Quantile Regression LSE Short Course: 16-17 May 2011¹ Roger Koenker CEMMAP and University of Illinois, Urbana-Champaign

Quantile regression extends classical least squares methods for estimating conditional mean functions by offering a variety of methods for estimating conditional quantile functions, thereby enabling the researcher to explore more thoroughly heterogeneous covariate effects. The course will offer a comprehensive introduction to quantile regression methods and briefly survey some recent developments. The primary reference for the course will be my 2005 Econometric Society monograph, but further readings are suggested below in this course outline.

Course lectures will be complemented by several computationally oriented interludes designed to give students some experience with applications of the methods. These sessions will be conducted in the opensource R language, and will rely heavily on my quantreg package. Thus it would be helpful if students brought laptops equipped with this software already installed. R can be freely downloaded for PC/Mac/Linux machines from CRAN: http://cran.r-project.org/. The quantreg package is also available from CRAN, just click on "packages" on the left margin of the page and follow the directions you will find there. Students familiar with Stata and wanting to experiment with Stata data sets should consider also downloading the "foreign" package, which contains a function called read.dta that enables R to read Stata data files.

Tentative Topics

- The Basics: What, Why and How? Koenker (2005, §1-2), Koenker and Hallock (2001)
- (2) Inference and Quantile Treatment Effects Koenker (2005, §3),
- (3) Nonparametric Quantile Regression Koenker (2005, §7), Koenker (2010), Belloni and Chernozhukov (2009)
- (4) Endogoneity and IV Methods Chesher (2003) Chernozhukov and Hansen (2005) Ma and Koenker (2005)
- (5) Censored QR and Survival Analysis Koenker and Geling (2001) Portnoy (2003) Peng and Huang (2008) Koenker (2008)

1

¹Version: May 13, 2011.

2

(6) Quantile Autoregression Koenker and Xiao (2006)

- (7) QR for Longitudinal Data Koenker (2004) Galvao (2009)
- (8) Risk Assessment and Choquet Portfolios Bassett, Koenker, and Kordas (2004)
- (9) Quantile Regression Computation: From the Inside and Outside Koenker (2005, §6),

References

BASSETT, G., R. KOENKER, AND G. KORDAS (2004): "Pessimistic Portfolio Allocation and Choquet Expected Utility," *J. of Financial Econometrics*, *2*, 477–92. BELLONI, A., AND V. CHERNOZHUKOV (2009): "L1-Penalized Quantile Regression in High-Dimensional Sparse Models," forthcoming Annals of Statistics.

CHERNOZHUKOV, V., AND C. HANSEN (2005): "An IV Model of Quantile Treatment Effects," *Econometrica*, 73(1), 245–261.

CHESHER, A. (2003): "Identification in Nonseparable Models," *Econometrica*, 71, 1405–1441.

GALVAO, A. (2009): "Quantile Regression for Dynamic Panel Data with Fixed Effects," forthcoming, J. of Econometrics.

KOENKER, R. (2004): "Quantile Regression for Longitudinal Data," Journal of Multivariate Analysis, 91, 74–89.

(2005): Quantile Regression. Cambridge.

(2008): "Censored Quantile Regression Redux," J. of Statistical Software, 27(6), 1–24.

(2010): "Additive Models for Quantile Regression: Model Selection and Confidence Bandaids," forthcoming, *Brazilian J. of Statistics*.

KOENKER, R., AND O. GELING (2001): "Reappraising Medfly Longevity: A quantile regression survival analysis," J. of Am. Stat. Assoc., 96, 458–468.

KOENKER, R., AND K. HALLOCK (2001): "Quantile Regression," J. of Economic Perspectives, 15, 143–156.

KOENKER, R., AND Z. XIAO (2006): "Quantile Autoregression, with discussion and rejoinder," J. of Am. Stat. Assoc., 96, 980–1006.

MA, L., AND R. KOENKER (2005): "Quantile Regression for Recursive Structural Models," J. of Econometrics, 134, 471–506.

PENG, L., AND Y. HUANG (2008): "Survival Analysis with Quantile Regression Models," J. of Am. Stat. Assoc., 103(482), 637–649.

PORTNOY, S. (2003): "Censored Quantile Regression," J. of Am. Stat. Assoc., 98, 1001–1012.

Yet Another R FAQ, or How I Learned to Stop Worrying and Love Computing 1

Roger Koenker CEMMAP and University of Illinois, Urbana-Champaign

"It was a splendid mind. For if thought is like the keyboard of a piano, divided into so many notes, or like the alphabet is ranged in twenty-six letters all in order, then his splendid mind had no sort of difficulty in running over those letters one by one, firmly and accurately, until it had reached the letter Q. He reached Q. Very few people in the whole of England reach the letter Q.... But after Q? What comes next?... Still, if he could reach R it would be something. Here at least was Q. He dug his heels in at Q. Q he was sure of. Q he could demonstrate. If Q then is Q–R–.... Then R... He braced himself. He clenched himself.... In that flash of darkness he heard people saying–he was a failure–that R was beyond him. He would never reach R. On to R, once more. R–.... ...He had not genius; he had no claim to that: but he had, or he might have had, the power to repeat every letter of the alphabet from A to Z accurately in order. Meanwhile, he stuck at Q. On then, on to R."

Virginia Woolf (To the Lighthouse)

- 1. How to get it? Google CRAN, click on your OS, and download. Buy a case of wine with what you've saved.
- 2. How to start? Click on the R icon if you are mousey, type R in a terminal window if you are penguinesque.
- 3. What next? At the prompt, > type 2 + 2
- 4. What next? At the prompt, > type 1:9/10
- 5. What next? At the prompt, > type x <- 1:99/100

