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Quantile regresson extends classical least squares methods for estimat-
ing conditional mean functions by offering a variety of methods for esti-
mating conditional quantile functions, thereby enabling the researcher
to explore more thoroughly heterogeneous covariate effects. The course
will offer a comprehensive introduction to quantile regression methods
and briefly survey some recent developments. The primary reference
for the course will be my 2005 Econometric Society monograph, but
further readings are suggested below in this course outline.

Course lectures will be complemented by several computationally
oriented interludes designed to give students some experience with ap-
plications of the methods. These sessions will be conducted in the open-
source R language, and will rely heavily on my quantreg package. Thus
it would be helpful if students brought laptops equipped with this soft-
ware already installed. R can be freely downloaded for PC/Mac/Linux
machines from CRAN: http://cran.r-project.org/. The quantreg
package is also available from CRAN, just click on ”packages” on the
left margin of the page and follow the directions you will find there. Stu-
dents familiar with Stata and wanting to experiment with Stata data
sets should consider also downloading the ”foreign” package, which
contains a function called read.dta that enables R to read Stata data
files.

Tentative Topics

(1) The Basics: What, Why and How? Koenker (2005, §1-2),
Koenker and Hallock (2001)

(2) Inference and Quantile Treatment Effects Koenker (2005, §3),
(3) Nonparametric Quantile Regression Koenker (2005, §7), Koenker

(2010),Belloni and Chernozhukov (2009)
(4) Endogoneity and IV Methods Chesher (2003) Chernozhukov

and Hansen (2005) Ma and Koenker (2005)
(5) Censored QR and Survival Analysis Koenker and Geling (2001)

Portnoy (2003) Peng and Huang (2008) Koenker (2008)
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(6) Quantile Autoregression Koenker and Xiao (2006)
(7) QR for Longitudinal Data Koenker (2004) Galvao (2009)
(8) Risk Assessment and Choquet Portfolios Bassett, Koenker, and

Kordas (2004)
(9) Quantile Regression Computation: From the Inside and Out-

side Koenker (2005, §6),
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Yet Another R FAQ, or
How I Learned to Stop Worrying and Love Computing 1

Roger Koenker
CEMMAP and University of Illinois, Urbana-Champaign

“It was a splendid mind. For if thought is like the keyboard of a piano,
divided into so many notes, or like the alphabet is ranged in twenty-six
letters all in order, then his splendid mind had no sort of difficulty in
running over those letters one by one, firmly and accurately, until it
had reached the letter Q. He reached Q. Very few people in the whole of
England reach the letter Q.... But after Q? What comes next?... Still,
if he could reach R it would be something. Here at least was Q. He dug
his heels in at Q. Q he was sure of. Q he could demonstrate. If Q then
is Q–R–.... Then R... He braced himself. He clenched himself.... In
that flash of darkness he heard people saying–he was a failure–that R
was beyond him. He would never reach R. On to R, once more. R—....
...He had not genius; he had no claim to that: but he had, or he might
have had, the power to repeat every letter of the alphabet from A to
Z accurately in order. Meanwhile, he stuck at Q. On then, on to R.”

Virginia Woolf (To the Lighthouse)

1. How to get it? Google CRAN, click on your OS, and download. Buy a case
of wine with what you’ve saved.

2. How to start? Click on the R icon if you are mousey, type R in a terminal
window if you are penguinesque.

3. What next? At the prompt, > type 2 + 2

4. What next? At the prompt, > type 1:9/10

5. What next? At the prompt, > type x <- 1:99/100

1Version: May 13, 2011. Prepared for an LSE Short Course on Quantile Regression: 16-17
May 2011. More official R FAQs are available from the CRAN website. A FAQ for the quantile
regression package quantreg can be found by the invoking the command FAQ() from within R
after loading the package.
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6. What next? At the prompt, > type plot(x,sin(1/x))

7. What next? At the prompt, > type lines(x,sin(1/x),col = "red")

8. How to stop? Click on the Stop sign if you are mousey, type q() if you are
penguinesque.

9. Isn’t there more to R? Yes, try downloading some packages: using the menu
in the GUI if you are mousey, or typing install.packages(”pname”) if you are
penguinesque.

10. What’s a package? A package is a collection of R software that augments in
some way the basic functionality of R, that is it is a way of going “beyond
R.” For example, the quantreg package is a collection of functions to do
quantile regression. There were 2992 packages on CRAN as of May 13, 2011.

11. How to use a package? Downloading and installing a package isn’t enough,
you need to tell R that you would like to use it, for this you can either type:
require(pname) or library(pname). I prefer the former.

12. How to read data files? For simple files with values separated by white
space you can use read.table, or read.csv for data separated by commas,
or some other mark. For more exotic files, there is scan. And for data
files from other statistical environments, there is the package foreign which
facilitates the reading of Stata, SAS and other data. There are also very
useful packages to read html and other files from the web, but this takes us
beyond our introductory objective.

13. What is a data.frame? A data.frame is a collection of related variables; in
the simplest case it is simply a data matrix with each row indexing an obser-
vation. However, unlike conventional matrices, the columns of a data.frame

can be non-numeric, e.g. logical or character or in R parlance, “factors.” In
many R functions one can specify a data = "dframe" argument that speci-
fies where to find the variables mentioned elsewhere in the call.

14. How to get help? If you know what command you want to use, but need
further details about how to use it, you can get help by typing ?fname, if you
don’t know the function name, then you might try apropos("concept"). If
this fails then a good strategy is to search http://finzi.psych.upenn.

edu/search.html with some relevant keywords; here you can specify that
you would like to search through the R-help newsgroup, which is a rich source
of advice about all things R.
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15. Are there manuals? Yes, of course there are manuals, but only to be read
as a last resort, but when things get desparate you can always RTFM. The
left side of the CRAN website has links to manuals , FAQs and contributed
documentation. Some of the latter category is quite good, and is also avail-
able in a variety of natural languages. There is also an extensive shelf of
published material about R, but indulging in this tends to put a crimp in
one’s wine budget.

16. What about illustrative examples? A strength of R is the fact that most of
the documentation files for R functions have example code that can be easily
executed. Thus, for example if you would like to see an example of how to
use the command rq in the quantreg package, you can type example(rq)

and you will see some examples of its use. Alternatively, you can cut and
paste bits of the documentation into the R window; in the OSX GUI you can
simply highlight code in a help document, or other window and then press
Command-Enter to execute.

17. What’s in a name? Objects in R can be of various types called classes. You
can create objects by assignment, typically as above with a command like f

<- function(x,y,z). A list of the objects currently in your private envi-
ronment can be viewed with ls(), objects in lower level environments like
those of the packages that you have loaded can be viewed with ls(k) where
k designates the number of the environment. A list of these environments
can be seen with search(). Objects can be viewed by simply typing their
name, but sometimes objects can be very complicated so a useful abbreviated
summary can be obtained with str(object).

18. What about my beloved least squares? Fitting linear models in R is like
taking a breath of fresh air after inhaling the smog of other industrial envi-
ronments. To do so, you specify a model formula like this: lm(y ~ x1 + x2

+ x3, data = "dframe"), if one or more of the x’s are factor variables, that
is take discrete, qualitative values, then they are automatically exanded into
several indicator variables. Interactions plus main effects can be specified by
replacing the “+” in the formula by “*”. Generalized linear models can be
specified in much the same way, as can quantile regression models using the
quantreg package.

19. What about class conflict? Class analysis can get complicated, but you can
generally expect that classes behave themselves in accordance with their
material conditions. Thus, for example, suppose you have fitted a linear
regression model by least squares using the command f <- lm(y ~ x1 +

x2 + x3), thereby assigning the fitted object to the symbol f. The object f
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will have class lm, and when you invoke the command summary(f), R will try
to find a summary method appropriate to objects of class lm. In the simplest
case this will entail finding the command summary.lm which will produce a
conventional table of coefficients, standard errors, t-statistics, p-values and
other descriptive statistics. Invoking summary on a different type of object,
say a data.frame, will produce a different type of summary object. Methods
for prediction, testing, plotting and other functionalities are also provided
on a class specific basis.

20. What about graphics? R has a very extensive graphics capability. Interactive
graphics of the type illustrated already above is quite simple and easy to use.
For publication quality graphics, there are device drivers for various graphical
formats, generally I find that pdf is satisfactory. Dynamic and 3D graphics
can be accessed from the package rgl.

21. Latex tables? The package Hmisc has very convenient functions to convert
R matrices into latex tables.

22. Random numbers? There is an extensive capability for generating pseudo
random numbers from R. Reproducibility of random sequences is ensured
by using the set.seed command. Various distributions are accessible with
families of functions using the prefixes pdqr, thus for example pnorm, dnorm,
qnorm and rnorm can be used to evaluate the distribution function, density
function, quantile function, or to generate random normals, respectively.
See ?Distributions for a complete list of standard distributions available
in base R in this form. Special packages provide additional scope, although
it is sometimes tricky to find them.

23. Programming and simulation? The usual language constructs for looping,
switching and data management are available, as are recent developments
for exploiting multicore parallel processing. Particularly convenient are the
family of apply functions that facilitate summarizing matrix and list objects.
A good way to learn the R language is to look at the code for existing
functions. Most of this code is easily accessible from the R command line. If
you simply type the name of an R function, you will usually be able to see
its code on the screen. Sometimes of course, this code will involve calls to
lower level languages, and this code would have to be examined in the source
files of the system. But everything is eventually accessible. If you don’t like
the way a function works you can define a modified version of it for your
private use. If you are inspired to write lower level code this is also easily
incorporated into the language as explained in the manual called “Writing
R Extensions.”
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SOME EXERCISES ON QUANTILE REGRESSION

ROGER KOENKER

Introduction

These exercises are intended to provide an introduction to quantile regression
computing and illustrate some econometric applications of quantile regression meth-
ods. For purposes of the course my intention would be to encourage all students
to do the first exercise, which gives an overview of the quantile regression software
in R in the context of an elementary bivariate Engel curve example. The remain-
ing exercises are more open ended. I would like students to choose one of these
exercises according to their own special interests. Given the brief duration of the
course, it is obviously unrealistic to expect answers to these questions at the end of
the course, but I would be happy to get responses via email should you choose to
continue working on them after the course is finished.

A Word on Software. There is now some quantile regression functionality in
most statistical software systems. Not surprisingly, I have a strong preference for
the implementation provide by the quantreg package of R, since I’ve devoted a
considerable amount of effort to writing it. R is a dialect of John Chambers’s S
language and provides a very general, very elegant environment for data analysis
and statistical research. It is fair to say that R is now the vehicle of choice within the
statistical computing community. It remains to be seen whether it can make serious
inroads into econometrics, but I firmly believe that it is a worthwhile investment
for the younger cohorts of econometricians. R is public domain software and can
be freely downloaded from the CRAN website. There is extensive documentation
also available from CRAN under the heading manuals. For unix based systems
it is usual to download R in source form, but it is also available in binary form
for most common operating systems. There are several excellent introductions to
R available in published form, in addition to the Introduction to R available in
pdf from the CRAN website. I would particularly recommend Dalgaard (2002)
and Venables and Ripley (2002). On the CRAN website there are also, under
the heading ”contributed”, introductions to R in Danish, French, German, Spanish
Italian, and a variety of other languages all of which can be freely downloaded in
pdf. I’ve prepared a brief R FAQ that I will distribute with the course materials
for the LSE short course.

For purposes of this course a minimal knowledge of R will suffice. R can be freely
downloaded, and I hope that most students will bring a laptop so that they have
access to R during the course sessions. Clicking the R icon should produce a window
in which R will be running. To quit R, you just type q(), you will be prompted to
answer whether you want to save the objects that were created during the session;
responding “yes” will save the session objects into a file called .RData, responding

Version: May 11, 2011. These exercises were originally developed for a short course given

under the auspices of CEMMAP at UCL, 20-22 February, 2003. My thanks to Andrew Chesher

and the Department of Economics at UCL for their hospitality on that occasion, and as always
to the NSF for continuing research support. The exercises have been expanded somewhat for new

short courses under the auspices of CREATES in Aarhus, 21-23 June, 2010, and at the LSE, 16-17
May, 2011.
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“no” will simply quit without saving. Online help is provided in two modes: if you
know what you are looking for, you can type, for example ?rq and you will get a
description of the rq command, alternatively you can type help.start() and a
browser help window should pop up and you can type more general key words or
phrases to search for functionality.

R is intended to be a convenient interactive language and you can do many
things on the fly by just typing commands into the R console, or even by point-
ing and clicking at one of the GUI interfaces, but I find that it is often preferable
to save R commands into a file and execute a group of commands – this encour-
ages a more reproducible style of research – and can be easily done using the
source("commands.R") command. Saving output is a bit more complicated since
there are many forms of output, graphics are usually saved in either postscript or
pdf form, and tables can be saved in latex format for subsequent inclusion in doc-
uments. Together with Achim Zeileis, U. of Innsbruck, I’ve written a paper in J.
of Applied Econometrics on reproducible research strategies that describes some of
these things in more detail. The paper and some other ranting and raving about
reproducibility are also available from my homepage by clicking first on “papers”
and then on “Reproducible Econometric Research.”

An aspect of reproducibility that is rarely considered in econometrics is the no-
tion of “literate programming.” The idea of literate programming was first broached
by Donald Knuth in 1984; Knuth essentially advocated merging code and documen-
tation for code in such a way that the code was self documenting and the exposition
was self-documenting as well, since the code that generated the reported computa-
tions was embedded. In the R language this viewpoint has been implemented by
Leisch’s Sweave which can be considered to be a dialect of latex that allows the user
to embed R chunks that are executed prior to latex compilation. The document
that you are now reading was written in Sweave and can be viewed in its original
form in the course problems directory as the file ex.Rnw.

Problem 1: A Family of Engel Curves

This is a simple bivariate linear quantile regression exercise designed to explore
some basic features of the quantreg software in R. The data consists of observations
on household food expenditure and household income of 235 working class Belgian
familes taken from the well-known study of Ernst Engel (1857).

1. Read the data. The data can be downloaded from the website specified
in class. You will see that it has a conventional ascii format with a header line
indicating the variable names, and 235 lines of data, one per household. This can
be read in R by the command

> url <- "http://www.econ.uiuc.edu/~roger/courses/LSE/data/engel.data"
> d <- read.table(file = url, header=TRUE) #data is now in matrix "d"
> attach(d) #attaching makes the variables accessible by name.

2. Plot the data. After the attach command the data is available using the
names in the header, so we can plot the scatter diagram as:

> plot(x,y)

3. Replot with some better axis labels and superimpose some quantile regression
lines on the scatter plot.

> require(quantreg)
> plot(x,y,cex=.25,type="n",xlab="Household Income",

ylab="Food Expenditure")
> points(x,y,cex=.5,col="blue")
> abline(rq(y~x,tau=.5),col="blue")
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> abline(lm(y~x),lty=2,col="red") #the dreaded ols line
> taus <- c(.05,.1,.25,.75,.90,.95)
> f <- rq(y ~ x, tau = taus)
> for( i in 1:length(taus)){

abline(coef(f)[,i],col="gray")
}
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Note that you have to load the quantreg package before invoking the rq() com-
mand. Careful inspection of the plot reveals that the ols fit is severely biased at
low incomes due to a few outliers. The plot command has a lot of options to fine
tune the plot. There is a convenient looping structure, but beware that it can be
slow in some applications. In rq() there are also many options: the first argument
is a “formula” that specifies the model that is desired, in this case we want to fit
the simple bivariate linear model so it is just y~x if we had two covariates we could
say, e.g. y~x+z.

4. If we wanted to see all the distinct quantile regression solutions for this
example we could specify a tau outside the range [0,1], e.g.

> z <- rq(y~x,tau=-1)

Now if you look at components of the structure z that are returned by the com-
mand, you can see for example the primal solution in z$sol, and the dual solution
in z$dsol. In interactive mode just typing the name of some R object causes the
program to print the object in some more or less easily intelligible manner. Now,
if you want to estimate the conditional quantile function of y at a specific value of
x and plot it you can do something like this:

> #Poor is defined as at the .1 quantile of the sample distn
> x.poor <- quantile(x,.1)
> #Rich is defined as at the .9 quantile of the sample distn
> x.rich <- quantile(x,.9)

4 Exercises in Quantile Regression

> ps <- z$sol[1,]
> qs.poor <- c(c(1,x.poor)%*%z$sol[4:5,])
> qs.rich <- c(c(1,x.rich)%*%z$sol[4:5,])
> #now plot the two quantile functions to compare
> plot(c(ps,ps),c(qs.poor,qs.rich),type="n",

xlab=expression(tau),ylab="quantile")
> plot(stepfun(ps,c(qs.poor[1],qs.poor)),do.points=FALSE,add=TRUE)
> plot(stepfun(ps,c(qs.poor[1],qs.rich)),do.points=FALSE,add=TRUE)
> #for conditional densities you could use akj()...
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A nice feature of R is that documentation of functions usually includes some
examples of their usage. These examples can be “run” by simply typing exam-
ple(SomeFunctionName), so for example when you type example(rq) you get a
plot somewhat like the one you have just done “by hand.” In a second plot you get
a pair of coefficient plots that depict the estimate intercept and slope coefficients
as a function of τ and provide a confidence band. More on this later. If you look
carefully at the code being executing by in these examples you will see that you
didn’t need to download the data from the url specified, the Engel data is available
directly from the quantreg package using the statement data(engel). But it is
often handy to be able to download data from the web. There are quite a lot of
tools for handling web data sources, but this is another story entirely.

