\top} \beta(u)\right)\right) d H(u)=0\right.
$$

where $\mathrm{H}(\mathrm{u})=-\log (1-u)$ for $u \in[0,1)$, after rewriting:

$$
\begin{aligned}
\left.\Lambda_{i}\left(\exp \left(x_{i}^{\top} \beta(\tau)\right) \wedge Y_{i} \mid x_{i}\right)\right) & =H(\tau) \wedge H\left(F_{i}\left(Y_{i} \mid x_{i}\right)\right) \\
& =\int_{0}^{\tau} I\left(Y_{i} \geqslant \exp \left(x_{i}^{\top} \beta(u)\right)\right) d H(u)
\end{aligned}
$$

Peng and Huang's Approach for Random Censoring III

Approximating the integral on a grid, $0=\tau_{0}<\tau_{1}<\cdots<\tau_{\mathrm{J}}<1$ yields a simple linear programming formulation to be solved at the gridpoints,

$$
\alpha_{i}\left(\tau_{j}\right)=\sum_{k=0}^{j-1} I\left(Y_{i} \geqslant \exp \left(x_{i}^{\top} \hat{\beta}\left(\tau_{k}\right)\right)\right)\left(H\left(\tau_{k+1}\right)-H\left(\tau_{k}\right)\right)
$$

yielding Peng and Huang's final estimating equation,

$$
n^{-1 / 2} \sum x_{i}\left[N_{i}\left(\exp \left(x_{i}^{\top} \beta(\tau)\right)\right)-\alpha_{i}(\tau)\right]=0
$$

Setting $r_{i}(b)=\log \left(Y_{i}\right)-x_{i}^{\top} b$, this convex function for the Peng and Huang problem takes the form

$$
R\left(b, \tau_{j}\right)=\sum_{i=1}^{n} r_{i}(b)\left(\alpha_{i}\left(\tau_{j}\right)-I\left(r_{i}(b)<0\right) \delta_{i}\right)=\min !
$$

Portnoy vs. Peng-Huang

Some One Sample Asymptotics

Suppose that we have a random sample of pairs, $\left\{\left(T_{i}, C_{i}\right): i=1, \cdots, n\right\}$ with $T_{i} \sim F, C_{i} \sim G$, and T_{i} and C_{i} independent. Let $Y_{i}=\min \left\{T_{i}, C_{i}\right\}$, as usual, and $\delta_{\mathfrak{i}}=\mathrm{I}\left(\mathrm{T}_{\mathfrak{i}}<\mathrm{C}_{\mathfrak{i}}\right)$. In this setting the Powell estimator of $\theta=\mathrm{F}^{-1}(\tau)$,

$$
\hat{\theta}_{P}=\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \rho_{\tau}\left(Y_{i}-\min \left\{\theta, C_{i}\right\}\right)
$$

is asymptotically normal,

$$
\sqrt{n}\left(\hat{\theta}_{P}-\theta\right) \rightsquigarrow \mathcal{N}\left(0, \tau(1-\tau) /\left(f^{2}(\theta)(1-G(\theta))\right)\right) .
$$

One Sample Asymptotics

In contrast, the asymptotic theory of the quantiles of the Kaplan-Meier estimator is slightly more complicated. Using the δ-method one can show,

$$
\sqrt{n}\left(\hat{\theta}_{K M}-\theta\right) \rightsquigarrow \mathcal{N}\left(0, \operatorname{Avar}(\hat{S}(\theta)) / f^{2}(\theta)\right)
$$

where, see e.g. Anderson et al,

$$
\operatorname{Avar}(\hat{S}(\mathrm{t}))=\mathrm{S}^{2}(\mathrm{t}) \int_{0}^{\mathrm{t}}(1-\mathrm{H}(\mathrm{u}))^{-2} \mathrm{~d} \tilde{F}(\mathrm{u})
$$

and $1-H(u)=(1-F(u))(1-G(u))$ and $\tilde{F}(u)=\int_{0}^{t}(1-G(u)) d F(u)$. Since the Powell estimator makes use of more sample information than does the Kaplan Meier estimator it might be thought that it would be more efficient. But this isn't true.

Kaplan Meier vs Powell

Proposition

$A \operatorname{var}\left(\hat{\theta}_{K M}\right) \leqslant \operatorname{Avar}\left(\hat{\theta}_{P}\right)$.