1

- 6. What next? At the prompt, > type plot(x,sin(1/x))
- 7. What next? At the prompt, > type lines(x,sin(1/x),col = "red")
- 8. How to stop? Click on the Stop sign if you are mousey, type $\mathsf{q}()$ if you are penguinesque.
- 9. Isn't there more to R? Yes, try downloading some packages: using the menu in the GUI if you are mousey, or typing install.packages("pname") if you are penguinesque.
- 10. What's a package? A package is a collection of R software that augments in some way the basic functionality of R, that is it is a way of going "beyond R." For example, the **quantreg** package is a collection of functions to do quantile regression. There were 2992 packages on CRAN as of May 13, 2011.
- 11. How to use a package? Downloading and installing a package isn't enough, you need to tell R that you would like to use it, for this you can either type: require(pname) or library(pname). I prefer the former.
- 12. How to read data files? For simple files with values separated by white space you can use read.table, or read.csv for data separated by commas, or some other mark. For more exotic files, there is scan. And for data files from other statistical environments, there is the package foreign which facilitates the reading of Stata, SAS and other data. There are also very useful packages to read html and other files from the web, but this takes us beyond our introductory objective.
- 13. What is a data.frame? A data.frame is a collection of related variables; in the simplest case it is simply a data matrix with each row indexing an observation. However, unlike conventional matrices, the columns of a data.frame can be non-numeric, e.g. logical or character or in R parlance, "factors." In many R functions one can specify a data = "dframe" argument that specifies where to find the variables mentioned elsewhere in the call.
- 14. How to get help? If you know what command you want to use, but need further details about how to use it, you can get help by typing ?fname, if you don't know the function name, then you might try apropos("concept"). If this fails then a good strategy is to search http://finzi.psych.upenn. edu/search.html with some relevant keywords; here you can specify that you would like to search through the R-help newsgroup, which is a rich source of advice about all things R.

2

 $^{^1 \}rm Version:$ May 13, 2011. Prepared for an LSE Short Course on Quantile Regression: 16-17 May 2011. More official R FAQs are available from the CRAN website. A FAQ for the quantile regression package **quantreg** can be found by the invoking the command FAQ() from within R after loading the package.

- 15. Are there manuals? Yes, of course there are manuals, but only to be read as a last resort, but when things get desparate you can always RTFM. The left side of the CRAN website has links to manuals , FAQs and contributed documentation. Some of the latter category is quite good, and is also available in a variety of natural languages. There is also an extensive shelf of published material about R, but indulging in this tends to put a crimp in one's wine budget.
- 16. What about illustrative examples? A strength of R is the fact that most of the documentation files for R functions have example code that can be easily executed. Thus, for example if you would like to see an example of how to use the command rq in the quantreg package, you can type example(rq) and you will see some examples of its use. Alternatively, you can cut and paste bits of the documentation into the R window; in the OSX GUI you can simply highlight code in a help document, or other window and then press Command-Enter to execute.
- 17. What's in a name? Objects in R can be of various types called classes. You can create objects by assignment, typically as above with a command like f <- function(x,y,z). A list of the objects currently in your private environment can be viewed with ls(), objects in lower level environments like those of the packages that you have loaded can be viewed with ls(k) where k designates the number of the environment. A list of these environments can be seen with search(). Objects can be viewed by simply typing their name, but sometimes objects can be very complicated so a useful abbreviated summary can be obtained with str(object).</p>
- 18. What about my beloved least squares? Fitting linear models in R is like taking a breath of fresh air after inhaling the smog of other industrial environments. To do so, you specify a model formula like this: lm(y ~ x1 + x2 + x3, data = "dframe"), if one or more of the x's are factor variables, that is take discrete, qualitative values, then they are automatically exanded into several indicator variables. Interactions plus main effects can be specified by replacing the "+" in the formula by "*". Generalized linear models can be specified in much the same way, as can quantile regression models using the quantreg package.
- 19. What about class conflict? Class analysis can get complicated, but you can generally expect that classes behave themselves in accordance with their material conditions. Thus, for example, suppose you have fitted a linear regression model by least squares using the command f <-lm(y ~ x1 + x2 + x3), thereby assigning the fitted object to the symbol f. The object f

will have class lm, and when you invoke the command summary(f), R will try to find a summary method appropriate to objects of class lm. In the simplest case this will entail finding the command summary.lm which will produce a conventional table of coefficients, standard errors, t-statistics, p-values and other descriptive statistics. Invoking summary on a different type of object, say a data.frame, will produce a different type of summary object. Methods for prediction, testing, plotting and other functionalities are also provided on a class specific basis.

- 20. What about graphics? R has a very extensive graphics capability. Interactive graphics of the type illustrated already above is quite simple and easy to use. For publication quality graphics, there are device drivers for various graphical formats, generally I find that **pdf** is satisfactory. Dynamic and 3D graphics can be accessed from the package **rgl**.
- 21. Latex tables? The package **Hmisc** has very convenient functions to convert R matrices into latex tables.
- 22. Random numbers? There is an extensive capability for generating pseudo random numbers from R. Reproducibility of random sequences is ensured by using the set.seed command. Various distributions are accessible with families of functions using the prefixes pdqr, thus for example pnorm, dnorm, qnorm and rnorm can be used to evaluate the distribution function, density function, quantile function, or to generate random normals, respectively. See ?Distributions for a complete list of standard distributions available in base R in this form. Special packages provide additional scope, although it is sometimes tricky to find them.
- 23. Programming and simulation? The usual language constructs for looping, switching and data management are available, as are recent developments for exploiting multicore parallel processing. Particularly convenient are the family of apply functions that facilitate summarizing matrix and list objects. A good way to learn the R language is to look at the code for existing functions. Most of this code is easily accessible from the R command line. If you simply type the name of an R function, you will usually be able to see its code on the screen. Sometimes of course, this code will involve calls to lower level languages, and this code would have to be examined in the source files of the system. But everything is eventually accessible. If you don't like the way a function works you can define a modified version of it for your private use. If you are inspired to write lower level code this is also easily incorporated into the language as explained in the manual called "Writing R Extensions."

4

SOME EXERCISES ON QUANTILE REGRESSION

ROGER KOENKER

INTRODUCTION

These exercises are intended to provide an introduction to quantile regression computing and illustrate some econometric applications of quantile regression methods. For purposes of the course my intention would be to encourage all students to do the first exercise, which gives an overview of the quantile regression software in R in the context of an elementary bivariate Engel curve example. The remaining exercises are more open ended. I would like students to choose one of these exercises according to their own special interests. Given the brief duration of the course, it is obviously unrealistic to expect answers to these questions at the end of the course, but I would be happy to get responses via email should you choose to continue working on them after the course is finished.