If you look carefully at the plots of the two estimated quantile functions that you
made you will see minor violations of the expected monotonicity of these functions.
This may or may not be regarded as a mortal sin, depending on your religious
convictions. One way to deal with this, recently suggested by ? is to “rearrange”
the estimated functions. See the the documentation for this function using the
usual strategy: ?rearrange. To see an example of how this works try typing:
example(rearrange).
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5. Now let’s consider some formal testing. For starters suppose we just estimate
two quartile fits and look at the default output:

> fit.25 <- rq(y~x,tau=.25)
> summary(fit.25)
Call: rq(formula = y ~ x, tau = 0.25)

tau: [1] 0.25

Coefficients:
coefficients lower bd upper bd

(Intercept) 95.48354 73.78608 120.09847
x 0.47410 0.42033 0.49433
> fit.75 <- rq(y~x,tau=.75)
> summary(fit.75)
Call: rq(formula = y ~ x, tau = 0.75)

tau: [1] 0.75

Coefficients:
coefficients lower bd upper bd

(Intercept) 62.39659 32.74488 107.31362
x 0.64401 0.58016 0.69041

By default the confidence intervals that are produced use the rank inversion
method. This is fine for judging whether covariates are significant at particular
quantiles but suppose that we wanted to test that the slopes were the same at the
two quantiles? This is done with the anova command as follows:

> anova(fit.25,fit.75)
Quantile Regression Analysis of Deviance Table

Model: y ~ x
Joint Test of Equality of Slopes: tau in { 0.25 0.75 }

Df Resid Df F value Pr(>F)
1 1 469 30.891 4.586e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is an example of a general class of tests proposed in Koenker and Bassett
(1982) It is instructive to look at the code for the command anova.rq to see how
this test is carried out. The Wald approach is used and the asymptotic covariance
matrix is estimated using the approach of Hendricks and Koenker (1991). It also
illustrates a general syntax for testing in R adapted to the QR situation. If you
have two models that are nested, with fits say f0 and f1, then anova(f0,f1) should
test whether the restricted model is correct. One needs to be careful however to
check that the hypothesis that is intended, is really the one that the anova command
understands, see ?anova.rq for further details on the QR version of this. If you have
more than two quantiles and want to do a joint test that all the slope coefficients
are the same at all the quantiles you can use anova(ft1,ft2,ft3,ft4).

In very large problems the rank inversion approach to confidence intervals is
quite slow, and it is better to use another method. There are several choices. By
default the computational method employs a variant of the Barrodale and Roberts
(simplex-like) algorithm, for problems with sample size greater than about 5000
it is preferable to use interior point methods by using the method="fn", flag in

6 Exercises in Quantile Regression

the call to rq. When this ”Frisch-Newton” version of the algorithm is used, rank
test confidence intervals are not provided by summary instead a form of the Wald
test is returned. Various options can be specified to produce various estimates of
the standard errors as described below. These Wald forms of estimating standard
errors are also possible to achieve with the default method="br" setting by adding
for example the flag se=nid. Details of the algorithms are provided in Koenker and
d’Orey (1987), Koenker and d’Orey (1993), for the “BR” method and Portnoy and
Koenker (1997) for the “Frisch-Newton” method.

Standard inference results are obtained by calling summary, e.g.

> fit <- rq(y~x,tau=.27,method="fn")
> summary(fit)
Call: rq(formula = y ~ x, tau = 0.27, method = "fn")

tau: [1] 0.27

Coefficients:
coefficients lower bd upper bd

(Intercept) 94.18652 81.53426 127.50707
x 0.48321 0.43213 0.50477

by default summary produces estimates of the asymptotic covariance matrix based
on the approach described in Hendricks and Koenker (1991), an alternative ap-
proach suggested by Powell (1989) can be obtained by specifying se="ker". There
are further details and options regarding bandwidth and controlling the nature of
what is returned by the summary command, see ?summary.rq for these details.

At this point it would be useful to compare and contrast the various estima-
tion and inference options that are available. Try estimating the simple model
used above with both the method = "br") and method = "fn") choices, and then
compare some of the se options in summary.rq.

6. The magic of logarithms. Thus far we have considered Engel functions that
are linear in form, and the scatter as well as the QR testing has revealed a strong
tendency for the dispersion of food expenditure to increase with household income.
This is a particularly common form of heteroscedasticity. If one looks more care-
fully at the fitting, one sees interesting departures from symmetry that would not
be likely to be revealed by the typical textbook testing for heteroscedasticity, how-
ever. One common remedy for symptoms like this would be to reformulate the
model in log linear terms. It is interesting to compare what happens after the log
transformation with what we have already seen. Consider the following plot:

> plot(x,y,log="xy",xlab="Household Income", ylab="Food Expenditure")
> taus <- c(.05,.1,.25,.75,.90,.95)
> abline(rq(log10(y)~log10(x),tau=.5),col="blue")
> for( i in 1:length(taus)){

abline(rq(log10(y)~log10(x),tau=taus[i]),col="gray")
}
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Note that the flag log="xy" produces a plot with log-log axes, and for convenience of
axis labeling these logarithms are base 10, so the subsequent fitting is also specified
as base 10 logs for plotting purposes, even though base 10 logarithms are unnatural
and would never be used in reporting numerical results. This looks much more like a
classical iid error regression model, although again some departure from symmetry
is visible. An interesting exercise is to conduct some formal testing for departures
from the iid assumption of the type already considered above. This is left as an
exercise for the reader.

Problem 2: Nonparametric Quantile Regression

Nonparametric quantile regression is most easily considered within a locally poly-
nomial framework. Locally linear fitting can be carried out by the following func-
tion, provided in the quantreg package:

> "lprq" <-
function(x, y, h, m=50 , tau=.5)
{

xx <- seq(min(x),max(x),length=m)
fv <- xx
der <- xx
for(i in 1:length(xx)) {

z <- x - xx[i]
wx <- dnorm(z/h)
r <- rq(y~z, weights=wx, tau=tau)
fv[i] <- r$coef[1.]
der[i] <- r$coef[2.]

}
list(xx = xx, fv = fv, der = der)

}

8 Exercises in Quantile Regression

If you read through the function carefully you will see that it is just a matter of
computing a quantile regression fit at each of m equally spaced x-values over the
support of the observed x points. The function value estimates are returned as fv
and the first derivative estimates at the m points are returned as der. As usual
you can specify τ , but now you also need to specify a bandwidth h.

1. Begin by exploring the effect of the h and tau arguments for fitting the
motorcycle data. Note that fitting derivatives requires larger bandwidth and larger
sample size to achieve the same precision obtainable by function fitting. You are
encouraged to substitute a more economic data set for the ubiquitous motorcycle
data, its only advantage in the current context is that you can easily find examples
to compare in the nonparametric regression literature.

2. Adapt lprq so that it does locally quadratic rather than linear fitting and
compare performance.

3. Another general strategy for nonparametric quantile regression that is rel-
atively simple to adapt to R uses regression splines. The function bs() in the
package splines gives a very flexible way to construct B-spline basis expansions.
For example you can fit a model like this:

> require(splines)
> url <- "http://www.econ.uiuc.edu/~roger/courses/LSE/data/motorcycle.data"
> d <- read.table(file = url, header=TRUE)
> fit <- rq(y~bs(x,df=5),tau=.33, data = d)

which fits a piecewise cubic polynomial with knots (breakpoints in the third deriv-
ative) at quintiles of the x’s. You can also explicitly specify the knot sequence and
the order of the spline. One advantage of this approach is that it is very easy to
add a partially linear model component. So if there is another covariate, say z, we
can add a parametric component like this:

> fit <- rq(y~bs(x,df=5)+z,tau=.33)

This avoids complications of backfitting when using kernel methods for partially
linear models. Compare some fitting using the spline approach with that obtained
with the local polynomial kernel approach.

4. Yet another even more appealing approach to univariate nonparametric
smoothing involves penalty methods as described for example in Koenker, Ng, and
Portnoy (1994) In recent work, Koenker and Mizera (2002), this approach has been
extended to bivariate nonparametric regression, and more recently to a general class
of additive models. Again, partially linear models are easily adapted, and there are
easy ways to impose monotonicity and convexity on the fitted functions. In large
problems it is essential to take advantage of the sparsity of the linear algebra. This
is now feasible using special versions of the interior point algorithm for quantile
regression and the SparseM package, Koenker and Ng (2003). The paper ? de-
scribes some recent developments of inference apparatus for these models. Further
development of these methods would be aided by some additional experience with
real data.

An important feature of these additive models is that it is possible to impose
monotonocity and/or convexity/concavity on the individual components. There are
also relatively new methods for doing inference and prediction as well as plotting. As
usual you can experiment with these methods by trying the example() function on
methods like summary.rqss, plot.rqss, and predict.rqss. But more interesting
would be to try new examples based on real data.
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Problem 3: Quantile Regression Survival Analysis

Quantile regression as proven to be a particularly attractive approach for uni-
variate survival analysis (aka duration modeling). The classical accelerated failure
time model

log(Ti) = x>i β + ui

with iid errors ui, can be easily extended to consider,

(1) Qlog(Ti)(τ |xi) = x>i β(τ),

yielding a flexible, yet parametrically parsimonious, approach.
In this problem you are asked to explore such models in the context of the

Pennsylvania reemployment bonus experiment conducted in 1988-89. In this period
new claimants for unemployment insurance were randomized into one of several
treatment groups or a control group. Control participants abided by the usual rules
of the unemployment insurance system; treatment participants were offered a cash
bonus to be awarded if the claimant was certifiably reemployed within a specified
qualification period. For simplicity we will focus on only one of the treatment
groups, those offered a bonus of 6 times their weekly benefit provided reemployment
was established within 12 weeks. For this group the bonus averaged about $ 1000
for those collecting it. The data will be available in the form of an R data set called
Penn46.data in the same directory as we have indicated for the prior datasets.
This can be read into R using the same procedure as was used for the Engel data.
For a more detailed analysis incorporating the other treatments, see Koenker and
Bilias (2001). See Koenker and Xiao (2002) for further details on approaches to
inference for these models.

In this application interest naturally focuses on the effect of the binary, random-
ized treatment. How does the bonus influence the distribution of the duration of
unemployment? The Lehmann quantile treatment effect (QTE) is a natural object
of empirical attention.

1. Explore some specifications of the QR model (1) and compare to fitting the
Cox proportional hazard specification. See require(survival) for functions to
estimate the corresponding Cox models. Note that covariate effects in the Cox
models are necessarily scalar in nature, so for example the treatment effect must
either increase, or decrease unemployment durations over the whole range of the
distribution, but it cannot decrease durations in the lower tail and increase them in
the upper tail – unless the model is specified with distinct baseline hazard functions
for the two groups. See Koenker and Geling (2001) for some further details on the
relationship between the QR survival model and the Cox model.

2. Explore some formal inference options to try to narrow the field of interesting
specifications. See for example the discussion in Koenker and Xiao (2002) on tests
based on the whole QR process.

Problem 4: Quantile Autoregression

Consider a simple linear QAR model,

yt = α1(ut)yt−1 + α0(ut) t = 0, 1, ..., T

where ut is iid U [0, 1]. Suppose that α1(u) = 0.85+0.25u and α0(u) = Φ−1(u) with
Φ denoting the standard normal distribution function. Simulate a realization of this
process with T = 1000 and estimate and plot the QAR coefficients, comparing them
to the usual OLS estimates.

Verify whether or not the process is stationary. In your realization of the process
check to see whether yt−1 stays in the region for which the conditional quantile
function of yt is monotone. What is the usual OLS estimate of the AR(1) model

10 Exercises in Quantile Regression

estimating in this case? Check the residuals from the OLS fit to see if they exhibit
any suspicious features that would reveal what is unusual here.

Problem 5: Portfolio Choice

This problem deals with the “pessimistic portfolio allocation” proposed in Bas-
sett, Koenker, and Kordas (2003). The paper employs a highly artificial example.
Your task, should you decide to accept it, is to produce a more realistic example
using real data. Software implementing the methods of the paper is available as an
R package called qrisk. This is not a CRAN package, but it is available from the
url, http://www.econ.uiuc.edu/~roger/research/risk/risk.html The R func-
tion qrisk in this package computes optimal portfolio weights based on a matrix of
observed, or simulated, asset returns using a specified form of pessimistic Choquet
preferences.

Problem 6: Inequality Decomposition

The extensive literature on the measurement of inequality has devoted consid-
erable attention to the question of how to decompose changes in measurements of
inequality. If we observe increases in the Gini coefficient in a particular region over
some sample period, can we attribute these changes in some way to underlying
changes in covariates, or to changes in the effects of these covariates? QR offers a
convenient general approach to this question. Suppose that we have estimated a
garden variety wage equation model in QR form,

(2) Qlog y(τ |x) = x>β(τ),

and we would like to compute a conditional Gini coefficient.
Recall that the Lorenz function of a univariate distribution with quantile func-

tion, Q, is given by,

λ(t) = µ−1

∫ t

0

Q(s)ds

where µ =
∫ 1

0
Q(s)ds is the mean of the distribution. The Gini coefficient is simply

twice the area between λ(t) and the 45 degree line,

γ = 1− 2
∫ 1

0

λ(t)dt.

1. Given the linear decomposition of the conditional quantile function in (2)
and the fact that the Gini coefficient is a linear functional of the quantile function,
formulate a conditional Gini decomposition for log wages, and interpret it.

2. Over time we may wish to “explain” changes in the Gini coefficient by consid-
ering changes in the wage structure – which we can interpret as β(τ) in (2) – and
changes in the characteristics of the population – which are captured by the evolu-
tion of the distribution of x. This way of thinking enables us to consider thought
experiments such as, “How would Gini have evolved if the wage structure were fixed
at some initial condition, but population characteristics changed according to some
specified pattern, historical or otherwise”. Or alternatively, suppose that we fix
population characteristics and consider the evolution of the the conditional compo-
nents of Gini as βt(τ) changes over time. Decompositions of this type have been
considered in recent work of Machado and Mata (2001). The Gini decomposition
has also been recently considered by ? I would love to see a further applications
along these lines.
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Overview of the Course

The Basics: What, Why and How?

Inference and Quantile Treatment Effects

Nonparametric Quantile Regression

Endogoneity and IV Methods

Censored QR and Survival Analysis

Quantile Autoregression

QR for Longitudinal Data

Risk Assessment and Choquet Portfolios

Computional Aspects

Course outline, lecture slides, an R FAQ, and even some proposed exercises
can all be found at:

http://www.econ.uiuc.edu/~roger/courses/LSE.
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The Basics: What, Why and How?

1 Univariate Quantiles

2 Scatterplot Smoothing

3 Equivariance Properties

4 Quantile Treatment Effects

5 Three Empirical Examples
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Archimedes’ “Eureka!” and the Middle Sized Egg

Volume of the eggs can be measure by the amount of water they displace
and the median (middle-sized) egg found by sorting these measurements.

Note that even if we measure the logarithm of the volumes, the middle
sized egg is the same! Not true for the mean egg, or the modal one.
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The Stem and Leaf Plot: Tukey’s EDA Gadget Number 1

Given a “batch” of numbers, {X1,X2, ...,Xn} one can make a quick and
dirty histogram in R this way:

> x <− r c h i s q (100 ,5 ) # 100 Chi−squa red (5 )
> q u a n t i l e ( x ) # Tukey ’ s F i v e Number Summary

0% 25% 50% 75% 100%
0.9042396 2.7662230 4.2948642 6.2867588 16.5818573

> stem ( x )

The dec ima l p o i n t i s a t the |

0 | 92356668
2 | 001111244445667778889990111222455666
4 | 01223334666678901125567889
6 | 023344667802888
8 | 556691

10 | 7
12 | 159
14 | 06
16 | 6

Roger Koenker (CEMMAP & UIUC) Introduction LSE: 16.5.2011 5 / 63

Boxplot of CEO Pay: Tukey’s EDA Gadget Number 2
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Motivation

What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of of x’s.
We could go further and compute several different regression
curves corresponding to the various percentage points of the
distributions and thus get a more complete picture of the set.
Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture
of a single distribution, so the regression curve gives a
correspondingly incomplete picture for a set of distributions.