Proof:

$$
\begin{aligned}
f^{2}(\theta) \operatorname{Avar}\left(\hat{\theta}_{K M}\right) & =S(\theta)^{2} \int_{0}^{\theta}(1-H(s))^{-2} d \tilde{F}(s) \\
& =S(\theta)^{2} \int_{0}^{\theta}(1-G(s))^{-1}(1-F(s))^{-2} d F(s) \\
& \leqslant \frac{S(\theta)^{2}}{1-G(\theta)} \int_{0}^{\theta}(1-F(s))^{-2} d F(s) \\
& =\left.\frac{S(\theta)^{2}}{1-G(\theta)} \cdot \frac{1}{1-F(s)}\right|_{0} ^{\theta} \\
& =\frac{S(\theta)^{2}}{1-G(\theta)} \cdot \frac{F(\theta)}{1-F(\theta)} \\
& =\frac{F(\theta)(1-F(\theta))}{(1-G(\theta))} \\
& =\frac{\tau(1-\tau)}{(1-G(\theta))}
\end{aligned}
$$

Alice in Asymptopia

Leurgans (1987) considered the weighted estimator of the censored survival function,

$$
\hat{S}_{\mathrm{L}}(\mathrm{t})=\frac{\sum \mathrm{I}\left(\mathrm{Y}_{\mathrm{i}}>\mathrm{t}\right) \mathrm{I}\left(\mathrm{C}_{\mathrm{i}}>\mathrm{t}\right)}{\sum \mathrm{I}\left(\mathrm{C}_{\mathrm{i}}>\mathrm{t}\right)}
$$

that uses all the C_{i} 's. Conditioning on the C_{i} 's, it can be shown that $\mathbb{E}\left(\hat{S}_{\mathrm{L}}(\mathrm{t}) \mid \mathrm{C}\right)=\mathrm{S}(\mathrm{t})$, and that the conditional variance is

$$
\operatorname{Var}\left(\hat{S}_{\mathrm{L}}(\mathrm{t}) \mid \mathrm{C}\right)=\frac{\mathrm{F}(\mathrm{t})(1-\mathrm{F}(\mathrm{t}))}{1-\hat{G}(\mathrm{t})}
$$

Averaging this expression gives the unconditional variance which converges to

$$
\operatorname{Avar}\left(\hat{S}_{\mathrm{L}}(\mathrm{t}) \mid \mathrm{C}\right)=\frac{\mathrm{F}(\mathrm{t})(1-\mathrm{F}(\mathrm{t}))}{1-\mathrm{G}(\mathrm{t})}
$$

and consequently quantiles based on Leurgan's estimator behave (asymptotically) just like those produced by the Powell estimator.

Alice in Asymptopia

It might be thought that the Powell estimator would be more efficient than the Portnoy and Peng-Huang estimators given that it imposes more stringent data requirements. Comparing asymptotic behavior and finite sample performance in the simplest one-sample setting indicates otherwise.

	median	Kaplan-Meier	Nelson-Aalen	Powell	Leurgans \hat{G}	Leurgans G
$\mathrm{n}=50$	1.602	1.972				
$\mathrm{n}=200$	1.581	1.924	2.040	2.037	2.234	2.945
$\mathrm{n}=500$	1.666	2.016	1.930	2.110	2.136	2.507
$\mathrm{n}=1000$	1.556	1.813	1.816	2.001	2.018	2.742
$\mathrm{n}=\infty$	1.571	1.839	1.839	2.017	2.017	2.469

Scaled MSE for Several Estimators of the Median: Mean squared error estimates are scaled by sample size to conform to asymptotic variance computations. Here, T_{i} is standard lognormal, and C_{i} is exponential with rate parameter .25, so the proportion of censored observations is roughly 30 percent. 1000 replications.