A Word on Software. There is now some quantile regression functionality in most statistical software systems. Not surprisingly, I have a strong preference for the implementation provide by the quantreg package of R, since I've devoted a considerable amount of effort to writing it. R is a dialect of John Chambers's S language and provides a very general, very elegant environment for data analysis and statistical research. It is fair to say that R is now the vehicle of choice within the statistical computing community. It remains to be seen whether it can make serious inroads into econometrics, but I firmly believe that it is a worthwhile investment for the younger cohorts of econometricians. R is public domain software and can be freely downloaded from the CRAN website. There is extensive documentation also available from CRAN under the heading manuals. For unix based systems it is usual to download R in source form, but it is also available in binary form for most common operating systems. There are several excellent introductions to R available in published form, in addition to the Introduction to R available in pdf from the CRAN website. I would particularly recommend Dalgaard (2002) and Venables and Ripley (2002). On the CRAN website there are also, under the heading "contributed", introductions to R in Danish, French, German, Spanish Italian, and a variety of other languages all of which can be freely downloaded in pdf. I've prepared a brief R FAQ that I will distribute with the course materials for the LSE short course.

For purposes of this course a minimal knowledge of R will suffice. R can be freely downloaded, and I hope that most students will bring a laptop so that they have access to R during the course sessions. Clicking the R icon should produce a window in which R will be running. To quit R, you just type q(), you will be prompted to answer whether you want to save the objects that were created during the session; responding "yes" will save the session objects into a file called .RData, responding

1

Exercises in Quantile Regression

"no" will simply quit without saving. Online help is provided in two modes: if you know what you are looking for, you can type, for example ?rq and you will get a description of the rq command, alternatively you can type help.start() and a browser help window should pop up and you can type more general key words or phrases to search for functionality.

R is intended to be a convenient interactive language and you can do many things on the fly by just typing commands into the R console, or even by pointing and clicking at one of the GUI interfaces, but I find that it is often preferable to save R commands into a file and execute a group of commands – this encourages a more reproducible style of research – and can be easily done using the source("commands.R") command. Saving output is a bit more complicated since there are many forms of output, graphics are usually saved in either postscript or pdf form, and tables can be saved in latex format for subsequent inclusion in documents. Together with Achim Zeileis, U. of Innsbruck, I've written a paper in J. of Applied Econometrics on reproducible research strategies that describes some of these things in more detail. The paper and some other ranting and raving about reproducibility are also available from my homepage by clicking first on "papers" and then on "Reproducible Econometric Research."

An aspect of reproducibility that is rarely considered in econometrics is the notion of "literate programming." The idea of literate programming was first broached by Donald Knuth in 1984; Knuth essentially advocated merging code and documentation for code in such a way that the code was self documenting and the exposition was self-documenting as well, since the code that generated the reported computations was embedded. In the R language this viewpoint has been implemented by Leisch's Sweave which can be considered to be a dialect of latex that allows the user to embed R chunks that are executed prior to latex compilation. The document that you are now reading was written in Sweave and can be viewed in its original form in the course problems directory as the file **ex.Rnv**.

PROBLEM 1: A FAMILY OF ENGEL CURVES

This is a simple bivariate linear quantile regression exercise designed to explore some basic features of the **quantreg** software in R. The data consists of observations on household food expenditure and household income of 235 working class Belgian familes taken from the well-known study of Ernst Engel (1857).

1. Read the data. The data can be downloaded from the website specified in class. You will see that it has a conventional ascii format with a header line indicating the variable names, and 235 lines of data, one per household. This can be read in R by the command

> url <- "http://www.econ.uiuc.edu/~roger/courses/LSE/data/engel.data" > d <- read.table(file = url, header=TRUE) #data is now in matrix "d"</pre>

> attach(d) #attaching makes the variables accessible by name.

2. Plot the data. After the attach command the data is available using the names in the header, so we can plot the scatter diagram as:

> plot(x,y)

2

3. Replot with some better axis labels and superimpose some quantile regression lines on the scatter plot.

> require(quantreg)

> plot(x,y,cex=.25,type="n",xlab="Household Income",

- ylab="Food Expenditure")
- > points(x,y,cex=.5,col="blue")
- > abline(rq(y^x,tau=.5),col="blue")

Version: May 11, 2011. These exercises were originally developed for a short course given under the auspices of CEMMAP at UCL, 20-22 February, 2003. My thanks to Andrew Chesher and the Department of Economics at UCL for their hospitality on that occasion, and as always to the NSF for continuing research support. The exercises have been expanded somewhat for new short courses under the auspices of CREATES in Aarhus, 21-23 June, 2010, and at the LSE, 16-17 May, 2011.

Roger Koenker

Note that you have to load the quantreg package before invoking the rq() command. Careful inspection of the plot reveals that the ols fit is severely biased at low incomes due to a few outliers. The plot command has a lot of options to fine tune the plot. There is a convenient looping structure, but beware that it can be slow in some applications. In rq() there are also many options: the first argument is a "formula" that specifies the model that is desired, in this case we want to fit the simple bivariate linear model so it is just $y^x x$ if we had two covariates we could say, e.g. $y^x x z$.

4. If we wanted to see all the distinct quantile regression solutions for this example we could specify a tau outside the range [0,1], e.g.

> z <- rq(y~x,tau=-1)</pre>

Now if you look at components of the structure z that are returned by the command, you can see for example the primal solution in z\$sol, and the dual solution in z\$dsol. In interactive mode just typing the name of some R object causes the program to print the object in some more or less easily intelligible manner. Now, if you want to estimate the conditional quantile function of y at a specific value of x and plot it you can do something like this:

- > #Poor is defined as at the .1 quantile of the sample distn
- > x.poor <- quantile(x,.1)</pre>
- > #Rich is defined as at the .9 quantile of the sample distn
- > x.rich <- quantile(x,.9)</pre>

> ps <- z\$sol[1,]

- > qs.poor <- c(c(1,x.poor)%*%z\$sol[4:5,])</pre>
- > qs.rich <- c(c(1,x.rich)%*%z\$sol[4:5,])</pre>
- > #now plot the two quantile functions to compare
- > plot(c(ps,ps),c(qs.poor,qs.rich),type="n",
- xlab=expression(tau),ylab="quantile")
- > plot(stepfun(ps,c(qs.poor[1],qs.poor)),do.points=FALSE,add=TRUE)
- > plot(stepfun(ps,c(qs.poor[1],qs.rich)),do.points=FALSE,add=TRUE)
- > #for conditional densities you could use akj()...