Mosteller and Tukey (1977)
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Univariate Quantiles
Given a real-valued random variable, X, with distribution function F, we
will define the τth quantile of X as

QX(τ) = F−1
X (τ) = inf{x | F(x) > τ}.

This definition follows the usual convention that F is CADLAG, and Q is
CAGLAD as illustrated in the following pair of pictures.
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Univariate Quantiles

Viewed from the perspective of densities, the τth quantile splits the area
under the density into two parts: one with area τ below the τth quantile
and the other with area 1 − τ above it:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

x

f(
x)

τ 1 − τ
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Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ:

ττ − 1

ρτ(u)
τ

τ − 1

ψτ(u)

The subgradient of a convex function f(u) at a point u consists of all the
possible “tangents.” Sums of convex functions are convex.
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Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

α̂(τ) = argmin E ρτ(Y − α)

Proof: Let ψτ(u) = ρ
′
τ(u), so differentiating wrt to α:

0 =

∫∞
−∞ψτ(y− α)dF(y)

= (τ− 1)

∫α
−∞ dF(y) + τ

∫∞
α
dF(y)

= (τ− 1)F(α) + τ(1 − F(α))

implying τ = F(α) and thus α̂ = F−1(τ).
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Sample Quantiles as Optimizers

For sample quantiles replace F by F̂, the empirical distribution function.
The objective function becomes a polyhedral convex function whose
derivative is monotone decreasing, in effect the gradient simply counts
observations above and below and weights the sums by τ and 1 − τ.
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Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

µ = argminmE(Y −m)2

The conditional mean µ(x) = E(Y|X = x) solves

µ(x) = argminmEY|X=x(Y −m(X))2.

Similarly, the unconditional τth quantile solves

ατ = argminaEρτ(Y − a)

and the conditional τth quantile solves

ατ(x) = argminaEY|X=xρτ(Y − a(X))
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Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into
positive and negative parts and sum with appropriate weights:

min{τ1>u+ (1 − τ)1>v|y = Xb+ u− v, (b,u, v) ∈ |Rp × |R2n
+ }

Dual Formulation as a Linear Program

max{y ′d|X>d = (1 − τ)X>1,d ∈ [0, 1]n}

Solutions are characterized by an exact fit to p observations.
Let h ∈ H index p-element subsets of {1, 2, ...,n} then primal solutions
take the form:

β̂ = β̂(h) = X(h)−1y(h)
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Least Squares from the Quantile Regression Perspective
Exact fits to p observations:

β̂ = β̂(h) = X(h)−1y(h)

OLS is a weighted average of these β̂(h)’s:

β̂OLS = (X>X)−1X>y =
∑
h∈H

w(h)β̂(h),

w(h) = |X(h)|2/
∑
h∈H

|X(h)|2

The determinants |X(h)| are the (signed) volumes of the parallelipipeds
formed by the columns of the the matrices X(h). In the simplest bivariate
case, we have,

|X(h)|2 =

∣∣∣∣ 1 xi
1 xj

∣∣∣∣2 = (xj − xi)
2

so pairs of observations that are far apart are given more weight.
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Quantile Regression: The Movie

Bivariate linear model with iid Student t errors

Conditional quantile functions are parallel in blue

100 observations indicated in blue

Fitted quantile regression lines in red.

Intervals for τ ∈ (0, 1) for which the solution is optimal.
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Virtual Quantile Regression II

Bivariate quadratic model with Heteroscedastic χ2 errors

Conditional quantile functions drawn in blue

100 observations indicated in blue

Fitted quadratic quantile regression lines in red

Intervals of optimality for τ ∈ (0, 1).
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Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

0
20

40
60

80
10

0

x

y

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

[ 0.048  ,  0.062  ]

Roger Koenker (CEMMAP & UIUC) Introduction LSE: 16.5.2011 30 / 63



Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Conditional Means vs. Medians
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Minimizing absolute errors for median regression can yield something quite
different from the least squares fit for mean regression.
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Equivariance of Regression Quantiles

Scale Equivariance: For any a > 0, β̂(τ;ay,X) = aβ̂(τ;y,X) and
β̂(τ; −ay,X) = aβ̂(1 − τ;y,X)

Regression Shift: For any γ ∈ |Rp β̂(τ;y+ Xγ,X) = β̂(τ;y,X) + γ

Reparameterization of Design: For any |A| 6= 0,
β̂(τ;y,AX) = A−1β̂(τ;yX)

Robustness: For any diagonal matrix D with nonnegative elements.
β̂(τ;y,X) = β̂(τ,y+Dû,X)
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Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions QY(τ|x) are
equivariant in the sense that

Qh(Y)|X(τ|x) = h(QY|X(τ|x))

In contrast to conditional mean functions for which, generally,

E(h(Y)|X) 6= h(EY|X)

Examples:
h(y) = min{0,y}, Powell’s (1985) censored regression estimator.
h(y) = sgn{y} Rosenblatt’s (1957) perceptron, Manski’s (1975) maximum
score estimator. estimator.
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Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount ∆(x) when the
response of the untreated subject would be x. Then the
distribution G of the treatment responses is that of the random
variable X+ ∆(X) where X is distributed according to F.”
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Lehmann QTE as a QQ-Plot

Doksum (1974) defines ∆(x) as the “horizontal distance” between F and
G at x, i.e.

F(x) = G(x+ ∆(x)).

Then ∆(x) is uniquely defined as

∆(x) = G−1(F(x)) − x.

This is the essence of the conventional QQ-plot. Changing variables so
τ = F(x) we have the quantile treatment effect (QTE):

δ(τ) = ∆(F−1(τ)) = G−1(τ) − F−1(τ).
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Lehmann-Doksum QTE
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Lehmann-Doksum QTE
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An Asymmetric Example
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Treatment shifts the distribution from right skewed to left skewed making
the QTE U-shaped.
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The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal
distributions, F and G, but it cannot reveal anything about the joint
distribution, H. The copula function, Schweizer and Wolf (1981), Genest
and McKay, (1986),

ϕ(u, v) = H(F−1(u),G−1(v)),

is not identified. Lehmann’s formulation assumes that the treatment
leaves the ranks of subjects invariant. If a subject was going to be the
median control subject, then he will also be the median treatment subject.
This is an inherent limitation of the Neymann-Rubin potential outcomes
framework.
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QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

δ̂(τ) = Ĝ−1
n (τ) − F̂−1

m (τ)

where Ĝn and F̂m denote the empirical distribution functions of the
treatment and control observations, Consider the quantile regression model

QYi
(τ|Di) = α(τ) + δ(τ)Di

where Di denotes the treatment indicator, and Yi = h(Ti), e.g.
Yi = log Ti, which can be estimated by solving,

min
n∑
i=1

ρτ(yi − α− δDi)
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Francis Galton’s (1885) Anthropometric Quantiles
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Quantile Treatment Effects: Strength of Squeeze
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“Very powerful women exist, but happily perhaps for the repose of the
other sex, such gifted women are rare.”
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.
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A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:
I Mother’s Education
I Mother’s Prenatal Care
I Mother’s Smoking
I Mother’s Age
I Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II
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Marginal Effect of Mother’s Age
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Marginal Effect of Mother’s Weight Gain
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Daily Temperature in Melbourne: AR(1) Scatterplot
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Daily Temperature in Melbourne: Nonlinear QAR(1) Fit
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Conditional Densities of Melbourne Daily Temperature

10 12 14 16 18

0.
05

0.
15

today's max temperature

de
ns

ity

Yesterday's Temp 11

12 16 20 24

0.
00

0.
05

0.
10

0.
15

today's max temperature

de
ns

ity

Yesterday's Temp 16

15 20 25 30

0.
02

0.
06

0.
10

today's max temperature

de
ns

ity

Yesterday's Temp 21

15 20 25 30 35

0.
01

0.
03

0.
05

0.
07

today's max temperature

de
ns

ity

Yesterday's Temp 25

20 25 30 35

0.
01

0.
03

0.
05

0.
07

today's max temperature

de
ns

ity

Yesterday's Temp 30

20 25 30 35 40

0.
01

0.
03

0.
05

0.
07

today's max temperature

de
ns

ity

Yesterday's Temp 35

Roger Koenker (CEMMAP & UIUC) Introduction LSE: 16.5.2011 62 / 63

Review of Lecture 1

Least squares meethods of estimating conditional mean functions

were developed for, and

promote the view that,

Response = Signal + iid Measurement Error

In fact the world is rarely this simple.
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Quantile Regression: Inference

Roger Koenker

CEMMAP and University of Illinois, Urbana-Champaign

LSE: 16 May 2011
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Inference for Quantile Regression

Inference for the Sample Quantiles

QR Inference in iid Error Models*

QR Inference in Heteroscedastic Error Models*

Classical Rank Tests and the Quantile Regression Dual*

Inference on the Quantile Regression Process*

* Skimmed very lightly in favor of the first DIY in R session.
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What determines the precision of sample quantiles?

For random samples from a continuous distribution, F, the sample
quantiles, F̂−1

n (τ) are consistent, by the Glivenko-Cantelli theorem.
Rates of convergence and precision are governed by the density near the
quantile of interest, if it exists.
Note that differentiating the identity: F(F−1(t)) = t, yields,

d

dt
F(F−1(t)) = f(F−1(t))

d

dt
F−1(t) = 1

thus, provided of course that f(F−1(t)) > 0,

d

dt
F−1(t) =

1

f(F−1(t))

So, limiting normality of F̂n and the δ-method imply limiting normality of
the sample quantiles with

√
n rate and variance proportional to

f−2(F−1(t)).
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Inference for the Sample Quantiles

Minimizing
∑n
i=1 ρτ(yi − ξ) consider

gn(ξ) = −n−1
n∑
i=1

ψτ(yi − ξ) = n−1
n∑
i=1

(I(yi < ξ) − τ).

By convexity of the objective function,

{ξ̂τ > ξ}⇔ {gn(ξ) < 0}

and the DeMoivre-Laplace CLT yields, expanding F,

√
n(ξ̂τ − ξ) N(0,ω2(τ, F))

where ω2(τ, F) = τ(1 − τ)/f2(F−1(τ)). Classical Bahadur-Kiefer
representation theory provides further refinement of this result.
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Some Gory Details
Instead of a fixed ξ = F−1(τ) consider,

P{ξ̂n > ξ+ δ/
√
n} = P{gn(ξ+ δ/

√
n) < 0}

where gn ≡ gn(ξ+ δ/
√
n) is a sum of iid terms with

Egn = En−1
n∑
i=1

(I(yi < ξ+ δ/
√
n) − τ)

= F(ξ+ δ/
√
n) − τ

= f(ξ)δ/
√
n+ o(n−1/2)

≡ µnδ+ o(n−1/2)

Vgn = τ(1 − τ)/n+ o(n−1) ≡ σ2
n + o(n−1).

Thus, by (a triangular array form of) the DeMoivre-Laplace CLT,

P(
√
n(ξ̂n − ξ) > δ) = Φ((0 − µnδ)/σn) ≡ 1 −Φ(ω−1δ)

where ω = µn/σn =
√
τ(1 − τ)/f(F−1(τ)).
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Finite Sample Theory for Quantile Regression

Let h ∈ H index the
(
n
p

)
p-element subsets of {1, 2, . . . ,n} and X(h),y(h)

denote corresponding submatrices and vectors of X and y.
Lemma: β̂ = b(h) ≡ X(h)−1y(h) is the τth regression quantile iff
ξh ∈ C where

ξh =
∑
i/∈h

ψτ(yi − xiβ̂)x>i X(h)−1,

C = [τ− 1, τ]p, and ψτ(u) = τ− I(u < 0).
Theorem: (KB, 1978) In the linear model with iid errors, {ui} ∼ F, f,
the density of β̂(τ) is given by

g(b) =
∑
h∈H

∏·
i∈h f(x

>
i (b− β(τ)) + F−1(τ))

·P(ξh(b) ∈ C)|det(X(h))|

Asymptotic behavior of β̂(τ) follows by (painful) consideration of the
limiting form of this density, see also Knight and Goh (ET, 2009).

Roger Koenker (CEMMAP & UIUC) Introduction LSE: 16.5.2010 6 / 29



Asymptotic Theory of Quantile Regression I

In the classical linear model,

yi = xiβ+ ui

with ui iid from dfF, with density f(u) > 0 on its support
{u|0 < F(u) < 1}, the joint distribution of

√
n(β̂n(τi) − β(τi))

m
i=1 is

asymptotically normal with mean 0 and covariance matrix Ω⊗D−1. Here
β(τ) = β+ F−1

u (τ)e1, e1 = (1, 0, . . . , 0)>, x1i ≡ 1,n−1
∑
xix
>
i → D, a

positive definite matrix, and

Ω = ((τi ∧ τj − τiτj)/(f(F
−1(τi))f(F

−1(τj)))
m
i,j=1.
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Asymptotic Theory of Quantile Regression II

When the response is conditionally independent over i, but not identically
distributed, the asymptotic covariance matrix of ζ(τ) =

√
n(β̂(τ) − β(τ))

is somewhat more complicated. Let ξi(τ) = xiβ(τ), fi(·) denote the
corresponding conditional density, and define,

Jn(τ1, τ2) = (τ1 ∧ τ2 − τ1τ2)n
−1

n∑
i=1

xix
>
i ,

Hn(τ) = n−1
∑

xix
>
i fi(ξi(τ)).

Under mild regularity conditions on the {fi}’s and {xi}’s, we have joint
asymptotic normality for (ζ(τi), . . . , ζ(τm)) with covariance matrix

Vn = (Hn(τi)
−1Jn(τi, τj)Hn(τj)

−1)mi,j=1.
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Making Sandwiches

The crucial ingredient of the QR Sandwich is the quantile density function
fi(ξi(τ)), which can be estimated by a difference quotient.
Differentiating the identity: F(Q(t)) = t we get

s(t) =
dQ(t)

dt
=

1

f(Q(t))

sometimes called the “sparsity function” so we can compute

f̂i(x
>
i β̂(τ)) = 2hn/(x

>
i (β̂(τ+ hn) − β̂(τ− hn))

with hn = O(n−1/3). Prudence suggests a modified version:

f̃i(x
>
i β̂(τ)) = max{0, f̂i(x

>
i β̂(τ))}

Various other strategies can be employed including a variety of
bootstrapping options. More on this in the first lab session.

Roger Koenker (CEMMAP & UIUC) Introduction LSE: 16.5.2010 9 / 29

Rank Based Inference for Quantile Regression

Ranks play a fundamental dual role in QR inference.

Classical rank tests for the p-sample problem extended to regression

Rank tests play the role of Rao (score) tests for QR.
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Two Sample Location-Shift Model

X1, . . . ,Xn ∼ F(x) “Controls”

Y1, . . . ,Ym ∼ F(x− θ) “Treatments”

Hypothesis:

H0 : θ = 0

H1 : θ > 0

The Gaussian Model F = Φ

T = (Ȳm − X̄n)/
√
n−1 +m−1

UMP Tests:
critical region {T > Φ−1(1 − α)}
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Wilcoxon-Mann-Whitney Rank Test

Mann-Whitney Form:

S =

n∑
i=1

m∑
j=1

I(Yj > Xi)

Heuristic: If treatment responses are larger than controls for most pairs
(i, j), then H0 should be rejected.
Wilcoxon Form: Set (R1, . . . ,Rn+m) = Rank(Y1, . . . ,Ym,X1, . . .Xn),

W =

m∑
j=1

Rj

Proposition: S = W −m(m+ 1)/2 so Wilcoxon and Mann-Whitney tests
are equivalent.
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Pros and Cons of the Transformation to Ranks

Thought One:
Gain: Null Distribution is independent of F.
Loss: Cardinal information about data.

Thought Two:
Gain: Student t-test has quite accurate size provided σ2(F) <∞.
Loss: Student t-test uses cardinal information badly for long-tailed F.
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Asymptotic Relative Efficiency
of Wilcoxon versus Student t-test

Pitman (Local) Alternatives: Hn : θn = θ0/
√
n

(t-test)2  χ2
1(θ

2
0/σ

2(F))

(Wilcoxon)2  χ2
1(12θ2

0(
∫
f2)2)

ARE(W, t, F) = 12σ2(F)[
∫
f2(x)dx]2

F N U Logistic DExp LogN t2
ARE .955 1.0 1.1 1.5 7.35 ∞

Theorem (Hodges-Lehmann) For all F, ARE(W, t, F) > .864.
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Hájek ’s Rankscore Generating Functions
Let Y1, . . . ,Yn be a random sample from an absolutely continuous df F
with associated ranks R1, . . . ,Rn, Hájek ’s rank generating functions are:

âi(t) =


1 if t 6 (Ri − 1)/n

Ri − tn if (Ri − 1)/n 6 t 6 Ri/n
0 ifRi/n 6 t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

τ
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Linear Rank Statistics Asymptotics

Theorem (Hájek (1965)) Let cn = (c1n, . . . , cnn) be a triangular array of
real numbers such that

max
i

(cin − c̄n)2/

n∑
i=1

(cin − c̄n)2 → 0.