Simulation Settings I

Simulations I-A

	Intercept			Slope		
	Bias	MAE	RMSE	Bias	MAE	RMSE
Portnoy						
$\mathrm{n}=100$	-0.0032	0.0638	0.0988	0.0025	0.0702	0.1063
$\mathrm{n}=400$	-0.0066	0.0406	0.0578	0.0036	0.0391	0.0588
$\mathrm{n}=1000$	-0.0022	0.0219	0.0321	0.0006	0.0228	0.0344
Peng-Huang						
$\mathrm{n}=100$	0.0005	0.0631	0.0986	0.0092	0.0727	0.1073
$\mathrm{n}=400$	-0.0007	0.0393	0.0575	0.0074	0.0389	0.0598
$\mathrm{n}=1000$	0.0014	0.0215	0.0324	0.0019	0.0226	0.0347
Powell						
$\mathrm{n}=100$	-0.0014	0.0694	0.1039	0.0068	0.0827	0.1252
$\mathrm{n}=400$	-0.0066	0.0429	0.0622	0.0098	0.0475	0.0734
$\mathrm{n}=1000$	-0.0008	0.0224	0.0339	0.0013	0.0264	0.0396
GMLE						
$\mathrm{n}=100$	0.0013	0.0528	0.0784	-0.0001	0.0517	0.0780
$\mathrm{n}=400$	-0.0039	0.0307	0.0442	0.0031	0.0264	0.0417
$\mathrm{n}=1000$	0.0003	0.0172	0.0248	-0.0001	0.0165	0.0242

Comparison of Performance for the iid Error, Constant Censoring Configuration

Simulations I-B

	Intercept			Slope		
	Bias	MAE	RMSE	Bias	MAE	RMSE
Portnoy						
$\mathrm{n}=100$	-0.0042	0.0646	0.0942	0.0024	0.0586	0.0874
$\mathrm{n}=400$	-0.0025	0.0373	0.0542	-0.0009	0.0322	0.0471
$\mathrm{n}=1000$	-0.0025	0.0208	0.0311	0.0006	0.0191	0.0283
Peng-Huang						
$\mathrm{n}=100$	0.0026	0.0639	0.0944	0.0045	0.0607	0.0888
$\mathrm{n}=400$	0.0056	0.0389	0.0547	-0.0002	0.0320	0.0476
$\mathrm{n}=1000$	0.0019	0.0212	0.0311	0.0009	0.0187	0.0283
Powell						
$\mathrm{n}=100$	-0.0025	0.0669	0.1017	0.0083	0.0656	0.1012
$\mathrm{n}=400$	0.0014	0.0398	0.0581	-0.0006	0.0364	0.0531
$\mathrm{n}=1000$	-0.0013	0.0210	0.0319	0.0016	0.0203	0.0304
GMLE						
$\mathrm{n}=100$	0.0007	0.0540	0.0781	0.0009	0.0470	0.0721
$\mathrm{n}=400$	0.0008	0.0285	0.0444	-0.0008	0.0253	0.0383
$\mathrm{n}=1000$	-0.0004	0.0169	0.0248	0.0002	0.0150	0.0224

Comparison of Performance for the iid Error, Variable Censoring Configuration

Simulation Settings II

Simulations II-A

	Intercept			Slope		
	Bias	MAE	RMSE	Bias	MAE	RMSE
Portnoy L						
$\mathrm{n}=100$	0.0084	0.0316	0.0396	-0.0251	0.0763	0.0964
$\mathrm{n}=400$	0.0076	0.0194	0.0243	-0.0247	0.0429	0.0533
$\mathrm{n}=1000$	0.0081	0.0121	0.0149	-0.0241	0.0309	0.0376
Portnoy Q						
$\mathrm{n}=100$	0.0018	0.0418	0.0527	0.0144	0.1576	0.2093
$\mathrm{n}=400$	-0.0010	0.0228	0.0290	0.0047	0.0708	0.0909
$\mathrm{n}=1000$	-0.0006	0.0122	0.0154	-0.0027	0.0463	0.0587
Peng-Huang L						
$\mathrm{n}=100$	0.0077	0.0313	0.0392	-0.0145	0.0749	0.0949
$\mathrm{n}=400$	0.0064	0.0193	0.0240	-0.0125	0.0392	0.0493
$\mathrm{n}=1000$	0.0077	0.0120	0.0147	-0.0181	0.0279	0.0342
Peng-Huang Q						
$\mathrm{n}=100$	0.0078	0.0425	0.0538	0.0483	0.1707	0.2328
$\mathrm{n}=400$	0.0035	0.0228	0.0291	0.0302	0.0775	0.1008
$\mathrm{n}=1000$	0.0015	0.0123	0.0155	0.0101	0.0483	0.0611
Powell	0.0021	0.0304	0.0385	-0.0034	0.0790	0.0993
$\mathrm{n}=100$	-0.0017	0.0191	0.0239	0.0028	0.0431	0.0544
$\mathrm{n}=400$	-0.0001	0.0099	0.0125	0.0003	0.0257	0.0316
$\mathrm{n}=1000$	0.1080	0.1082	0.1201	-0.2040	0.2042	0.2210
GMLE	0.1209	0.1209	0.1241	-0.2134	0.2134	0.2173
$\mathrm{n}=100$	0.118	0.1130	-0.2075	0.2075	0.2091	
$\mathrm{n}=400$	0.118	0.118				
$\mathrm{n}=1000$						