A nice feature of R is that documentation of functions usually includes some examples of their usage. These examples can be "run" by simply typing example(SomeFunctionName), so for example when you type example(rq) you get a plot somewhat like the one you have just done "by hand." In a second plot you get a pair of coefficient plots that depict the estimate intercept and slope coefficients as a function of τ and provide a confidence band. More on this later. If you look carefully at the code being executing by in these examples you will see that you didn't need to download the data from the url specified, the Engel data is available directly from the **quantreg** package using the statement deta(engel). But it is often handy to be able to download data from the web. There are quite a lot of tools for handling web data sources, but this is another story entirely.

If you look carefully at the plots of the two estimated quantile functions that you made you will see minor violations of the expected monotonicity of these functions. This may or may not be regarded as a mortal sin, depending on your religious convictions. One way to deal with this, recently suggested by ? is to "rearrange" the estimated functions. See the the documentation for this function using the usual strategy: <code>?rearrange</code>. To see an example of how this works try typing: <code>example(rearrange)</code>.

Roger Koenker

5. Now let's consider some formal testing. For starters suppose we just estimate two quartile fits and look at the default output:

> fit.25 <- rq(y^xx,tau=.25)
> summary(fit.25)
Call: rq(formula = y^x x, tau = 0.25)

tau: [1] 0.25

Coefficients:

coefficients lower bd upper bd (Intercept) 95.48354 73.78608 120.09847 x 0.47410 0.42033 0.49433 > fit.75 <- rq(y^x,tau=.75) > summary(fit.75) Call: rq(formula = y^x, tau = 0.75)

tau: [1] 0.75

Coefficients:

 coefficients
 lower
 bd
 upper
 bd

 (Intercept)
 62.39659
 32.74488
 107.31362

 x
 0.64401
 0.58016
 0.69041

By default the confidence intervals that are produced use the rank inversion method. This is fine for judging whether covariates are significant at particular quantiles but suppose that we wanted to test that the slopes were the same at the two quantiles? This is done with the **anova** command as follows:

> anova(fit.25,fit.75)
Quantile Regression Analysis of Deviance Table

Model: y ~ x Joint Test of Equality of Slopes: tau in { 0.25 0.75 }

Df Resid Df F value Pr(>F) 1 1 469 30.891 4.586e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is an example of a general class of tests proposed in Koenker and Bassett (1982) It is instructive to look at the code for the command anova.rq to see how this test is carried out. The Wald approach is used and the asymptotic covariance matrix is estimated using the approach of Hendricks and Koenker (1991). It also illustrates a general syntax for testing in R adapted to the QR situation. If you have two models that are nested, with fits say f0 and f1, then anova(f0,f1) should test whether the restricted model is correct. One needs to be careful however to check that the hypothesis that is intended, is really the one that the anova command understands, see ?anova.rq for further details on the QR version of this. If you have more than two quantiles and want to do a joint test that all the slope coefficients are the same at all the quantiles you can use anova(f1,f1,ft2,ft3,ft4).

In very large problems the rank inversion approach to confidence intervals is quite slow, and it is better to use another method. There are several choices. By default the computational method employs a variant of the Barrodale and Roberts (simplex-like) algorithm, for problems with sample size greater than about 5000 it is preferable to use interior point methods by using the method="fn", flag in

EXERCISES IN QUANTILE REGRESSION

the call to **rq**. When this "Frisch-Newton" version of the algorithm is used, rank test confidence intervals are not provided by summary instead a form of the Wald test is returned. Various options can be specified to produce various estimates of the standard errors as described below. These Wald forms of estimating standard errors are also possible to achieve with the default **method="br"** setting by adding for example the flag **se=nid**. Details of the algorithms are provided in Koenker and d'Orey (1987), Koenker and d'Orey (1993), for the "BR" method and Portnoy and Koenker (1997) for the "Frisch-Newton" method.

Standard inference results are obtained by calling summary, e.g.

> fit <- rq(y^x,tau=.27,method="fn")
> summary(fit)
Call: rq(formula = y ~ x, tau = 0.27, method = "fn")

tau: [1] 0.27

Coefficients:

 coefficients lower bd
 upper bd

 (Intercept)
 94.18652
 81.53426
 127.50707

 x
 0.48321
 0.43213
 0.50477

by default summary produces estimates of the asymptotic covariance matrix based on the approach described in Hendricks and Koenker (1991), an alternative approach suggested by Powell (1989) can be obtained by specifying se="ker". There are further details and options regarding bandwidth and controlling the nature of what is returned by the summary command, see <code>?summary.rq</code> for these details.

At this point it would be useful to compare and contrast the various estimation and inference options that are available. Try estimating the simple model used above with both the method = "br") and method = "fn") choices, and then compare some of the se options in summary.rq.

6. The magic of logarithms. Thus far we have considered Engel functions that are linear in form, and the scatter as well as the QR testing has revealed a strong tendency for the dispersion of food expenditure to increase with household income. This is a particularly common form of heteroscedasticity. If one looks more carefully at the fitting, one sees interesting departures from symmetry that would not be likely to be revealed by the typical textbook testing for heteroscedasticity, however. One common remedy for symptoms like this would be to reformulate the model in log linear terms. It is interesting to compare what happens after the log transformation with what we have already seen. Consider the following plot:

> plot(x,y,log="xy",xlab="Household Income", ylab="Food Expenditure")
> taus <- c(.05,.1,.25,.75,.90,.95)</pre>

/ taus <= 0(.05,.1,.25,.75,.90,.95

> abline(rq(log10(y)~log10(x),tau=.5),col="blue")

> for(i in 1:length(taus)){

abline(rq(log10(y)~log10(x),tau=taus[i]),col="gray")

5

Household Income

Note that the flag log="xy" produces a plot with log-log axes, and for convenience of axis labeling these logarithms are base 10, so the subsequent fitting is also specified as base 10 logs for plotting purposes, even though base 10 logarithms are *unnatural* and would never be used in reporting numerical results. This looks much more like a classical iid error regression model, although again some departure from symmetry is visible. An interesting exercise is to conduct some formal testing for departures from the iid assumption of the type already considered above. This is left as an exercise for the reader.