Then

Zn(t) = (

n∑
i=1

(cin − c̄n)2)−1/2
n∑
j=1

(cjn − c̄n)âj(t)

≡
n∑
j=1

wjâj(t)

converges weakly to a Brownian Bridge, i.e., a Gaussian process on [0, 1]

with mean zero and covariance function Cov(Z(s),Z(t)) = s∧ t− st.
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Some Asymptotic Heuristics

The Hájek functions are approximately indicator functions

âi(t) ≈ I(Yi > F−1(t)) = I(F(Yi) > t)

Since F(Yi) ∼ U[0, 1], linear rank statistics may be represented as∫1
0
âi(t)dϕ(t) ≈

∫1
0
I(F(Yi) > t)dϕ(t) = ϕ(F(Yi)) −ϕ(0)

∫1
0
Zn(t)dϕ(t) =

∑
wi

∫
âi(t)dϕ(t)

=
∑

wiϕ(F(Yi)) + op(1),

which is asymptotically distribution free, i.e. independent of F.
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Duality of Ranks and Quantiles

Quantiles may be defined as

ξ̂(τ) = argmin
∑

ρτ(yi − ξ)

where ρτ(u) = u(τ− I(u < 0)). This can be formulated as a linear
program whose dual solution

â(τ) = argmax{y>a|1>na = (1 − τ)n,a ∈ [0, 1]n}

generates the Hájek rankscore functions.

Reference: Gutenbrunner and Jurečková (1992).
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Regression Quantiles and Rank Scores:

β̂n(τ) = argminb∈Rp
∑

ρτ(yi − x>i b)

ân(τ) = argmaxa∈[0,1]n{y
>a|X>a = (1 − τ)X>1n}

x>β̂n(τ) Estimates QY(τ|x)

Piecewise constant on [0, 1].

For X = 1n, β̂n(τ) = F̂−1
n (τ).

{âi(τ)}
n
i=1 Regression rankscore functions

Piecewise linear on [0, 1].
For X = 1n, âi(τ) are Hajek rank generating functions.
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Regression Rankscore “Residuals”

The Wilcoxon rankscores,

ũi =

∫1
0
âi(t)dt

play the role of quantile regression residuals. For each observation yi they
answer the question: on which quantile does yi lie? The ũi satisfy an
orthogonality restriction:

X>ũ = X>
∫1
0
â(t)dt = nx̄

∫1
0
(1 − t)dt = nx̄/2.

This is something like the X>û = 0 condition for OLS. Note that if the X
is “centered” then x̄ = (1, 0, · · · , 0). The ũ vector is approximately
uniformly “distributed;” in the one-sample setting ui = (Ri + 1/2)/n so
they are obviously “too uniform.”
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Regression Rank Tests

Y = Xβ+ Zγ+ u

H0 : γ = 0 versus Hn : γ = γ0/
√
n

Given the regression rank score process for the restricted model,

ân(τ) = argmax
{
Y>a |X>a = (1 − τ)X>1n

}
A test of H0 is based on the linear rank statistics,

b̂n =

∫1
0
ân(t)dϕ(t)

Choice of the score function ϕ permits test of location, scale or
(potentially) other effects.
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Regression Rankscore Tests

Theorem: (Gutenbrunner, Jurečková , Koenker and Portnoy) Under Hn
and regularity conditions, the test statistic Tn = S>nQ−1

n Sn where
Sn = (Z− Ẑ)>b̂n, Ẑ = X(X>X)−1X>Z, Qn = n−1(Z− Ẑ)>Z− Ẑ)

Tn  χ2
q(η)

where

η2 = ω2(ϕ, F)γ>0 Qγ0

ω(ϕ, F) =

∫1
0
f(F−1(t))dϕ(t)
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Regression Rankscores for Stackloss Data
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Regression Rankscores for Stackloss Data
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Inversion of Rank Tests for Confidence Intervals

For the scalar γ case and using the score function

ϕτ(t) = τ− I(t < τ)

b̂ni = −

∫1
0
ϕτ(t)dâni(t) = âni(τ) − (1 − τ)

where ϕ̄ =
∫1

0 ϕτ(t)dt = 0 and A2(ϕτ) =
∫1

0(ϕτ(t) − ϕ̄)2dt = τ(1 − τ).
Thus, a test of the hypothesis H0 : γ = ξ may be based on ân from
solving,

max{(y− x2ξ)
>a|X>1 a = (1 − τ)X>1 1,a ∈ [0, 1]n} (1)

and the fact that

Sn(ξ) = n−1/2x>2 b̂n(ξ) N(0,A2(ϕτ)q
2
n) (2)
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Inversion of Rank Tests for Confidence Intervals

That is, we may compute

Tn(ξ) = Sn(ξ)/(A(ϕτ)qn)

where q2
n = n−1x>2 (I− X1(X

>
1 X1)

−1X>1 )x2. and reject H0 if
|Tn(ξ)| > Φ−1(1 − α/2).

Inverting this test, that is finding the interval of ξ’s such that the test fails
to reject. This is a quite straightforward parametric linear programming
problem and provides a simple and effective way to do inference on
individual quantile regression coefficients. Unlike the Wald type inference
it delivers asymmetric intervals. This is the default approach to parametric
inference in quantreg for problems of modest sample size.
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Inference on the Quantile Regression Process

Using the quantile score function, ϕτ(t) = τ− I(t < τ) we can consider
the quantile rankscore process,

Tn(τ) = Sn(τ)>Q−1
n Sn(τ)/(τ(1 − τ)).

where

Sn = n−1/2(X2 − X̂2)
>b̂n,

X̂2 = X1(X
>
1 X1)

−1X>1 X2,

Qn = (X2 − X̂2)
>(X2 − X̂2)/n,

b̂n = (−

∫
ϕ(t)dâin(t))ni=1,
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Inference on the Quantile Regression Process

Theorem: (K & Machado) Under Hn : γ(τ) = O(1/
√
n) for τ ∈ (0, 1)

the process Tn(τ) converges to a non-central Bessel process of order
q = dim(γ). Pointwise, Tn is non-central χ2.

Related Wald and LR statistics can be viewed as providing a general
apparatus for testing goodness of fit for quantile regression models. This
approach is closely related to classical p-dimensional goodness of fit tests
introduced by Kiefer (1959).
When the null hypotheses under consideration involve unknown nuisance
parameters things become more interesting. In Koenker and Xiao (2001)
we consider this “Durbin problem” and show that the elegant approach of
Khmaladze (1981) yields practical methods.
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Four Concluding Comments about Inference

Asymptotic inference for quantile regression poses some statistical
challenges since it involves elements of nonparametric density
estimation, but this shouldn’t be viewed as a major obstacle.

Classical rank statistics and Hájek ’s rankscore process are closely
linked via Gutenbrunner and Jurečková ’s regression rankscore
process, providing an attractive approach to many inference problems
while avoiding density estimation.

Inference on the quantile regression process can be conducted with
the aid of Khmaladze’s extension of the Doob-Meyer construction.

Resampling offers many further lines of development for inference in
the quantile regression setting.
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In the Beginning, . . . were the Quantiles
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Three Approaches to Nonparametric Quantile Regression
Locally Polynomial (Kernel) Methods: lprq

α̂(τ, x) = argmin
n∑
i=1

ρτ(yi − α0 − α1(xi − x) − ... −
1

p!
αp(xi − x)p)

ĝ(τ, x) = α̂0(τ, x)

Series Methods rq( y ∼ bs(x,knots = k) + z

α̂(τ) = argminα

n∑
i=1

ρτ(yi −
∑
j

ϕj(xi)αj)

ĝ(τ, x) =

p∑
j=1

ϕj(x)α̂j

Penalty Methods rqss

ĝ(τ, x) = argming

n∑
i=1

ρτ(yi − g(xi)) + λP(g)
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Total Variation Regularization I

There are many possible penalties, ways to measure the roughness of fitted
function, but total variation of the first derivative of g is particularly
attractive:

P(g) = V(g ′) =

∫
|g ′′(x)|dx

As λ→∞ we constrain g to be closer to linear in x. Solutions of

ming∈G

n∑
i=1

ρτ(yi − g(xi)) + λV(g ′)

are continuous and piecewise linear.
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Example 1: Fish in a Bottle

Objective: to study metabolic activity of various fish species in an effort to
better understand the nature of the feeding cycle. Metabolic rates based
on oxygen consumption as measured by sensors mounted on the tubes.

Three primary aspects are of interest:

1 Basal (minimal) Metabolic Rate,

2 Duration and Shape of the Feeding Cycle, and

3 Diurnal Cycle.
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Example 1: Some Experimental Details

Experimental data of Denis Chabot, Institut Maurice-Lamontagne,
Quebec, Canada and his colleagues.

1 Basal (minimal) metabolic rate MO2 (aka Standard Metabolic Rate
SMR) is measured in mg O2 h

−1 kg−1 for fish “at rest” after several
days without feeding,

2 Fish are then fed and oxygen consumption monitored until MO2

returns to its prior SMR level for several hours.

3 Elevation of MO2 after feeding (aka Specific Dynamic Action SDA)
ideally measures the energy required for digestion,

4 Procedure is repeated for several cycles, so each estimation of the
cycle is based on a few hundred observations.
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Example 1: Juvenile Codfish
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Tuning Parameter Selection

There are two tuning parameters:

1 τ = 0.15 the (low) quantile chosen to represent the SMR,

2 λ controls the smoothness of the SDA cycle.

One way to interpret the parameter λ is to note that it controls the number
of effective parameters of the fitted model (Meyer and Woodroofe(2000):

p(λ) = div ĝλ,τ(y1, ...,yn) =

n∑
i=1

∂ŷi/∂yi

This is equivalent to the number of interpolated observations, the number
of zero residuals. Selection of λ can be made by minimizing, e.g. Schwarz
Criterion:

SIC(λ) = n log(n−1
∑

ρτ(yi − ĝλ,τ(xi))) +
1

2
p(λ) logn.
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Total Variation Regularization II

For bivariate functions we consider the analogous problem:

ming∈G

n∑
i=1

ρτ(yi − g(x1i, x2i)) + λV(∇g)

where the total variation variation penalty is now:

V(∇g) =

∫
‖∇2g(x)‖dx

Solutions are again continuous, but now they are piecewise linear on a
triangulation of the observed x observations. Again, as λ→∞ solutions
are forced toward linearity.
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Example 2: Chicago Land Values via TV Regularization

Chicago Land Values: Based on 1194 vacant land sales and 7505 “virtual” sales

introduced to increase the flexibility of the triangulation. K and Mizera (2004).
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Additive Models: Putting the pieces together

We can combine such models:

ming∈G

n∑
i=1

ρτ(yi −
∑
j

gj(xij)) +
∑
j

λjV(∇gj)

Components gj can be univariate, or bivariate.

Additivity is intended to muffle the curse of dimensionality.

Linear terms are easily allowed, or enforced.

And shape restrictions like monotonicity and convexity/concavity as
well as boundry conditions on gj’s can also be imposed.
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Implementation in the R quantreg Package

Problems are typically large, very sparse linear programs.

Optimization via interior point methods are quite efficient,

Provided sparsity of the linear algebra is exploited, quite large
problems can be estimated.

The nonparametric qss components can be either univariate, or
bivariate

Each qss component has its own λ specified

Linear covariate terms enter formula in the usual way

The qss components can be shape constrained.

fit <- rqss(y ∼ qss(x1,3) + qss(x2,8) + x3, tau = .6)
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Pointwise Confidence Bands

It is obviously crucial to have reliable confidence bands for nonparametric
components. Following Wahba (1983) and Nychka(1983), conditioning on
the λ selection, we can construct bands from the covariance matrix of the
full model:

V = τ(1 − τ)(X̃>ΨX̃)−1(X̃>X̃)−1(X̃>ΨX̃)−1

with

X̃ =


X G1 · · · GJ

λ0HK 0 · · · 0
0 λ1P1 · · · 0
... · · · . . .

...
0 0 · · · λjPJ

 and Ψ = diag(φ(ûi/hn)/hn)

Pointwise bands can be constructed by extracting diagonal blocks of V.
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Uniform Confidence Bands

Uniform bands are also important, but more challenging. We would like:

Bn(x) = (ĝn(x) − cασ̂n(x), ĝn(x) + cασ̂n(x))

such that the true curve, g0, is covered with specified probability 1 − α

over a given domain X:

P{g0(x) ∈ Bn(x) | x ∈ X} > 1 − α.

We can follow the “Hotelling tube” approach based on Hotelling(1939)
and Weyl (1939) as developed by Naiman (1986), Johansen and Johnstone
(1990) Sun and Loader (1994) and others.
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Uniform Confidence Bands
Hotelling’s original formulation for parametric nonlinear regression has
been extended to non-parametric regression. For series estimators

ĝn(x) =

p∑
j=1

ϕj(x)θ̂j

with pointwise standard error σ(x) =
√
ϕ(x)>V−1ϕ(x) we would like to

invert test statistics of the form:

Tn = sup
x∈X

ĝn(x) − g0(x)

σ(x)
.

This requires solving for the critical value, cα in

P(Tn > c) 6 κ

2π
(1 + c2/ν)−ν/2 + P(tν > c) = α

where κ is the length of a “tube” determined by the basis expansion, tν is
a Student random variable with degrees of freedom ν = n− p.
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Confidence Bands in Simulations

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

Median Estimate

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
x

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

Mean Estimate

Yi =
√
xi(1 − xi) sin

(
2π(1+2−7/5)
xi+2−7/5

)
+Ui, i = 1, · · · , 400, Ui ∼ N(0, 0.04)

,
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Simulation Performance

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.063 0.046 12.936 0.960 0.999 0.323 0.920
gam 0.045 0.035 20.461 0.956 0.998 0.205 0.898

t3
rqss 0.071 0.052 11.379 0.955 0.998 0.274 0.929
gam 0.071 0.054 17.118 0.948 0.994 0.159 0.795

t1
rqss 0.099 0.070 9.004 0.930 0.996 0.161 0.867
gam 35.551 2.035 8.391 0.920 0.926 0.203 0.546

χ2
3

rqss 0.110 0.083 8.898 0.950 0.997 0.270 0.883
gam 0.096 0.074 14.760 0.947 0.987 0.218 0.683

Performance of Penalized Estimators and Their Confidence Bands: IID Error Model
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Simulation Performance

Accuracy Pointwise Uniform
RMISE MIAE MEDF Pband Uband Pband Uband

Gaussian
rqss 0.081 0.063 10.685 0.951 0.998 0.265 0.936
gam 0.064 0.050 17.905 0.957 0.999 0.234 0.940

t3
rqss 0.091 0.070 9.612 0.952 0.998 0.241 0.938
gam 0.103 0.078 14.656 0.949 0.992 0.232 0.804

t1
rqss 0.122 0.091 7.896 0.938 0.997 0.222 0.893
gam 78.693 4.459 7.801 0.927 0.958 0.251 0.695

χ2
3

rqss 0.145 0.114 7.593 0.947 0.998 0.307 0.921
gam 0.138 0.108 12.401 0.941 0.973 0.221 0.626

Performance of Penalized Estimators and Their Confidence Bands: Linear Scale
Model
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Example 3: Childhood Malnutrition in India

A larger scale problem illustrating the use of these methods is a model of
risk factors for childhood malnutrition considered by Fenske, Kneib and
Hothorn (2009).

They motivate the use of models for low conditional quantiles of
height as a way to explore influences on malnutrition,

They employ boosting as a model selection device,

Their model includes six univariate nonparametric components and 15
other linear covariates.

There are 37,623 observations on the height of children from India.
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Example 3: R Formulation

fit <- rqss(cheight ∼ qss(cage, lambda = lam[1]) +

qss(bfed, lambda = lam[2]) + qss(mage, lambda = lam[3]) +

qss(mbmi, lambda = lam[4]) + qss(sibs, lambda = lam[5]) +

qss(medu, lambda = lam[6]) + qss(fedu, lambda = lam[7]) +

csex + ctwin + cbirthorder + munemployed + mreligion +

mresidence + deadchildren + wealth + electricity +

radio + television + frig + bicycle + motorcycle + car +

tau = 0.10, method = "lasso", lambda = lambda, data = india)

The seven coordinates of lam control the smoothness of the
nonparametric components,

lambda controls the degree of shrinkage in the linear (lasso)
coefficients.

The estimated model has roughly 40,000 observations, including the
penalty contribution, and has 2201 parameters.

Fitting the model for a single choice of λ’s takes approximately 5
seconds.
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Example 3: Selected Smooth Components
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Example 3: Lasso Shrinkage of Linear Components

β1

β2
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Lasso λ Selection – Another Approach
Lasso shrinkage is a special form of the TV penalty:

Rτ(b) =

n∑
i=1

ρτ(yi − x>i b)

β̂τ,λ = argmin{Rτ(b) + λ‖b‖1}
∈ {b : 0 ∈ ∂Rτ(b) + λ∂‖b‖1}.