Comparison of Performance for the Constant Censoring, Heteroscedastic Configuration

Simulations II-B

	Intercept			Slope		
	Bias	MAE	RMSE	Bias	MAE	RMSE
Portnoy L						
$\mathrm{n}=100$	0.0024	0.0278	0.0417	-0.0067	0.0690	0.1007
$\mathrm{n}=400$	0.0019	0.0145	0.0213	-0.0080	0.0333	0.0493
$\mathrm{n}=1000$	0.0016	0.0097	0.0139	-0.0062	0.0210	0.0312
Portnoy Q						
$\mathrm{n}=100$	0.0011	0.0352	0.0540	0.0094	0.1121	0.1902
$\mathrm{n}=400$	0.0002	0.0185	0.0270	-0.0012	0.0510	0.0774
$\mathrm{n}=1000$	-0.0005	0.0116	0.0169	-0.0011	0.0337	0.0511
Peng-Huang L						
$\mathrm{n}=100$	0.0018	0.0281	0.0417	0.0041	0.0694	0.1017
$\mathrm{n}=400$	0.0013	0.0142	0.0212	0.0035	0.0333	0.0490
$\mathrm{n}=1000$	0.0012	0.0096	0.0139	0.0002	0.0208	0.0310
Peng-Huang Q						
$\mathrm{n}=100$	0.0044	0.0364	0.0550	0.0322	0.1183	0.2105
$\mathrm{n}=400$	0.0026	0.0188	0.0275	0.0154	0.0504	0.0813
$\mathrm{n}=1000$	0.0007	0.0113	0.0169	0.0077	0.0333	0.0520
Powell	-0.0001	0.0288	0.0430	0.0055	0.0733	0.1105
$\mathrm{n}=100$	0.0000	0.0147	0.0226	0.0001	0.0379	0.0561
$\mathrm{n}=400$	-0.0008	0.0095	0.0146	0.0013	0.0237	0.0350
$\mathrm{n}=1000$	0.1078	0.1038	0.1272	-0.1576	0.1582	0.1862
GMLE	0.1123	0.1116	0.1168	-0.1581	0.1578	0.1647
$\mathrm{n}=100$	0.1153	0.1138	0.1174	-0.1609	0.1601	0.1639
$\mathrm{n}=400$						

Comparison of Performance for the Variable Censoring, Heteroscedastic Configuration

Conclusions

- Simulation evidence confirms the asymptotic conclusion that the Portnoy and Peng-Huang estimators are quite similar.

Conclusions

- Simulation evidence confirms the asymptotic conclusion that the Portnoy and Peng-Huang estimators are quite similar.
- The martingale representation of the Peng-Huang estimator yields a more complete asymptotic theory than is currently available for the Portnoy estimator.

Conclusions

- Simulation evidence confirms the asymptotic conclusion that the Portnoy and Peng-Huang estimators are quite similar.
- The martingale representation of the Peng-Huang estimator yields a more complete asymptotic theory than is currently available for the Portnoy estimator.
- The Powell estimator, although conceptually attractive, suffers from some serious computational difficulties, imposes strong data requirements, and has an inherent asymptotic efficiency disadvantage.

Conclusions

- Simulation evidence confirms the asymptotic conclusion that the Portnoy and Peng-Huang estimators are quite similar.
- The martingale representation of the Peng-Huang estimator yields a more complete asymptotic theory than is currently available for the Portnoy estimator.
- The Powell estimator, although conceptually attractive, suffers from some serious computational difficulties, imposes strong data requirements, and has an inherent asymptotic efficiency disadvantage.
- Quantile regression provides a flexible complement to classical survival analysis methods, and is now well equipped to handle censoring.