PROBLEM 2: NONPARAMETRIC QUANTILE REGRESSION

Nonparametric quantile regression is most easily considered within a locally polynomial framework. Locally linear fitting can be carried out by the following function, provided in the **quantreg** package:

}

Exercises in Quantile Regression

If you read through the function carefully you will see that it is just a matter of computing a quantile regression fit at each of m equally spaced x-values over the support of the observed x points. The function value estimates are trunned as fv and the first derivative estimates at the m points are returned as der. As usual you can specify τ , but now you also need to specify a bandwidth h.

1. Begin by exploring the effect of the h and tau arguments for fitting the motorcycle data. Note that fitting derivatives requires larger bandwidth and larger sample size to achieve the same precision obtainable by function fitting. You are encouraged to substitute a more economic data set for the ubiquitous motorcycle data, its only advantage in the current context is that you can easily find examples to compare in the nonparametric regression literature.

 Adapt lprq so that it does locally quadratic rather than linear fitting and compare performance.

3. Another general strategy for nonparametric quantile regression that is relatively simple to adapt to R uses regression splines. The function bs() in the package splines gives a very flexible way to construct B-spline basis expansions. For example you can fit a model like this:

> require(splines)

- > url <- "http://www.econ.uiuc.edu/~roger/courses/LSE/data/motorcycle.data"
- > d <- read.table(file = url, header=TRUE)</pre>
- > fit <- rq(y~bs(x,df=5),tau=.33, data = d)</pre>

which fits a piecewise cubic polynomial with knots (breakpoints in the third derivative) at quintiles of the x's. You can also explicitly specify the knot sequence and the order of the spline. One advantage of this approach is that it is very easy to add a partially linear model component. So if there is another covariate, say z, we can add a parametric component like this:

> fit <- rq(y~bs(x,df=5)+z,tau=.33)</pre>

This avoids complications of backfitting when using kernel methods for partially linear models. Compare some fitting using the spline approach with that obtained with the local polynomial kernel approach.

4. Yet another even more appealing approach to univariate nonparametric smoothing involves penalty methods as described for example in Koenker, Ng, and Portnoy (1994) In recent work, Koenker and Mizera (2002), this approach has been extended to bivariate nonparametric regression, and more recently to a general class of additive models. Again, partially linear models are easily adapted, and there are easy ways to impose monotonicity and convexity on the fitted functions. In large problems it is essential to take advantage of the sparsity of the linear algebra. This is now feasible using special versions of the interior point algorithm for quantile regression and the SparseM package, Koenker and Ng (2003). The paper ? describes some recent developments of inference apparatus for these models. Further development of these methods would be aided by some additional experience with real data.

An important feature of these additive models is that it is possible to impose monotonocity and/or convexity/concavity on the individual components. There are also relatively new methods for doing inference and prediction as well as plotting. As usual you can experiment with these methods by trying the <code>example()</code> function on methods like <code>summary.rqss, plot.rqss</code>, and <code>predict.rqss</code>. But more interesting would be to try new examples based on real data.

Roger Koenker

Roger Koenker

PROBLEM 3: QUANTILE REGRESSION SURVIVAL ANALYSIS

Quantile regression as proven to be a particularly attractive approach for univariate survival analysis (aka duration modeling). The classical accelerated failure time model

$\log(T_i) = x_i^\top \beta + u_i$

with iid errors u_i , can be easily extended to consider,

(1) $Q_{\log(T_i)}(\tau|x_i) = x_i^\top \beta(\tau),$

yielding a flexible, yet parametrically parsimonious, approach.

In this problem you are asked to explore such models in the context of the Pennsylvania reemployment bonus experiment conducted in 1988-89. In this period new claimants for unemployment insurance were randomized into one of several treatment groups or a control group. Control participants abided by the usual rules of the unemployment insurance system; treatment participants were offered a cash bonus to be awarded if the claimant was certifiably reemployed within a specified qualification period. For simplicity we will focus on only one of the treatment groups, those offered a bonus of 6 times their weekly benefit provided reemployment was established within 12 weeks. For this group the bonus averaged about \$1000 for those collecting it. The data will be available in the form of an R data set called **Penn46.data** in the same directory as we have indicated for the prior datasets. This can be read into R using the same procedure as was used for the Engel data. For a more detailed analysis incorporating the other treatments, see Koenker and Billas (2001). See Koenker and Xiao (2002) for further details on approaches to inference for these models.

In this application interest naturally focuses on the effect of the binary, randomized treatment. How does the bonus influence the distribution of the duration of unemployment? The Lehmann quantile treatment effect (QTE) is a natural object of empirical attention.

1. Explore some specifications of the QR model (1) and compare to fitting the Cox proportional hazard specification. See require(survival) for functions to estimate the corresponding Cox models. Note that covariate effects in the Cox models are necessarily scalar in nature, so for example the treatment effect must either increase, or decrease unemployment durations over the whole range of the distribution, but it cannot decrease durations in the lower tail and increase them in the upper tail – unless the model is specified with distinct baseline hazard functions for the two groups. See Koenker and Geling (2001) for some further details on the relationship between the QR survival model and the Cox model.

2. Explore some formal inference options to try to narrow the field of interesting specifications. See for example the discussion in Koenker and Xiao (2002) on tests based on the whole QR process.

PROBLEM 4: QUANTILE AUTOREGRESSION

Consider a simple linear QAR model,

$y_t = \alpha_1(u_t)y_{t-1} + \alpha_0(u_t)$ t = 0, 1, ..., T

where u_t is iid U[0, 1]. Suppose that $\alpha_1(u) = 0.85 + 0.25u$ and $\alpha_0(u) = \Phi^{-1}(u)$ with Φ denoting the standard normal distribution function. Simulate a realization of this process with T = 1000 and estimate and plot the QAR coefficients, comparing them to the usual OLS estimates.

Verify whether or not the process is stationary. In your realization of the process check to see whether y_{t-1} stays in the region for which the conditional quantile function of y_t is monotone. What is the usual OLS estimate of the AR(1) model

EXERCISES IN QUANTILE REGRESSION

10

(2)

estimating in this case? Check the residuals from the OLS fit to see if they exhibit any suspicious features that would reveal what is unusual here.

Problem 5: Portfolio Choice

This problem deals with the "pessimistic portfolio allocation" proposed in Bassett, Koenker, and Kordas (2003). The paper employs a highly artificial example. Your task, should you decide to accept it, is to produce a more realistic example using real data. Software implementing the methods of the paper is available as an R package called qrisk. This is *not* a CRAN package, but it is available from the url, http://www.econ.uiuc.edu/~roger/research/risk/risk.html The R function qrisk in this package computes optimal portfolio weights based on a matrix of observed, or simulated, asset returns using a specified form of pessimistic Choquet preferences.