At the true parameter, β0(τ), we have the pivotal statistic,

∂Rτ(β0(τ)) =
∑

(τ− I(Fyi(yi) 6 τ))xi

∼
∑

(τ− I(Ui 6 τ))xi

Proposal: (Belloni and Chernozhukov (2009)) Choose λ as the 1 − α

quantile of the simulated distribution of ‖∑
(τ− I(Ui 6 τ))xi‖∞ with iid

Ui ∼ U[0, 1].
Roger Koenker (CEMMAP & UIUC) Nonparametric QR LSE: 17.5.2010 23 / 25

Example 3: Lasso Shrinkage of Linear Components

0 50 100 150 200 250

−
2

−
1

0
1

λ

ef
fe

ct

cbirth2
cbirth3

cbirth4

cbirth5

Wpoorer

Wmiddle

Wricher

Wrichest

female

Roger Koenker (CEMMAP & UIUC) Nonparametric QR LSE: 17.5.2010 24 / 25



Conclusions

Nonparametric specifications of Q(τ|x) improve flexibility.

Additive models keep effective dimension in check.

Total variation roughness penalties are natural.

Schwarz model selection criteria are useful for λ selection

Hotelling tubes are useful for uniform confidence bands

Lasso Shrinkage is useful for parametric components.

Roger Koenker (CEMMAP & UIUC) Nonparametric QR LSE: 17.5.2010 25 / 25



Endogoneity and All That

Roger Koenker

CEMMAP and University of Illinois, Urbana-Champaign

LSE: 17 May 2011

Roger Koenker (CEMMAP & UIUC) Endogoneity and All That LSE: 17.5.2010 1 / 16

Is there IV for QR?

Amemiya (1982) and Powell (1983) consider analogues of 2SLS for
median regression models

Chen and Portnoy (1986) consider extensions to quantile regression

Abadie, Angrist and Imbens (2002) consider models with binary
endogonous treatment

Chernozhukov and Hansen (2003) propose “inverse” quantile
regression

Chesher (2003) considers triangular models with continuous
endogonous variables.
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Chernozhukov and Hansen QRIV

Motivation: Yet another way to view two stage least squares.

Model: y = Xβ+ Zα+ u, W ⊥⊥ u
Estimator:

α̂ = argminα‖γ̂(α)‖2A=W>MXW

γ̂(α) = argminγ‖y− Xβ− Zα−Wγ‖2

Thm α̂ = (Z>PMXWZ)−1Z>PMXWy, the 2SLS estimator.

Heuristic: α̂ is chosen to make ‖γ̂(α)‖ as small as possible to satisfy
(approximately) the exclusion restriction/assumption.

Generalization: The quantile regression version simply replaces ‖ · ‖2 in
the definition of γ̂ by the corresponding QR norm.
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A Linear Location Shift Recursive Model

Y = Sα1 + x>α2 + ε+ λν (1)

S = zβ1 + x>β2 + ν (2)

Suppose: ε ⊥⊥ ν and (ε,ν) ⊥⊥ (z, x). Substituting for ν from (2) into (1),

QY(τ1|S, x, z) = S(α1 + λ) + x>(α2 − λβ2) + z(−λβ1) + F−1
ε (τ1)

QS(τ2|z, x) = zβ1 + x>β2 + F−1
ν (τ2)

π1(τ1, τ2) = ∇SiQYi |Si=QSi +
∇ziQYi |Si=QSi
∇ziQSi

= (α1 + λ) + (−λβ1)/β1

= α1
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A Linear Location-Scale Shift Model

Y = Sα1 + x>α2 + S(ε+ λν)

S = zβ1 + x>β2 + ν

π1(τ1, τ2) = α1 + F−1
ε (τ1) + λF−1

ν (τ2)

QY(τ1|S, x, z) = Sθ1(τ1) + x>θ2 + S2θ3 + Szθ4 + Sx>θ5

QS(τ2|z, x) = zβ1 + x>β2 + F−1
ν (τ2)

π̂1(τ1, τ2) =

n∑
i=1

wi

{
θ̂1(τ1)+2Q̂Si θ̂3(τ1)+ziθ̂4(τ1)+x

>
i θ̂5(τ1)+

Q̂Si θ̂4(τ1)

β̂1(τ2)

}
a weighted average derivative estimator with Q̂Si = Q̂S(τ2|zi, xi).
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The General Recursive Model

Y = ϕ1(S, x, ε,ν; α)

S = ϕ2(z, x,ν; β)

Suppose: ε ⊥⊥ ν and (ε,ν) ⊥⊥ (z, x). Solving for ν and substituting we
have the conditional quantile functions,

QY(τ1|S, x, z) = h1(S, x, z, θ(τ1))

QS(τ2|z, x) = h2(z, x,β(τ2))

Extensions to more than two endogonous variables are ”straightforward.”
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The (Chesher) Weighted Average Derivative Estimator

θ̂(τ1) = argminθ

n∑
i=1

ρτ1(Yi − h1(S, x, z, θ(τ1)))

β̂(τ2) = argminβ

n∑
i=1

ρτ2(Si − h2(z, x,β(τ2)))

where ρτ(u) = u(τ− I(u < 0)), giving structural estimators:

π̂1(τ1, τ2) =

n∑
i=1

wi

{
∇Sĥ1i|Si=ĥ2i

+
∇zĥ1i|Si=ĥ2i

∇zĥ2i

}
,

π̂2(τ1, τ2) =

n∑
i=1

wi

{
∇xĥ1i|Si=ĥ2i

−
∇zĥ1i|Si=ĥ2i

∇zĥ2i

∇xĥ2i

}
,
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2SLS as a Control Variate Estimator

Y = Sα1 + X1α2 + u ≡ Zα+ u

S = Xβ+ V, where X = [X1
...X2]

Set V̂ = S− Ŝ ≡MXY1, and consider the least squares estimator of the
model,

Y = Zα+ V̂γ+w

Claim: α̂CV ≡ (Z>MV̂Z)−1Z>MV̂Y = (Z>PXZ)−1Z>PXY ≡ α̂2SLS.
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Proof of Control Variate Equivalence

MV̂ = MMXS = I−MXS(S
>MXS)

−1S>MX

S>MV̂ = S> − S>MX = S>PX
X>1 MV̂ = X>1 − X>1 MX = X>1 = X>1 PX

Reward for information leading to a reference prior to Dhrymes (1970).
Recent work on the control variate approach by Blundell, Powell, Smith,
Newey and others.
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Quantile Regression Control Variate Estimation I

Location scale shift model:

Y = S(α1 + ε+ λν) + x>α2

S = zβ1 + x>β2 + ν.

Using ν̂(τ2) = S− Q̂S(τ2|z, x) as a control variate,

Y = w>α(τ1, τ2) + λS(Q̂S −QS) + S(ε− F−1
ε (τ1)),

where w> = (S, x>,Sν̂(τ2))

α(τ1, τ2) = (α1(τ1, τ2),α2, λ)>

α1(τ1, τ2) = α1 + F−1
ε (τ1) + λF−1

ν (τ2).

α̂(τ1, τ2) = argmina

n∑
i=1

ρτ1(Yi −w>i a).
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Quantile Regression Control Variate Estimation II

Y = ϕ1(S, x, ε,ν; α)

S = ϕ2(z, x,ν; β)

Regarding ν(τ2) = ν− F−1
ν (τ2) as a control variate, we have

QY(τ1|S, x,ν(τ2)) = g1(S, x,ν(τ2),α(τ1, τ2))

QS(τ2|z, x) = g2(z, x,β(τ2))

ν̂(τ2) = ϕ−1
2 (S, z, x, β̂) −ϕ−1

2 (Q̂s, z, x, β̂)

α̂(τ1, τ2) = argmina

n∑
i=1

ρτ1(Yi − g1(S, x, ν̂(τ2),a)).
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Asymptopia

Theorem: Under regularity conditions, the weighted average derivative
and control variate estimators of the Chesher structural effect have an
asymptotic linear (Bahadur) representation, and after efficient reweighting
of both estimators, the control variate estimator has smaller covariance
matrix than the weighted average derivative estimator.

Remark: The control variate estimator imposes more stringent restrictions
on the estimation of the hybrid structural equation and should thus be
expected to perform better when the specification is correct. The
advantages of the control variate approach are magnified in situations of
overidentification.
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Asymptotics for WAD

Theorem

The π̂n(τ1, τ2) has the asymptotic linear (Bahadur) representation,

√
n(π̂n(τ1, τ2) − π(τ1, τ2)) = W1J̄

−1
1

1√
n

n∑
i=1

σi1ḣi1ψτ1(Yi1 − ξi1)

+ W2J̄
−1
2

1√
n

n∑
i=1

σi2ḣi2ψτ2(Yi2 − ξi2)

=⇒ N(0, ω11W1J̄
−1
1 J1J̄

−1
1 W>

1 +ω22W2J̄
−1
2 J2J̄

−1
2 W>

2 )

Jj = lim
n→∞ 1

n

∑
σ2
ijḣijḣ

>
ij, J̄j = lim

n→∞ 1

n

∑
σijfij(ξij)ḣijḣ

>
ij,

W1 = ∇θπ(τ1, τ2), W2 = ∇βπ(τ1, τ2),

ḣi1 = ∇θhi1, ḣi2 = ∇βhi2, ωjj = τj(1 − τj).
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Asymptotics for CV

Theorem

The α̂n(τ1, τ2) has the Bahadur representation,

√
n(α̂n(τ1, τ2) − α(τ1, τ2)) = D̄−1

1

1√
n

n∑
i=1

σi1ġi1ψτ1(Yi1 − ξi1)

+ D̄−1
1 D̄12D̄

−1
2

1√
n

n∑
i=1

σi2ġi2ψτ2(Yi2 − ξi2)

=⇒ N(0, ω11D̄
−1
1 D1D̄

−1
1 +ω22D̄

−1
1 D̄12D̄

−1
2 D2D̄

−1
2 D̄>12D̄

−1
1 )

Dj = lim
n→∞n−1

∑
σ2
ijġijġ

>
ij, D̄j = lim

n→∞n−1
∑

σijfij(ξij)ġijġ
>
ij,

D̄12 = lim
n→∞n−1

∑
σi1fi1ηiġi1ġ

>
i2,

ġi1 = ∇αgi1, ġi2 = ∇βgi2, ηi = (∂g1i/∂νi2(τ2))(∇νi2
ϕi2)

−1.
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ARE of WAD and CV

Efficient weights: σij = fij(ξij)√
n(π̂n(τ1, τ2) − π(τ1, τ2))⇒ N(0,ω11W1J

−1
1 W>

1 +ω22W2J
−1
2 W>

2 )
√
n(α̂n(τ1, τ2) −α(τ1, τ2))⇒ N(0,ω11D

−1
1 +ω22D

−1
1 D12D

−1
2 D>12D

−1
1 ).

The mapping: π̃n = Lα̂n, Lα = π.

W1J
−1
1 W>

1 > LD−1
1 L>

W2J
−1
2 W>

2 > LD−1
1 D12D

−1
2 D>12D

−1
1 L>.

Theorem

Under efficient reweighting of both estimators,

Avar(
√
nπ̃n) 6 Avar(

√
nπ̂n).
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Conclusions

Triangular structural models facilitate causal analysis via recursive
conditioning, directed acyclic graph representation.

Recursive conditional quantile models yield interpretable
heterogeneous structural effects.

Control variate methods offer computationally and statistically
efficient strategies for estimating heterogeneous structural effects.

Weighted average derivative methods offer a less restrictive strategy
for estimation that offers potential for model diagnostics and testing.
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Quantile Regression for Duration (Survival) Models

A wide variety of survival analysis models, following Doksum and Gasko
(1990), may be written as,

h(Ti) = x>i β+ ui

where h is a monotone transformation, and

Ti is an observed survival time,

xi is a vector of covariates,

β is an unknown parameter vector

{ui} are iid with df F.
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The Cox Model

For the proportional hazard model with

log λ(t|x) = log λ0(t) − x>β

the conditional survival function in terms of the integrated baseline hazard
Λ0(t) =

∫t
0 λ0(s)ds as,

log(− log(S(t|x))) = logΛ0(t) − x>β

so, evaluating at t = Ti, we have the model,

logΛ0(T) = x>β+ u

for ui iid with df F0(u) = 1 − e−eu .
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The Bennett (Proportional-Odds) Model

For the proportional odds model, where the conditional odds of death
Γ(t|x) = F(t|x)/(1 − F(t|x)) are written as,

log Γ(t|x) = log Γ0(t) − x>β,

we have, similarly,
log Γ0(T) = x>β+ u

for u iid logistic with F0(u) = (1 + e−u)−1.
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Accelerated Failure Time Model

In the accelerated failure time model we have

log(Ti) = x>i β+ ui

so

P(T > t) = P(eu > te−xβ)

= 1 − F0(te
−xβ)

where F0(·) denotes the df of eu, and thus,

λ(t|x) = λ0(te
−xβ)e−xβ

where λ0(·) denotes the hazard function corresponding to F0. In effect, the
covariates act to rescale time in the baseline hazard.
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Beyond the Transformation Model

The common feature of all these models is that after transformation of the
observed survival times we have:

a pure location-shift, iid-error regression model

covariate effects shift the center of the distribution of h(T), but

covariates cannot affect scale, or shape of this distribution
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An Application: Longevity of Mediterrean Fruit Flies

In the early 1990’s there were a series of experiments designed to study
the survival distribution of lower animals. One of the most influential of
these was:

Carey, J.R., Liedo, P., Orozco, D. and Vaupel, J.W. (1992) Slowing of

mortality rates at older ages in large Medfly cohorts, Science, 258, 457-61.

1,203,646 medflies survival times recorded in days

Sex was recorded on day of death

Pupae were initially sorted into one of five size classes

167 aluminum mesh cages containing roughly 7200 flies

Adults were given a diet of sugar and water ad libitum
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Major Conclusions of the Medfly Experiment

Mortality rates declined at the oldest observed ages. contradicting the
traditional view that aging is an inevitable, monotone process of
senescence.

The right tail of the survival distribution was, at least by human
standards, remarkably long.

There was strong evidence for a crossover in gender specific mortality
rates.
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Lifetable Hazard Estimates by Gender
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Medfly Survival Prospects

Lifespan Percentage Number
(in days) Surviving Surviving

40 5 60,000
50 1 12,000
86 .01 120

146 .001 12
Initial Population of 1,203,646

Human Survival Prospects∗

Lifespan Percentage Number
(in years) Surviving Surviving

50 98 591,000
75 69 413,000
85 33 200,000
95 5 30,000

105 .08 526
115 .0001 1

∗ Estimated Thatcher (1999) Model
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Quantile Regression Model (Geling and K (JASA,2001))

Criticism of the Carey et al paper revolved around whether declining
hazard rates were a result of confounding factors of cage density and initial
pupal size. Our basic QR model included the following covariates:

Qlog(Ti)(τ|xi) = β0(τ) + β1(τ)SEX + β2(τ)SIZE

+ β3(τ)DENSITY + β4(τ)%MALE

SEX Gender

SIZE Pupal Size in mm

DENSITY Initial Density of Cage

%MALE Initial Proportion of Males
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Base Model Results with AFT Fit
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Base Model Results with Cox PH Fit
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What About Censoring?

There are currently 3 approaches to handling censored survival data within
the quantile regression framework:

Powell (1986) Fixed Censoring

Portnoy (2003) Random Censoring, Kaplan-Meier Analogue

Peng/Huang (2008) Random Censoring, Nelson-Aalen Analogue

Available for R in the package quantreg.
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Powell’s Approach for Fixed Censoring

Rationale Quantiles are equivariant to monotone transformation:

Qh(Y)(τ) = h(QY(τ)) for h↗

Model Yi = Ti ∧ Ci ≡ min{Ti,Ci}

QYi|xi(τ|xi) = x>i β(τ) ∧ Ci

Data Censoring times are known for all observations

{Yi,Ci, xi : i = 1, · · · ,n}

Estimator Conditional quantile functions are nonlinear in parameters:

β̂(τ) = argmin
∑

ρτ(Yi − x>i β∧ Ci)
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Portnoy’s Approach for Random Censoring I

Rationale Efron’s (1967) interpretation of Kaplan-Meier as shifting
mass of censored observations to the right:

Algorithm Until we “encounter” a censored observation KM quantiles can be
computed by solving, starting at τ = 0,

ξ̂(τ) = argminξ

n∑
i=1

ρτ(Yi − ξ)

Once we “encounter” a censored observation, i.e. when
ξ̂(τi) = yi for some yi with δi = 0, we split yi into two parts:

I y
(1)
i = yi with weight wi = (τ− τi)/(1 − τi)

I y
(2)
i = y∞ = ∞ with weight 1 −wi.