PROBLEM 6: INEQUALITY DECOMPOSITION

The extensive literature on the measurement of inequality has devoted considerable attention to the question of how to decompose changes in measurements of inequality. If we observe increases in the Gini coefficient in a particular region over some sample period, can we attribute these changes in some way to underlying changes in covariates, or to changes in the effects of these covariates? QR offers a convenient general approach to this question. Suppose that we have estimated a garden variety wage equation model in QR form,

 $Q_{\log y}(\tau|x) = x^{\top}\beta(\tau),$

and we would like to compute a conditional Gini coefficient.

Recall that the Lorenz function of a univariate distribution with quantile function, Q, is given by,

$$\lambda(t) = \mu^{-1} \int_0^t Q(s) ds$$

where $\mu = \int_0^1 Q(s) ds$ is the mean of the distribution. The Gini coefficient is simply twice the area between $\lambda(t)$ and the 45 degree line,

$$\gamma = 1 - 2 \int_0^1 \lambda(t) dt.$$

1. Given the linear decomposition of the conditional quantile function in (2) and the fact that the Gini coefficient is a linear functional of the quantile function, formulate a conditional Gini decomposition for log wages, and interpret it.

2. Over time we may wish to "explain" changes in the Gini coefficient by considering changes in the wage structure – which we can interpret as $\beta(\tau)$ in (2) – and changes in the characteristics of the population – which are captured by the evolution of the distribution of x. This way of thinking enables us to consider thought experiments such as, "How would Gini have evolved if the wage structure were fixed at some initial condition, but population characteristics changed according to some specified pattern, historical or otherwise". Or alternatively, suppose that we fix population characteristics and consider the evolution of the the conditional components of Gini as $\beta_t(\tau)$ changes over time. Decompositions of this type have been considered in recent work of Machado and Mata (2001). The Gini decomposition has also been recently considered by ? I would love to see a further applications along these lines.

Roger Koenker

11

References

BASSETT, G., R. KOENKER, AND G. KORDAS (2003): "Pessimistic Portfolio Allocation and Choquet Expected Utility," preprint.

DALGAARD, P. (2002): Introductory Statistics with R. Springer.

HENDRICKS, W., AND R. KOENKER (1991): "Hierarchical spline models for conditional quantiles and the demand for elec tricity," J. of Am. Stat. Assoc., 87, 58–68.

KOENKER, R., AND G. BASSETT (1982): "Robust tests for heteroscedasticity based on regression quantiles," *Econometrica*, 50, 43–61.

KOENKER, R., AND Y. BILIAS (2001): "Quantile Regression for Duration Data: A Reappraisal of the Pennsylvania Reemployment Bonus Experiments," *Empirical Economics*, 26, 199–220. KOENKER, R., AND V. D'OREY (1987): "Computing Regression Quantiles," *Applied Statistics*, 36, 383–393.

(1993): "A Remark on Computing Regression Quantiles," Applied Statistics, 36, 383–393. KOENKER, R., AND O. GELING (2001): "Reappraising Medfly Longevity: A quantile regression survival analysis," J. of Am. Stat. Assoc., 96, 458–468.

KOENKER, R., AND I. MIZERA (2002): "Penalized Triograms: Total Variation Regularization for Bivariate Smoothing," preprint.

KOENKER, R., AND P. NG (2003): "SparseM: A Sparse Linear Algebra Package for R," preprint. KOENKER, R., P. NG, AND S. PORTNOY (1994): "Quantile Smoothing Splines," *Biometrika*, 81, 673–80.

KOENKER, R., AND Z. XIAO (2002): "Inference on the quantile regression process," *Econometrica*, 70, 1583–1612.

MACHADO, J., AND J. MATA (2001): "Counterfactual decomposition of changes in wage distributions using quantile regression," *Empirical Economics*, 26, 115–134.

PORTNOY, S., AND R. KOENKER (1997): "The Gaussian Hare and the Laplacian Tortoise: Computability of squared-error versus absolute-error estimators, with discussion," *Stat. Science*, 12, 279–300.

POWELL, J. L. (1989): "Estimation of monotonic regression models under quantile restrictions," in Nonparametric and Semiparametric Methods in Econometrics, ed. by W. Barnett, J. Powell, and G. Tauchen. Cambridge U. Press: Cambridge.

VENABLES, W., AND B. RIPLEY (2002): Modern Applied Statistics with S. Springer.

Motivation

What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set. Ordinarily this is not done, and so regression often gives a rather incomplete picture. Just as the mean gives an incomplete picture of a single distribution, so the regression curve gives a correspondingly incomplete picture for a set of distributions.

Mosteller and Tukey (1977)

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τth quantile of X as

$$Q_{\mathbf{X}}(\tau) = F_{\mathbf{X}}^{-1}(\tau) = \inf\{\mathbf{x} \mid F(\mathbf{x}) \ge \tau\}$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

LSE: 16.5.2011 8 / 63

LSE: 16.5.2011 10 / 63

LSE: 16.5.2011 12 / 63

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τth quantile of X as

$$Q_X(\tau) = F_X^{-1}(\tau) = \inf\{x \mid F(x) \ge \tau\}.$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ :

ger Koenker (CEMMAP & UIUC)

The subgradient of a convex function f(u) at a point u consists of all the possible "tangents." Sums of convex functions are convex.

Univariate Quantiles

LSE: 16.5.2011 7 / 63

LSE: 16.5.2011 9 / 63

LSE: 16.5.2011 11 / 63

Viewed from the perspective of densities, the τ th quantile splits the area under the density into two parts: one with area τ below the τ th quantile and the other with area $1 - \tau$ above it:

Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

$$\hat{\alpha}(\tau) = \operatorname{argmin} \mathbb{E} \ \rho_{\tau}(Y - \alpha)$$

Proof: Let $\psi_{\tau}(\mathfrak{u}) = \rho'_{\tau}(\mathfrak{u})$, so differentiating wrt to α :

$$\begin{array}{ll} 0 & = & \int_{-\infty}^{\infty} \psi_{\tau}(y-\alpha) dF(y) \\ & = & (\tau-1) \int_{-\infty}^{\alpha} dF(y) + \tau \int_{\alpha}^{\infty} dF(y) \\ & = & (\tau-1)F(\alpha) + \tau(1-F(\alpha)) \end{array}$$

implying $\tau = F(\alpha)$ and thus $\hat{\alpha} = F^{-1}(\tau)$.

LSE: 16.5.2011 15 / 63

LSE: 16.5.2011

17 / 63

$$\max\{y'd|X^{\top}d = (1-\tau)X^{\top}1, d \in [0,1]^n\}$$

Solutions are characterized by an exact fit to p observations. Let $h \in \mathcal{H}$ index p-element subsets of $\{1, 2, ..., n\}$ then primal solutions take the form:

$$\hat{\beta} = \hat{\beta}(h) = X(h)^{-1}y(h)$$

Quantile Regression: The Movie

- Bivariate linear model with iid Student t errors
- Conditional quantile functions are parallel in blue
- 100 observations indicated in blue
- Fitted quantile regression lines in red.
- Intervals for $\tau \in (0, 1)$ for which the solution is optimal.

$$\begin{split} {}_{OLS} &= (X^{\top}X)^{-1}X^{\top}y = \sum_{h \in \mathcal{H}} w(h)\hat{\beta}(h), \\ w(h) &= |X(h)|^2 / \sum_{h \in \mathcal{H}} |X(h)|^2 \end{split}$$

The determinants |X(h)| are the (signed) volumes of the parallelipipeds formed by the columns of the the matrices X(h). In the simplest bivariate case, we have,

$$|X(h)|^{2} = \begin{vmatrix} 1 & x_{i} \\ 1 & x_{j} \end{vmatrix}^{2} = (x_{j} - x_{i})^{2}$$

Introduction

so pairs of observations that are far apart are given more weight. LSE: 16.5.2011 16 / 63

Quantile Regression in the iid Error Model

nker (CEMMAP & UIUC)

The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal distributions, F and G, but it cannot reveal anything about the joint distribution, H. The copula function, Schweizer and Wolf (1981), Genest and McKay, (1986),

$$\varphi(\mathfrak{u}, \mathfrak{v}) = \mathsf{H}(\mathsf{F}^{-1}(\mathfrak{u}), \mathsf{G}^{-1}(\mathfrak{v})),$$

is *not* identified. Lehmann's formulation *assumes* that the treatment leaves the ranks of subjects invariant. If a subject was going to be the median control subject, then he will also be the median treatment subject. This is an inherent limitation of the Neymann-Rubin potential outcomes framework.

224					\mathcal{N}	ATU	URE						[Jan	. 8, 1	88
Values surpassed, an	d Value	s unreache	A. bv	NTHE	OPOM	ETRI	C PER	CENT ersons 1	ILES neasure	d at the	Anthr	opomet	ric Lab	oratory	in ti
(The makes that is see				late	Interna	tional F	Iealth I	Exhibiti nantz a	on Inderne	have d i	. IOO-		un de .	entlad is	
(I we write that it as	rachea	iy n por ci		, uny n	11.34 210	percen	etile)		NG 14-1		9 100-				3 10
	{							Values	errpasse	d by per-	cents as	below			
Subject of measurement	Are	Unit of	Sex	No. of persons	95	90	8o	70	60	50	40	30	20	10	1
		ment		group	5	10	20	Values 30	unreache 40	d by per- 50	cents, as 60	below 70	80	90	9
Height, standing,) without shoes)	23-51	Inches	М. F.	811 770	58.8	64.5 59.9	61.3	62.1	67 3 62 7	63°3	63.9	69°2 64°6	70'0 65'3	66.4	72 67
Height, sitting, from]	23-51	Inches {	M.	1013	33.6	34.5	34.9	35'3	35.4	36.0	36.3	36.7	37.1	37.7	38
seat of chair j			r.	775	31.0	32 3	52.9	55 5	33.0	33.9	34 4	34.0	34.9	350	30
Span of arms	23-51	Inches {	F.	770	58.0	59.5	60'7	61.7	62'4	63.0	63.7	64.5	65.4	66.7	68
Weight in ordinary) indoor clothes }	23-26	Pounds	М. F.	520 276	121 102	125	131 110	135 114	139 118	143 122	147 129	150 132	156 136	165 143	17 14
Breathing capacity	23-26	Cubic {	М. F.	212	161 92	177 102	187 115	199 124	211 131	219 138	226 144	236 151	248 164	277 177	29 18
Strength of pull as archer with bow	23 26	Pounds {	М. F.	519 276	56 30	60 32	64 34	68 36	71 38	74 40	77 42	88 44	82 47	89 51	9 5
Strength of squeeze) with strongest hand)	23-26	Pounds	М. F.	519 276	67 36	71 39	76 43	79 47	82 49	85 52	88 55	91 58	95 62	100 67	10 7
Swiftness of blow.	23-26	Feet per {	М. F.	516 271	13.2 9.2	14°1 10°1	15°2 11°3	16.2 15.1	17'3 12'8	18-1 13-4	191 140	20'0 14'5	20.9 12.1	22°3 16°3	23 16
Sight, keenness of —by distance of reading diamond test-type	23-26	Inches {	М. F.	398 433	13 10	17 12	20 16	22 19	23 22	25 24	26 26	28 27	30 29	32 31	3

Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the dependence of households' food expenditure on household income. Seven estimated quantile regression lines for $\tau \in \{.05, .1, .25, .5, .75, .9, .95\}$ are superimposed on the scatterplot. The median $\tau = .5$ fit is indicated by the blue solid line; the least squares estimate of the conditional mean function is indicated by the red dashed line.

QTE via Quantile Regression

49 / 63

The Lehmann QTE is naturally estimable by

$$\hat{\delta}(\tau) = \hat{G}_n^{-1}(\tau) - \hat{F}_m^{-1}(\tau)$$

where \hat{G}_{n} and \hat{F}_{m} denote the empirical distribution functions of the treatment and control observations, Consider the quantile regression model

$$Q_{Y_i}(\tau|D_i) = \alpha(\tau) + \delta(\tau)D_i$$

where D_i denotes the treatment indicator, and $Y_i=h(T_i),$ e.g. $Y_i=\log T_i,$ which can be estimated by solving,

 $\mathsf{min}\sum_{\mathfrak{i}=1}^n\rho_\tau(y_\mathfrak{i}-\alpha-\delta D_\mathfrak{i})$

LSE: 16.5.2011 50 / 63

LSE: 16.5.2011 52 / 63

"Very powerful women exist, but happily perhaps for the repose of the other sex, such gifted women are rare."