Then denoting the index set of censored observations
“encountered” up to τ by K(τ) we can solve

min
∑
i/∈K(τ)

ρτ(Yi−ξ)+
∑
i∈K(τ)

[wi(τ)ρτ(Yi−ξ)+(1−wi(τ))ρτ(y∞−ξ)].
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Portnoy’s Approach for Random Censoring II

When we have covariates we can replace ξ by the inner product x>i β and solve:

min
∑
i/∈K(τ)

ρτ(Yi−x
>
i β)+

∑
i∈K(τ)

[wi(τ)ρτ(Yi−x
>
i β)+(1−wi(τ))ρτ(y∞ −x>i β)].

At each τ this is a simple, weighted linear quantile regression problem. The
following R code fragment replicates an analysis in Portnoy (2003):

require(quantreg)

data(uis)

fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis, method = "Por")

Sfit <- summary(fit,1:19/20)

PHit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis)

plot(Sfit, CoxPHit = PHit)
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Reanalysis of the Hosmer-Lemeshow Drug Relapse Data
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Peng and Huang’s Approach for Random Censoring I

Rationale Extend the martingale representation of the Nelson-Aalen
estimator of the cumulative hazard function to produce an
“estimating equation” for conditional quantiles.

Model AFT form of the quantile regression model:

Prob(log Ti 6 x>i β(τ)) = τ

Data {(Yi, δi) : i = 1, · · · ,n} Yi = Ti ∧ Ci, δi = I(Ti < Ci)

Martingale We have EMi(t) = 0 for t > 0, where:

Mi(t) = Ni(t) −Λi(t∧ Yi|xi)

Ni(t) = I({Yi 6 t}, {δi = 1})

Λi(t) = − log(1 − Fi(t|xi))

Fi(t) = Prob(Ti 6 t|xi)
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Peng and Huang’s Approach for Random Censoring II

The estimating equation becomes,

En−1/2
∑

xi[Ni(exp(x>i β(τ))) −

∫τ
0
I(Yi > exp(x>i β(u)))dH(u) = 0.

where H(u) = − log(1 − u) for u ∈ [0, 1), after rewriting:

Λi(exp(x>i β(τ)) ∧ Yi|xi)) = H(τ) ∧H(Fi(Yi|xi))

=

∫τ
0
I(Yi > exp(x>i β(u)))dH(u),

Approximating the integral on a grid, 0 = τ0 < τ1 < · · · < τJ < 1 yields a
simple linear programming formulation to be solved at the gridpoints.
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Alice in Asymptopia

It might be thought that the Powell estimator would be more efficient
than the Portnoy and Peng-Huang estimators given that it imposes more
stringent data requirements. Comparing asymptotic behavior and finite
sample performance in the simplest one-sample setting indicates otherwise.

median Kaplan-Meier Nelson-Aalen Powell Leurgans Ĝ Leurgans G

n= 50 1.602 1.972 2.040 2.037 2.234 2.945
n= 200 1.581 1.924 1.930 2.110 2.136 2.507
n= 500 1.666 2.016 2.023 2.187 2.215 2.742
n= 1000 1.556 1.813 1.816 2.001 2.018 2.569
n= ∞ 1.571 1.839 1.839 2.017 2.017 2.463

Scaled MSE for Several Estimators of the Median: Mean squared error estimates
are scaled by sample size to conform to asymptotic variance computations. Here,
Ti is standard lognormal, and Ci is exponential with rate parameter .25, so the
proportion of censored observations is roughly 30 percent. 1000 replications.
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Simulation Settings I
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Simulations I-A

Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0032 0.0638 0.0988 0.0025 0.0702 0.1063
n = 400 -0.0066 0.0406 0.0578 0.0036 0.0391 0.0588
n = 1000 -0.0022 0.0219 0.0321 0.0006 0.0228 0.0344

Peng-Huang
n = 100 0.0005 0.0631 0.0986 0.0092 0.0727 0.1073
n = 400 -0.0007 0.0393 0.0575 0.0074 0.0389 0.0598
n = 1000 0.0014 0.0215 0.0324 0.0019 0.0226 0.0347

Powell
n = 100 -0.0014 0.0694 0.1039 0.0068 0.0827 0.1252
n = 400 -0.0066 0.0429 0.0622 0.0098 0.0475 0.0734
n = 1000 -0.0008 0.0224 0.0339 0.0013 0.0264 0.0396

GMLE
n = 100 0.0013 0.0528 0.0784 -0.0001 0.0517 0.0780
n = 400 -0.0039 0.0307 0.0442 0.0031 0.0264 0.0417
n = 1000 0.0003 0.0172 0.0248 -0.0001 0.0165 0.0242

Comparison of Performance for the iid Error, Constant Censoring Configuration
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Simulations I-B

Intercept Slope
Bias MAE RMSE Bias MAE RMSE

Portnoy
n = 100 -0.0042 0.0646 0.0942 0.0024 0.0586 0.0874
n = 400 -0.0025 0.0373 0.0542 -0.0009 0.0322 0.0471
n = 1000 -0.0025 0.0208 0.0311 0.0006 0.0191 0.0283

Peng-Huang
n = 100 0.0026 0.0639 0.0944 0.0045 0.0607 0.0888
n = 400 0.0056 0.0389 0.0547 -0.0002 0.0320 0.0476
n = 1000 0.0019 0.0212 0.0311 0.0009 0.0187 0.0283

Powell
n = 100 -0.0025 0.0669 0.1017 0.0083 0.0656 0.1012
n = 400 0.0014 0.0398 0.0581 -0.0006 0.0364 0.0531
n = 1000 -0.0013 0.0210 0.0319 0.0016 0.0203 0.0304

GMLE
n = 100 0.0007 0.0540 0.0781 0.0009 0.0470 0.0721
n = 400 0.0008 0.0285 0.0444 -0.0008 0.0253 0.0383
n = 1000 -0.0004 0.0169 0.0248 0.0002 0.0150 0.0224

Comparison of Performance for the iid Error, Variable Censoring Configuration
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Simulation Settings II
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Simulations II-A
Intercept Slope

Bias MAE RMSE Bias MAE RMSE
Portnoy L

n = 100 0.0084 0.0316 0.0396 -0.0251 0.0763 0.0964
n = 400 0.0076 0.0194 0.0243 -0.0247 0.0429 0.0533
n = 1000 0.0081 0.0121 0.0149 -0.0241 0.0309 0.0376

Portnoy Q
n = 100 0.0018 0.0418 0.0527 0.0144 0.1576 0.2093
n = 400 -0.0010 0.0228 0.0290 0.0047 0.0708 0.0909
n = 1000 -0.0006 0.0122 0.0154 -0.0027 0.0463 0.0587

Peng-Huang L
n = 100 0.0077 0.0313 0.0392 -0.0145 0.0749 0.0949
n = 400 0.0064 0.0193 0.0240 -0.0125 0.0392 0.0493
n = 1000 0.0077 0.0120 0.0147 -0.0181 0.0279 0.0342

Peng-Huang Q
n = 100 0.0078 0.0425 0.0538 0.0483 0.1707 0.2328
n = 400 0.0035 0.0228 0.0291 0.0302 0.0775 0.1008
n = 1000 0.0015 0.0123 0.0155 0.0101 0.0483 0.0611

Powell
n = 100 0.0021 0.0304 0.0385 -0.0034 0.0790 0.0993
n = 400 -0.0017 0.0191 0.0239 0.0028 0.0431 0.0544
n = 1000 -0.0001 0.0099 0.0125 0.0003 0.0257 0.0316

GMLE
n = 100 0.1080 0.1082 0.1201 -0.2040 0.2042 0.2210
n = 400 0.1209 0.1209 0.1241 -0.2134 0.2134 0.2173
n = 1000 0.1118 0.1118 0.1130 -0.2075 0.2075 0.2091

Comparison of Performance for the Constant Censoring, Heteroscedastic Configu-
ration
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Simulations II-B
Intercept Slope

Bias MAE RMSE Bias MAE RMSE
Portnoy L

n = 100 0.0024 0.0278 0.0417 -0.0067 0.0690 0.1007
n = 400 0.0019 0.0145 0.0213 -0.0080 0.0333 0.0493
n = 1000 0.0016 0.0097 0.0139 -0.0062 0.0210 0.0312

Portnoy Q
n = 100 0.0011 0.0352 0.0540 0.0094 0.1121 0.1902
n = 400 0.0002 0.0185 0.0270 -0.0012 0.0510 0.0774
n = 1000 -0.0005 0.0116 0.0169 -0.0011 0.0337 0.0511

Peng-Huang L
n = 100 0.0018 0.0281 0.0417 0.0041 0.0694 0.1017
n = 400 0.0013 0.0142 0.0212 0.0035 0.0333 0.0490
n = 1000 0.0012 0.0096 0.0139 0.0002 0.0208 0.0310

Peng-Huang Q
n = 100 0.0044 0.0364 0.0550 0.0322 0.1183 0.2105
n = 400 0.0026 0.0188 0.0275 0.0154 0.0504 0.0813
n = 1000 0.0007 0.0113 0.0169 0.0077 0.0333 0.0520

Powell
n = 100 -0.0001 0.0288 0.0430 0.0055 0.0733 0.1105
n = 400 0.0000 0.0147 0.0226 0.0001 0.0379 0.0561
n = 1000 -0.0008 0.0095 0.0146 0.0013 0.0237 0.0350

GMLE
n = 100 0.1078 0.1038 0.1272 -0.1576 0.1582 0.1862
n = 400 0.1123 0.1116 0.1168 -0.1581 0.1578 0.1647
n = 1000 0.1153 0.1138 0.1174 -0.1609 0.1601 0.1639

Comparison of Performance for the Variable Censoring, Heteroscedastic Configura-
tion
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Conclusions

Simulation evidence confirms the asymptotic conclusion that the
Portnoy and Peng-Huang estimators are quite similar.

The martingale representation of the Peng-Huang estimator yields a
more complete asymptotic theory than is currently available for the
Portnoy estimator.

The Powell estimator, although conceptually attractive, suffers from
some serious computational difficulties, imposes strong data
requirements, and has an inherent asymptotic efficiency disadvantage.

Quantile regression provides a flexible complement to classical survival
analysis methods, and is now well equipped to handle censoring.
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Introduction

In classical regression and autoregression models

yi = h(xi, θ) + ui,

yt = αyt−1 + ut

conditioning covariates influence only the location of the conditional
distribution of the response:

Response = Signal + IID Noise.

But why should noise always be so well-behaved?
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A Motivating Example
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Daily Temperature in Melbourne: An AR(1) Scatterplot
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Estimated Conditional Quantiles of Daily Temperature
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Daily Temperature in Melbourne: A Nonlinear QAR(1) Model
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Conditional Densities of Melbourne Daily Temperature
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Location, scale and shape all change with yt−1.
When today is hot, tomorrow’s temperature is bimodal!
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Linear AR(1) and QAR(1) Models

The classical linear AR(1) model

yt = α0 + α1yt−1 + ut,

with iid errors, ut : t = 1, · · · , T , implies

E(yt|Ft−1) = α0 + α1yt−1

and conditional quantile functions are all parallel:

Qyt(τ|Ft−1) = α0(τ) + α1yt−1

with α0(τ) = F−1
u (τ) just the quantile function of the ut’s.

But isn’t this rather boring? What if we let α1 depend on τ too?
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A Random Coefficient Interpretation

If the conditional quantiles of the response satisfy:

Qyt(τ|Ft−1) = α0(τ) + α1(τ)yt−1

then we can generate responses from the model by replacing τ by uniform
random variables:

yt = α0(ut) + α1(ut)yt−1 ut ∼ iid U[0, 1].

This is a very special form of random coefficient autoregressive (RCAR)
model with comonotonic coefficients.
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On Comonotonicity

Definition: Two random variables X, Y : Ω→ |R are comonotonic if there
exists a third random variable Z : Ω→ |R and increasing functions f and g
such that X = f(Z) and Y = g(Z).

If X and Y are comonotonic they have rank correlation one.

From our point of view the crucial property of comonotonic random
variables is the behavior of quantile functions of their sums, X, Y
comonotonic implies:

F−1
X+Y(τ) = F−1

X (τ) + F−1
Y (τ)

X and Y are driven by the same random (uniform) variable.
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The QAR(p) Model

Consider a p-th order QAR process,

Qyt(τ|Ft−1) = α0(τ) + α1(τ)yt−1 + ... + αp(τ)yt−p

Equivalently, we have random coefficient model,

yt = α0(ut) + α1(ut)yt−1 + · · ·+ αp(ut)yt−p
≡ x>t α(ut).

Now, all p+ 1 random coefficients are comonotonic, functionally
dependent on the same uniform random variable.
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Vector QAR(1) representation of the QAR(p) Model

Yt = µ+AtYt−1 + Vt

where

µ =

[
µ0

0p−1

]
, At =

[
at αp(ut)

Ip−1 0p−1

]
, Vt =

[
vt

0p−1

]
at = [α1(ut), . . . ,αp−1(ut)],

Yt = [yt, · · · ,yt−p+1]
>,

vt = α0(ut) − µ0.

It all looks rather complex and multivariate, but it is really still nicely
univariate and very tractable.
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Slouching Toward Asymptopia

We maintain the following regularity conditions:

A.1 {vt} are iid with mean 0 and variance σ2 <∞. The CDF of
vt, F, has a continuous density f with f(v) > 0 on
V = {v : 0 < F(v) < 1}.

A.2 Eigenvalues of ΩA = E(At ⊗At) have moduli less than
unity.

A.3 Denote the conditional CDF Pr[yt < y|Ft−1] as Ft−1(y) and
its derivative as ft−1(y), ft−1 is uniformly integrable on V.
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Stationarity

Theorem 1: Under assumptions A.1 and A.2, the QAR(p) process yt is
covariance stationary and satisfies a central limit theorem

1√
n

n∑
t=1

(yt − µy)⇒ N
(
0,ω2

y

)
,

with

µy =
µ0

1 −
∑p
j=1 µp

,

µj = E(αj(ut)), j = 0, ...,p,

ω2
y = lim

1

n
E[

n∑
t=1

(yt − µy)]
2.
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Example: The QAR(1) Model
For the QAR(1) model,

Qyt(τ|yt−1) = α0(τ) + α1(τ)yt−1,

or with ut iid U[0, 1].

yt = α0(ut) + α1(ut)yt−1,

if ω2 = E(α2
1(ut)) < 1, then yt is covariance stationary and

1√
n

n∑
t=1

(yt − µy)⇒ N
(
0,ω2

y

)
,

where µ0 = Eα0(ut), µ1 = E(α1(ut), σ2 = V(α0(ut)), and

µy =
µ0

(1 − µ1)
, ω2

y =
(1 + µ1)σ

2

(1 − µ1)(1 −ω2)
,
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Qualitative Behavior of QAR(p) Processes

The model can exhibit unit-root-like tendencies, even temporarily
explosive behavior, but episodes of mean reversion are sufficient to
insure stationarity.

Under certain conditions,the QAR(p) process is a semi-strong
ARCH(p) process in the sense of Drost and Nijman (1993).

The impulse response of yt+s to a shock ut is stochastic but
converges (to zero) in mean square as s→∞.
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Estimated QAR(1) v. AR(1) Models of U.S. Interest Rates
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Data: Seasonally adjusted monthly: April, 1971 to June, 2002.
Do 3-month T-bills really have a unit root?
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Estimation of the QAR model

Estimation of the QAR models involves solving,

α̂(τ) = argminα

n∑
t=1

ρτ(yt − x>t α),

where ρτ(u) = u(τ− I(u < 0)), the
√

-function.
Fitted conditional quantile functions of yt, are given by,

Q̂t(τ|xt) = x>t α̂(τ),

and conditional densities by the difference quotients,

f̂t(τ|xt−1) =
2h

Q̂t(τ+ h|xt−1) − Q̂t(τ− h|xt−1)
,
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The QAR Process

Theorem 2: Under our regularity conditions,

√
nΩ−1/2(α̂(τ) − α(τ))⇒ Bp+1(τ),

a (p+ 1)-dimensional standard Brownian Bridge, with

Ω = Ω−1
1 Ω0Ω

−1
1 .

Ω0 = E(xtx
>
t ) = limn−1

n∑
t=1

xtx
>
t ,

Ω1 = limn−1
n∑
t=1

ft−1(F
−1
t−1(τ))xtx

>
t .
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Inference for QAR models

For fixed τ = τ0 we can test the hypothesis:

H0 : Rα(τ) = r

using the Wald statistic,

Wn(τ) =
n(Rα̂(τ) − r)>[RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>]−1(Rα̂(τ) − r)

τ(1 − τ)

This approach can be extended to testing on general index sets τ ∈ T with
the corresponding Wald process.
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Asymptotic Inference

Theorem: Under H0, Wn(τ)⇒ Q2
m(τ), where Qm(τ) is a Bessel process

of order m = rank(R). For fixed τ, Q2
m(τ) ∼ χ2

m.

Kolmogorov-Smirov or Cramer-von-Mises statistics based on Wn(τ)

can be used to implement the tests.

For known R and r this leads to a very nice theory – estimated R
and/or r testing raises new questions.

The situation is quite analogous to goodness-of-fit testing with
estimated parameters.
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Example: Unit Root Testing

Consider the augmented Dickey-Fuller model

yt = δ0 + δ1yt−1 +

p∑
j=2

δj∆yt−j + ut.

We would like to test this constant coefficients version of the model
against the more general QAR(p) version:

Qyt(τ|xt) = δ0(τ) + δ1(τ)yt−1 +

p∑
j=2

δj(τ)∆yt−j

The hypothesis: H0 : δ1(τ) = δ̄1 = 1, for τ ∈ T = [τ0, 1 − τ0], is
considered in Koenker and Xiao (JASA, 2004).
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Example: Two Tests

When δ̄1 < 1 is known we have the candidate process,

Vn(τ) =
√
n(δ̂1(τ) − δ̄1)/ω̂11.

where ω̂2
11 is the appropriate element from Ω̂−1

1 Ω̂0Ω̂
−1
1 . Fluctuations

in Vn(τ) can be evaluated with the Kolmogorov-Smirnov statistic,

sup
τ∈T

Vn(τ)⇒ sup
τ∈T

B(τ).

When δ̄1 is unknown we may replace it with an estimate, but this
disrupts the convenient asymptotic behavior. Now,

V̂n(τ) =
√
n((δ̂1(τ) − δ̄1) − (δ̂1 − δ̄1))/ω̂11
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Martingale Transformation of V̂n(τ)

Khmaladze (1981) suggested a general approach to the transformation of
parametric empirical processes like V̂n(τ) :

Ṽn(τ) = V̂n(τ) −

∫τ
0

[
ġn(s)>C−1

n (s)

∫1
s
ġn(r)dV̂n(r)

]
ds

where ġn(s) and Cn(s) are estimators of

ġ(r) = (1, (ḟ/f)(F−1(r)))>; C(s) =

∫1
s
ġ(r)ġ(r)>dr.

This is a generalization of the classical Doob-Meyer decomposition.
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Restoration of the ADF property

Theorem Under H0, Ṽn(τ)⇒W(τ) and therefore

sup
τ∈T
‖Ṽn(τ)‖ ⇒ sup

τ∈T
‖W(τ)‖,

with W(r) a standard Brownian motion.

The martingale transformation of Khmaladze annihilates the
contribution of the estimated parameters to the asymptotic behavior
of the V̂n(τ) process, thereby restoring the asymptotically distribution
free (ADF) character of the test.
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Three Month T-Bills Again
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A test of the “location-shift” hypothesis yields a test statistic of 2.76
which has a p-value of roughly 0.01, contradicting the conclusion of the
conventional Dickey-Fuller test.
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QAR Models for Longitudinal Data

In estimating growth curves it is often valuable to condition not only
on age, but also on prior growth and possibly on other covariates.

Autoregressive models are natural, but complicated due to the
irregular spacing of typical longitudinal measurements.

Finnish Height Data: {Yi(ti,j) : j = 1, . . . , Ji, i = 1, . . . ,n.}

Partially Linear Model [Pere, Wei, Koenker, and He (2006)]:

QYi(ti,j)(τ | ti,j, Yi(ti,j−1), xi) = gτ(ti,j)

+ [α(τ) + β(τ)(ti,j − ti,j−1)]Yi(ti,j−1) + x>i γ(τ).
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Parametric Components of the Conditional Growth Model

τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)

0.03 0.845
(0.020)

0.147
(0.011)

0.024
(0.011)

0.809
(0.024)

0.135
(0.011)

0.042
(0.010)

0.1 0.787
(0.020)

0.159
(0.007)

0.036
(0.007)

0.757
(0.022)

0.153
(0.007)

0.054
(0.009)

0.25 0.725
(0.019)

0.170
(0.006)

0.051
(0.009)

0.685
(0.021)

0.163
(0.006)

0.061
(0.008)

0.5 0.635
(0.025)

0.173
(0.009)

0.060
(0.013)

0.612
(0.027)

0.175
(0.008)

0.070
(0.009)

0.75 0.483
(0.029)

0.187
(0.009)

0.063
(0.017)

0.457
(0.027)

0.183
(0.012)

0.094
(0.015)

0.9 0.422
(0.024)

0.213
(0.016)

0.070
(0.017)

0.411
(0.030)

0.201
(0.015)

0.100
(0.018)

0.97 0.383
(0.024)

0.214
(0.016)

0.077
(0.018)

0.400
(0.038)

0.232
(0.024)

0.086
(0.027)

Estimates of the QAR(1) parameters, α(τ) and β(τ) and the mid-parental height

effect, γ(τ), for Finnish children ages 0 to 2 years.
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Forecasting with QAR Models

Given an estimated QAR model,

Q̂yt(τ|Ft−1) = x>t α̂(τ)

based on data: yt : t = 1, 2, · · · , T , we can forecast

ŷT+s = x̃>T+sα̂(Us), s = 1, · · · ,S,

where x̃T+s = [1, ỹT+s−1, · · · , ỹT+s−p]
>, Us ∼ U[0, 1], and

ỹt =

{
yt if t 6 T ,
ŷt if t > T .

Conditional density forecasts can be made based on an ensemble of such
forecast paths.
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Linear QAR Models May Pose Statistical Health Risks

Lines with distinct slopes eventually intersect. [Euclid: P5]

Quantile functions, QY(τ|x) should be monotone in τ for all x,
intersections imply point masses – or even worse.

What is to be done?
I Constrained QAR: Quantiles can be estimated simultaneously subject

to linear inequality restrictions.
I Nonlinear QAR: Abandon linearity in the lagged yt’s, as in the

Melbourne temperature example, both parametric and nonparametric
options are available.
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Nonlinear QAR Models via Copulas

An interesting class of stationary, Markovian models can be expressed in
terms of their copula functions:

G(yt,yt−1, · · · ,yy−p) = C(F(yt), F(yt−1), · · · , F(yy−p))

where G is the joint df and F the common marginal df.

Differentiating, C(u, v), with respect to u, gives the conditional df,

H(yt|yt−1) =
∂

∂u
C(u, v)|(u=F(yt),v=F(yt−1))

Inverting we have the conditional quantile functions,

Qyt(τ|yt−1) = h(yt−1, θ(τ))
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Example 1 (Fan and Fan)
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Model: Qyt(τ|yt−1) = −(1.7 − 1.8τ)yt−1 +Φ−1(τ).
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Example 2 (Near Unit Root)
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Model: Qyt(τ|yt−1) = 2 + min{3
4 + τ, 1}yt−1 + 3Φ−1(τ).
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Conclusions

QAR models are an attempt to expand the scope of classical linear
time-series models permitting lagged covariates to influence scale and
shape as well as location of conditional densities.

Efficient estimation via familiar linear programming methods.

Random coefficient interpretation nests many conventional models
including ARCH.

Wald-type inference is feasible for a large class of hypotheses; rank
based inference is also an attractive option.

Forecasting conditional densities is potentially valuable.

Many new and challenging open problems. . . .
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Classical Linear Fixed/Random Effects Model

Consider the model,

yij = x>ijβ+ αi + uij j = 1, ...mi, i = 1, ...,n,

or
y = Xβ+ Zα+ u.

The matrix Z represents an incidence matrix that identifies the n distinct
individuals in the sample. If u and α are independent Gaussian vectors
with u ∼ N(0,R) and α ∼ N(0,Q). Observing that v = Zα+ u has
covariance matrix Evv> = R+ ZQZ>, we can immediately deduce that
the minimum variance unbiased estimator of β is,

β̂ = (X>(R+ ZQZ>)−1X)−1X>(R+ ZQZ>)−1y.
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A Penalty Interpretation of β̂
Proposition. β̂ solves min(α,β) ‖y− Xβ− Zα‖2

R−1 + ‖α‖2
Q−1 , where

‖x‖2
A = x>Ax.

Proof.

Differentiating we obtain the normal equations,

X>R−1Xβ̂+ X>R−1Zα̂ = X>R−1y

Z>R−1Xβ̂+ (Z>R−1Z+Q−1)α̂ = Z>R−1y

Solving, we have β̂ = (X>Ω−1X)−1X>Ω−1y where

Ω−1 = R−1 − R−1Z(Z>R−1Z+Q−1)−1Z>R−1.

But Ω = R+ ZQZ>, see e.g. Rao(1973, p 33.).

This result has a long history: Henderson(1950), Goldberger(1962),
Lindley and Smith (1972), etc.
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Quantile Regression with Fixed Effects

Suppose that the conditional quantile functions of the response of the jth
observation on the ith individual yij takes the form:

Qyij(τ|xij) = αi + x>ijβ(τ) j = 1, ...mi, i = 1, ...,n.

In this formulation the α’s have a pure location shift effect on the
conditional quantiles of the response. The effects of the covariates, xij are
permitted to depend upon the quantile, τ, of interest, but the α’s do not.
To estimate the model for several quantiles simultaneously, we propose
solving,

min
(α,β)

q∑
k=1

n∑
j=1

mi∑
i=1

wkρτk(yij − αi − x>ijβ(τk))

Note that the usual between/within transformations are not permitted.
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Penalized Quantile Regression with Fixed Effects
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Time invariant, individual specific intercepts are quantile independent;
slopes are quantile dependent.
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Penalized Quantile Regression with Fixed Effects

When n is large relative to the mi’s shrinkage may be advantageous in
controlling the variability introduced by the large number of estimated α
parameters. We will consider estimators solving the penalized version,

min
(α,β)

q∑
k=1

n∑
j=1

mi∑
i=1

wkρτk(yij − αi − x>ijβ(τk)) + λ

n∑
i=1

|αi|.

For λ→ 0 we obtain the fixed effects estimator described above, while as
λ→ ∞ the α̂i → 0 for all i = 1, 2, ...,n and we obtain an estimate of the
model purged of the fixed effects. In moderately large samples this requires
sparse linear algebra. Example R code is available from my webpages.
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Shrinkage of the Fixed Effects
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Shrinkage of the fixed effect parameter estimates, α̂i. The left panel illustrates an

example of the `1 shrinkage effect. The right panel illustrates an example of the `2
shrinkage effect.
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Dynamic Panel Models and IV Estimation

Galvao (2010) considers dynamic panel models of the form:

Qyit(τ|yi,t−1, xit) = αi + γ(τ)yi,t−1 + x>itβ(τ) t = 1, ...Ti, i = 1, ...,n.

In “short” panels estimation suffers from the same bias problems as seen
in least squares estimators Nickel (1981) Hsiao and Anderson (1981);
using the IV estimation approach of Chernozhukov and Hansen (2004) this
bias can be reduced.
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Correlated Random Effects

Abrevaya and Dahl (JBES, 2008) adapt the Chamberlain (1982) correlated
random effects model and estimate a model of birthweight like that of
Koenker and Hallock (2001).
The R package rqpd implements both this method and the penalized fixed
effect approach. Available from R-Forge with the command:

install.packages("rqpd", repos="http://R-Forge.R-project.org")

This is a challenging, but very important, problem and hopefully there will
be new and better approaches in the near future.
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Outline

Is there a useful role for pessimism in decision theory?

A pessimistic theory of risk

How to be pessimistic?
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St. Petersburg Paradox

What would you be willing to pay to play the game:

G = {pay: p, win: 2n with probability 2−n, n = 1, 2, ...}

Daniel Bernoulli (∼ 1728) observed that even though the expected payoff was

infinite, the gambler who maximized logarithmic utility would pay only a finite

value to play. For example, given initial wealth 100,000 Roubles, our gambler

would be willing to pay only 17 Roubles and 55 kopecks. If initial wealth were

only 1000 Roubles, then the value of the game is only about 11 Roubles.
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Expected Utility

To decide between two real valued gambles

X ∼ F and Y ∼ G

we choose X over Y if

Eu(X) =

∫
u(x)dF(x) >

∫
u(y)dG(y) = Eu(Y)
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On Axiomatics

Suppose we have acts P,Q,R, ... in a space P, which admits enough
convex structure to allow us to consider mixtures,

αP + (1 − α)Q ∈ P α ∈ (0, 1)

Think of P,Q,R as probability measures on some underlying
outcome/event space, X.
Or better, view P,Q,R as acts mapping a space S of soon-to-be-revealed
“states of nature” to the space of probability measures on the outcome
space, X.
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The Expected Utility Theorem

Theorem(von-Neumann-Morgenstern) Suppose we have a preference
relation {�,�, ∼} on P satisfying the axioms:

(A.1) (weak order) For all P,Q,R ∈ P, P � Q or Q � P, and P � Q and
Q � R⇒ P � R,

(A.2) (independence) For all P,Q,R ∈ P and α ∈ (0, 1), then
P � Q⇒ αP + (1 − α)R � αQ+ (1 − α)R,

(A.3) (continuity) For all P,Q,R ∈ P, if P � Q and Q � R, then there exist
α and β ∈ (0, 1), such that, αP + (1 − α)R � βQ(1 − β)R.

Then there exists a linear function u on P such that for all P,Q ∈ P,
P � Q if and only if u(P) > u(Q).
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Weakening the Independence Axiom

The independence axiom seems quite innocuous, but it is extremely
powerful. We will consider a weaker form of independence due to
Schmeidler (1989).

(A.2’) (comonotonic independence) For all pairwise comonotonic P,Q,R ∈ P

and α ∈ (0, 1) P � Q⇒ αP + (1 − α)R � αQ+ (1 − α)R,

Definition Two acts P and Q in P are comonotonic, or similarly ordered,
if for no s and t in S,

P({t}) � P({s}) and Q({s}) � Q({t}).

“If P is better in state t than state s, then Q is also better in t than s.”
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On Comonotonicity

Definition The two functions X, Y : Ω→ |R are comonotonic if there
exists a third function Z : Ω→ < and increasing functions f and g such
that X = f(Z) and Y = g(Z).

From our point of view the crucial property of comonotonic random
variables is the behavior of quantile functions of their sums. For
comonotonic random variables X, Y, we have

F−1
X+Y(u) = F−1

X (u) + F−1
Y (u)

By comonotonicity we have a U ∼ U[0, 1] such that
Z = g(U) = F−1

X (U) + F−1
Y (U) where g is left continuous and increasing,

so by monotone invariance, F−1
g(U) = g ◦ F−1

U = F−1
X + F−1

Y .
Comonotonic random variables are maximally dependent a la Fréchet
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Choquet Expected Utility

Among the many proposals offered to extend expected utility theory the
most attractive (to us) replaces

EFu(X) =

∫1

0
u(F−1(t))dt >

∫1

0
u(G−1(t))dt = EGu(Y)

with

Eν,Fu(X) =

∫1

0
u(F−1(t))dν(t) >

∫1

0
u(G−1(t))dν(t) = Eν,Gu(Y)

The measure ν permits distortion of the probability assessments after
ordering the outcomes. This rank dependent form of expected utility has
been pioneered by Quiggin (1981), Yaari (1987), Schmeidler (1989),
Wakker (1989) and Dennenberg (1990).
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Pessimism

By relaxing the independence axiom we obtain a larger class of
preferences representable as Choquet capacities and introducing pessimism.
The simplest form of Choquet expected utility is based on the “distortion”

να(t) = min{t/α, 1}

so

Eνα,Fu(X) = α−1

∫α
0
u(F−1(t))dt

This exaggerates the probability of the proportion α of least favorable
events, and totally discounts the probability of the 1 − α most favorable
events.

Expect the worst – and you won’t be disappointed.
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A Smoother example

A simple, yet intriguing, one-parameter family of pessimistic Choquet
distortions is the measure:

νθ(t) = 1 − (1 − t)θ θ > 1

Note that, changing variables, t→ FX(u), we have,

EνθX =

∫1

0
F−1
X (t)dν(t) =

∫∞
−∞ ud(1 − (1 − FX(u))θ)

The pessimist imagines that he gets not a single draw from X but θ draws,
and from these he always gets the worst. The parameter θ is a natural
“measure of pessimism,” and need not be an integer.
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Savage on Pessimism

I have, at least once heard it objected against the personalistic
view of probability that, according to that view, two people
might be of different opinions, according as one is pessimistic
and the other optimistic. I am not sure what position I would
take in abstract discussion of whether that alleged property of
personalistic views would be objectionable, but I think it is clear
from the formal definition of qualitative probability that the
particular personalistic view sponsored here does not leave room
for optimism and pessimism, however these traits may be
interpreted, to play any role in the person’s judgement of
probabilities. (Savage(1954), p. 68)
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Pessimistic Medical Decision Making?
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Survival Functions for a hypothetical medical treatment: The Lehmann quantile

treatment effect (QTE) is the horizontal distance between the survival curves. In

this example consideration of the mean treatment effect would slightly favor the

(dotted) treatment curve, but the pessimistic patient might favor the (solid)

placebo curve. Only the luckiest 15% actually do better under the treatment.
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Risk as Pessimism?

In expected utility theory risk is entirely an attribute of the utility function:

Risk Neutrality ⇒ u(x) ∼ affine
Risk Aversion ⇒ u(x) ∼ concave
Risk Attraction ⇒ u(x) ∼ convex

Locally, the risk premium, i.e. the amount one is willing to pay to accept a
zero mean risk, X, is

π(w,X) = 1
2A(w)V(X)

where A(w) = −u ′′(w)/u ′(w) is the Arrow-Pratt coefficient of absolute
risk aversion and V(X) is the variance of X. Why is variance a reasonable
measure of risk?
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A Little Risk Aversion is a Dangerous Thing

Would you accept the gamble:

G1 50 − 50

〈
win $110
lose $100

Suppose you say “no”, then what about the gamble:

G2 50 − 50

〈
win $700, 000
lose $1, 000

If you say “no” to G1 for any initial wealth up to $300,000, then you must
also say “no” to G2.
Moral: A little local risk aversion over small gambles implies implausibly
large risk aversion over large gambles. Reference: Rabin (2000)
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Are Swiss Bicycle Messengers Risk Averse?

When Veloblitz and Flash bicycle messengers from Zurich were confronted
with the bet:

50 − 50

〈
win 8 CHF
lose 5 CHF

More than half (54%) rejected the bet.
Reference: Fehr and Götte (2002)
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Coherent Risk

Definition (Artzner, Delbaen, Eber and Heath (1999)) For real valued random
variables X ∈ X on (Ω, A) a mapping ρ : X→ R is called a coherent risk measure
if,

1 Monotone: X, Y ∈ X, with X 6 Y ⇒ ρ(X) > ρ(Y).

2 Subadditive: X, Y,X+ Y ∈ X, ⇒ ρ(X+ Y) 6 ρ(X) + ρ(Y).

3 Linearly Homogeneous: For all λ > 0 and X ∈ X, ρ(λX) = λρ(X).

4 Translation Invariant: For all λ ∈ R and X ∈ X, ρ(λ+ X) = ρ(X) − λ.

Many conventional measures of risks including those based on standard deviation

are ruled out by these requirements. So are quantile based measures like “value at

risk.”
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Choquet α-Risk

The leading example of a coherent risk measure is

ρνα(X) = −α−1

∫α
0
F−1(t)dt

Variants of this risk measure have been introduced under several names

Expected shortfall (Acerbi and Tasche (2002))

Conditional VaR (Rockafellar and Uryasev (2000))

Tail conditional expectation (Artzner, et al (1999)).

Note that ρνα(X) = −Eνα,F(X), so Choquet α-risk is just negative
Choquet expected utility with the distortion function να.
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Pessimistic Risk Measures

Definition A risk measure ρ will be called pessimistic if, for some
probability measure ϕ on [0, 1]

ρ(X) =

∫1

0
ρνα(X)dϕ(α)

By Fubini

ρ(X) = −

∫1

0
α−1

∫α
0
F−1(t)dtdϕ(α)

= −

∫1

0
F−1(t)

∫1

t
α−1dϕ(α)dt

≡ −

∫1

0
F−1(t)dν(t)
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Approximating General Pessimistic Risk Measures

We can approximate any pessimistic risk measure by taking

dϕ(t) =
∑

ϕiδτi(t)

where δτ denotes (Dirac) point mass 1 at τ. Then

ρ(X) = −ϕ0F
−1(0) −

∫1

0
F−1(t)γ(t)dt

where γ(t) =
∑
ϕiτ

−1
i I(t < τi) and ϕi > 0, with

∑
ϕi = 1.
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An Example

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν(
t)

0.0 0.4 0.8

0.
0

1.
0

2.
0

3.
0

d 
ν(

t)

dϕ(t) = 1
2δ1/3(t) + 1

3δ2/3(t) + 1
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A Theorem

Theorem (Kusuoka (2001)) A regular risk measure is coherent in the
sense of Artzner et. al. if and only if it is pessimistic.

Pessimistic Choquet risk measures correspond to concave ν, i.e.,
monotone decreasing dν.

Probability assessments are distorted to accentuate the probability of
the least favorable events.

The crucial coherence requirement is subadditivity, or submodularity,
or 2-alternatingness in the terminology of Choquet capacities.
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An Example

Samuelson (1963) describes asking a colleague at lunch whether he would
be willing to make a

50 − 50 bet

〈
win 200
lose 100

The colleague (later revealed to be E. Cary Brown) responded
“no, but I would be willing to make 100 such bets.”

This response has been interpreted not only as reflecting a basic confusion
about how to maximize expected utility but also as a fundamental
misunderstanding of the law of large numbers.
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Payoff Density of 100 Samuelson trials
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Odds of losing money on the 100 trial bet is 1 chance in 2300.
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Was Brown really irrational?

Suppose, for the sake of simplicity that

dϕ(t) = 1
2δ1/2(t) + 1

2δ1(t)

so for one Samuelson coin flip we have the unfavorable evaluation,

Eν,F(X) = 1
2(−100) + 1

2(50) = −25

but for S =
∑100
i=1 Xi ∼ Bin(.5, 100) we have the favorable evaluation,

Eν,F(S) = 1
22

∫1/2

0
F−1
S (t)dt+ 1

2(5000)

= 1704.11 + 2500

= 4204.11
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How to be Pessimistic

Theorem Let X be a real-valued random variable with EX = µ < ∞, and
ρα(u) = u(α− I(u < 0)). Then

min
ξ∈R

Eρα(X− ξ) = αµ+ ρνα(X)

So α risk can be estimated by the sample analogue

ρ̂να(x) = (nα)−1 min
ξ

∑
ρα(xi − ξ) − µ̂n

I knew it! Eventually everything looks like quantile regression to
this guy!
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Pessimistic Portfolios

Now let X = (X1, . . . ,Xp) denote a vector of potential portfolio asset
returns and Y = X>π, the returns on the portfolio with weights π.
Consider

min
π
ρνα(Y) − λµ(Y)

Minimize α-risk subject to a constraint on mean return.
This problem can be formulated as a linear quantile regression problem

min
(β,ξ)∈Rp

n∑
i=1

ρα(xi1 −

p∑
j=2

(xi1 − xij)βj − ξ) s.t. x̄>π(β) = µ0,

where π(β) = (1 −
∑p
j=2 βj,β

>)>.
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An Example
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Two asset return densities with identical mean and variance.

Roger Koenker (CEMMAP & UIUC) Portfolios LSE: 17.5.2010 28 / 34

An Example
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An Example
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Optimal Choquet and Markowitz Portfolio Returns
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Markowitz portfolio minimizes the standard deviation of returns subject to mean

return µ = .07. The Choquet portfolio minimizes Choquet risk (for α = .10)

subject to earning the same mean return. The Choquet portfolio has better

performance in both tails than mean-variance Markowitz portfolio.
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Optimal Choquet and Markowitz Portfolio Returns
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Now, the Markowitz portfolio minimizes the standard deviation of returns subject

to mean return µ = .07. The Choquet portfolio maximizes expected return

subject to achieving the same Choquet risk (for α = .10) as the Markowitz

portfolio. Choquet portfolio has expected return µ = .08 a full percentage point

higher than the Markowitz portfolio.
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A Unified Theory of Pessimism

Any pessimistic risk measure may be approximated by

ρν(X) =

m∑
k=1

ϕkρναk (X)

where ϕk > 0 for k = 1, 2, ...,m and
∑
ϕk = 1.

Portfolio weights can be estimated for these risk measures by solving linear
programs that are weighted sums of quantile regression problems:

min
(β,ξ)∈Rp

m∑
k=1

n∑
i=1

νkραk(xi1 −

p∑
j=2

(xi1 −xij)βj−ξk) s.t. x̄>π(β) = µ0,

Software in R is available on from my web pages.
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Conclusions

Expected Utility is unsatisfactory both as a positive, i.e., descriptive,
theory of behavior and as a normative guide to behavior.

Choquet (non-additive, rank dependent) expected utility provides a
simple, tractable alternative.

Mean-variance Portfolio allocation is also unsatisfactory since it relies
on unpalatable assumptions of Gaussian returns, or quadratic utility.

Choquet portfolio optimization can be formulated as a quantile
regression problem thus providing an attractive practical alternative to
the dominant mean-variance approach of Markowitz (1952).
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Quantile Regression Computation:
From the Inside and the Outside

Roger Koenker

CEMMAP and University of Illinois, Urbana-Champaign

LSE: 17 May 2011
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The Origin of Regression – Regression Through the Origin

Find the line with mean residual zero that minimizes the sum of absolute
residuals.
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Problem: minα,β
∑n
i=1 |yi − α− xiβ| s.t. ȳ = α+ x̄β.
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Boscovich/Laplace Methode de Situation

Algorithm: Order the n candidate slopes: bi = (yi − ȳ)/(xi − x̄)

denoting them by b(i) with associated weights w(i) where wi = |xi − x̄|.
Find the weighted median of these slopes.
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Methode de Situation via Optimization

R(b) =
∑

|ỹi − x̃ib| =
∑

|ỹi/x̃i − b| · |x̃i|.

R ′(b) = −
∑

sgn(ỹi/x̃i − b) · |x̃i|.
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Quantile Regression through the Origin in R

This can be easily generalized to compute quantile regression estimates:

wquantile <- function(x, y, tau = 0.5) {

o <- order(y/x)

b <- (y/x)[o]

w <- abs(x[o])

k <- sum(cumsum(w) < ((tau - 0.5) * sum(x) + 0.5 * sum(w)))

list(coef = b[k + 1], k = ord[k+1])

}

Warning: When x̄ = 0 then τ is irrelevant. Why?
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Edgeworth’s (1888) Plural Median

What if we want to estimate both α and β by median regression?

Problem: minα,β
∑n
i=1 |yi − α− xiβ|
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Points in sample space map to lines in parameter space.

(xi,yi) 7→ {(α,β) : α = yi − xiβ}
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

Lines through pairs of points in sample space map to points in parameter
space.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex

All pairs of observations produce
(
n
2

)
points in dual plot.
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Edgeworth’s (1888) Dual Plot: Anticipating Simplex
Follow path of steepest descent through points in the dual plot.
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Barrodale-Roberts Implementation of Edgeworth

rqx<- function(x, y, tau = 0.5, max.it = 50) { # Barrodale and Roberts -- lite

p <- ncol(x); n <- nrow(x)

h <- sample(1:n, size = p) #Phase I -- find a random (!) initial basis

it <- 0

repeat {

it <- it + 1

Xhinv <- solve(x[h, ])

bh <- Xhinv %*% y[h]

rh <- y - x %*% bh

#find direction of steepest descent along one of the edges

g <- - t(Xhinv) %*% t(x[ - h, ]) %*% c(tau - (rh[ - h] < 0))

g <- c(g + (1 - tau), - g + tau)

ming <- min(g)

if(ming >= 0 || it > max.it) break

h.out <- seq(along = g)[g == ming]

sigma <- ifelse(h.out <= p, 1, -1)

if(sigma < 0) h.out <- h.out - p

d <- sigma * Xhinv[, h.out]

#find step length by one-dimensional wquantile minimization

xh <- x %*% d

step <- wquantile(xh, rh, tau)

h.in <- step$k

h <- c(h[ - h.out], h.in)

}

if(it > max.it) warning("non-optimal solution: max.it exceeded")

return(bh)

}
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Linear Programming Duality

Primal: minx{c
>x|Ax− b ∈ T , x ∈ S}

Dual: maxy{b
>y|c−A>y ∈ S∗, y ∈ T∗}

The sets S and T are closed convex cones, with dual cones S∗ and T∗. A
cone K∗ is dual to K if:

K∗ = {y ∈ |Rn|x>y > 0 if x ∈ K}

Note that for any feasible point (x,y)

b>y 6 y>Ax 6 c>x

while optimality implies that

b>y = c>x.

Roger Koenker (CEMMAP & UIUC) Quantile Regression Computation LSE: 17.5.2010 12 / 22



Quantile Regression Primal and Dual

Splitting the QR “residual” into positive and negative parts, yields the
primal linear program,

min
(b,u,v)

{τ1>u+ (1 − τ)1>v | Xb+u− v−y ∈ {0}, (b,u, v) ∈ |Rp× |R2n
+ }.

with dual program:

max
d

{y>d | X>d ∈ {0}, τ1 − d ∈ |Rn+, (1 − τ)1 + d ∈ |Rn+},

max
d

{y>d | X>d = 0, d ∈ [τ− 1, τ]n},

max
a

{y>a | X>a = (1 − τ)X>1, a ∈ [0, 1]n}
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Quantile Regression Dual

The dual problem for quantile regression may be formulated as:

max
a

{y>a|X>a = (1 − τ)X>1, a ∈ [0, 1]n}

What do these âi(τ)’s mean statistically?
They are regression rank scores (Gutenbrunner and Jurečková (1992)):

âi(τ) ∈


{1} if yi > x
>
i β̂(τ)

(0, 1) if yi = x>i β̂(τ)

{0} if yi < x
>
i β̂(τ)

The integral
∫
âi(τ)dτ is something like the rank of the ith observation.

It answers the question: On what quantile does the ith observation lie?

Roger Koenker (CEMMAP & UIUC) Quantile Regression Computation LSE: 17.5.2010 14 / 22

Linear Programming: The Inside Story

The Simplex Method (Edgeworth/Dantzig/Kantorovich) moves from
vertex to vertex on the outside of the constraint set until it finds an
optimum.
Interior point methods (Frisch/Karmarker/et al) take Newton type steps
toward the optimal vertex from inside the constraint set.
A toy problem: Given a polygon inscribed in a circle, find the point on the
polygon that maximizes the sum of its coordinates:

max{e>u|A>x = u, e>x = 1, x > 0}

were e is vector of ones, and A has rows representing the n vertices.
Eliminating u, setting c = Ae, we can reformulate the problem as:

max{c>x|e>x = 1, x > 0},
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Toy Story: From the Inside
Simplex goes around the outside of the polygon; interior point methods
tunnel from the inside, solving a sequence of problems of the form:

max{c>x+ µ

n∑
i=1

log xi|e
>x = 1}
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Toy Story: From the Inside
By letting µ→ 0 we get a sequence of smooth problems whose solutions
approach the solution of the LP:

max{c>x+ µ

n∑
i=1

log xi|e
>x = 1}
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Implementation: Meketon’s Affine Scaling Algorithm

meketon <- function (x, y, eps = 1e-04, beta = 0.97) {

f <- lm.fit(x,y)

n <- length(y)

w <- rep(0, n)

d <- rep(1, n)

its <- 0

while(sum(abs(f$resid)) - crossprod(y, w) > eps) {

its <- its + 1

s <- f$resid * d

alpha <- max(pmax(s/(1 - w), -s/(1 + w)))

w <- w + (beta/alpha) * s

d <- pmin(1 - w, 1 + w)^2

f <- lm.wfit(x,y,d)

}

list(coef = f$coef, iterations = its)

}
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Mehrotra Primal-Dual Predictor-Corrector Algorithm

The algorithms implemented in quantreg for R are based on Mehrotra’s
Predictor-Corrector approach. Although somewhat more complicated than
Meketon this has several advantages:

Better numerical stability and efficiency due to better central path
following,

Easily generalized to incorporate linear inequality constraints.

Easily generalized to exploit sparsity of the design matrix.

These features are all incorporated into various versions of the algorithm in
quantreg, and coded in Fortran.
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Back to Basics

Which is easier to compute: the median or the mean?

> x <- rnorm(100000000) # n = 10^8

> system.time(mean(x))

user system elapsed

10.277 0.035 10.320

> system.time(kuantile(x,.5))

user system elapsed

5.372 3.342 8.756

kuantile is a quantreg implementation of the Floyd-Rivest (1975) algorithm. For the
median it requires 1.5n+O((n logn)1/2) comparisons.

Portnoy and Koenker (1997) propose a similar strategy for “preprocessing” quantile
regression problems to improve efficiency for large problems.
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Globbing for Median Regression

Rather than solving min
∑

|yi − xib| consider:

1 Preliminary estimation using random m = n2/3 subset,

2 Construct confidence band x>i β̂± κ‖V̂1/2xi‖.
3 Find JL = {i|yi below band }, and JH = {i|yi above band },

4 Glob observations together to form pseudo observations:

(xL,yL) = (
∑
i∈JL

xi, −∞), (xH,yH) = (
∑
i∈JH

xi, +∞)

5 Solve the problem (with m+2 observations)

min
∑

|yi − xib| + |yL − xLb| + |yH − xHb|

6 Verify that globbed observations have the correct predicted signs.
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The Laplacian Tortoise and the Gaussian Hare

Retouched 18th century woodblock photo-print
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