Engel's Food Expenditure Data

Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the dependence of households' food expenditure on household income. Seven estimated quantile regression lines for $\tau \in \{.05, .1, .25, .5, .75, .9, .95\}$ are superimposed on the scatterplot. The median $\tau = .5$ fit is indicated by the blue solid line; the least squares estimate of the conditional mean function is indicated by the red dashed line.

Asymptotic Theory of Quantile Regression I

In the classical linear model,

$$y_i = x_i\beta + u_i$$

with u_i iid from dfF, with density f(u)>0 on its support $\{u|0< F(u)<1\}$, the joint distribution of $\sqrt{n}(\hat{\beta}_n(\tau_i)-\beta(\tau_i))_{i=1}^m$ is asymptotically normal with mean 0 and covariance matrix $\Omega\otimes D^{-1}$. Here $\beta(\tau)=\beta+F_u^{-1}(\tau)e_1, e_1=(1,0,\ldots,0)^\top, \ x_{1i}\equiv 1, n^{-1}\sum x_ix_i^\top\to D,$ a positive definite matrix, and

$$\Omega = ((\tau_i \wedge \tau_j - \tau_i \tau_j) / (f(F^{-1}(\tau_i))f(F^{-1}(\tau_j)))_{i,j=1}^m$$

Making Sandwiches

The crucial ingredient of the QR Sandwich is the quantile density function $f_i(\xi_i(\tau))$, which can be estimated by a difference quotient. Differentiating the identity: F(Q(t)) = t we get

$$s(t) = \frac{dQ(t)}{dt} = \frac{1}{f(Q(t))}$$

sometimes called the "sparsity function" so we can compute

$$\hat{f}_{i}(x_{i}^{\top}\hat{\beta}(\tau)) = 2h_{n}/(x_{i}^{\top}(\hat{\beta}(\tau+h_{n})-\hat{\beta}(\tau-h_{n}))$$

with $h_n = O(n^{-1/3})$. Prudence suggests a modified version:

$$\tilde{\mathsf{f}}_{i}(\mathsf{x}_{i}^{\top}\hat{\boldsymbol{eta}}(\tau)) = \mathsf{max}\{\mathsf{0}, \hat{\mathsf{f}}_{i}(\mathsf{x}_{i}^{\top}\hat{\boldsymbol{eta}}(\tau))\}$$

Various other strategies can be employed including a variety of bootstrapping options. More on this in the first lab session.

Two Sample Location-Shift Model

$$X_1, \ldots, X_n \sim F(x)$$
 "Controls"

 $Y_1, \ldots, Y_m \sim F(x-\theta) \qquad \text{``Treatments''}$

Hypothesis:

 $\begin{array}{ll} H_0: & \theta=0 \\ H_1: & \theta>0 \end{array}$

The Gaussian Model $F=\Phi$

$$\mathsf{T}=(\bar{Y}_m-\bar{X}_n)/\sqrt{n^{-1}+m^{-1}}$$

UMP Tests:

critical region $\{T > \Phi^{-1}(1-\alpha)\}$

Asymptotic Theory of Quantile Regression II

When the response is conditionally independent over i, but not identically distributed, the asymptotic covariance matrix of $\zeta(\tau) = \sqrt{n}(\hat{\beta}(\tau) - \beta(\tau))$ is somewhat more complicated. Let $\xi_i(\tau) = x_i\beta(\tau)$, $f_i(\cdot)$ denote the corresponding conditional density, and define,

$$\begin{split} J_n(\tau_1,\tau_2) &= (\tau_1 \wedge \tau_2 - \tau_1 \tau_2) n^{-1} \sum_{i=1}^n x_i x_i^\top \\ H_n(\tau) &= n^{-1} \sum x_i x_i^\top f_i(\xi_i(\tau)). \end{split}$$

Under mild regularity conditions on the $\{f_i\}$'s and $\{x_i\}$'s, we have joint asymptotic normality for $(\zeta(\tau_i),\ldots,\zeta(\tau_m))$ with covariance matrix

$$V_{n} = (H_{n}(\tau_{i})^{-1}J_{n}(\tau_{i},\tau_{j})H_{n}(\tau_{j})^{-1})_{i,j=1}^{m}.$$

LSE: 16.5.2010 8 / 29

LSE: 16.5.2010 10 / 29

LSE: 16.5.2010 12 / 29

Rank Based Inference for Quantile Regression

- Ranks play a fundamental *dual* role in QR inference.
- Classical rank tests for the p-sample problem extended to regression
- Rank tests play the role of Rao (score) tests for QR.

Wilcoxon-Mann-Whitney Rank Test

Mann-Whitney Form:

Roger Koenker (CEMMAP & UIUC

$$S = \sum_{i=1}^n \sum_{j=1}^m I(Y_j > X_i)$$

Heuristic: If treatment responses are larger than controls for most pairs (i,j), then H_0 should be rejected.

 $\textbf{Wilcoxon Form:} \ \mathsf{Set} \ (R_1, \ldots, R_{n+m}) = \mathsf{Rank}(Y_1, \ldots, Y_m, X_1, \ldots X_n),$

$$W = \sum_{j=1}^{m} R_j$$

Proposition: S = W - m(m+1)/2 so Wilcoxon and Mann-Whitney tests are equivalent.

Pros and Cons of the Transformation to Ranks

Thought One:

Gain: Null Distribution is independent of F. **Loss**: Cardinal information about data.

Thought Two:

 $\label{eq:Gain: Student t-test has quite accurate size provided $\sigma^2(F)<\infty$.$$$ Loss: Student t-test uses cardinal information badly for long-tailed F. $$$

Hájek 's Rankscore Generating Functions

Let Y_1,\ldots,Y_n be a random sample from an absolutely continuous df F with associated ranks $R_1,\ldots,R_n,$ Hájek 's rank generating functions are:

$$\hat{a}_{i}(t) = \begin{cases} 1 & \text{if } t \leq (R_{i} - 1)/n \\ R_{i} - tn & \text{if } (R_{i} - 1)/n \leq t \leq R_{i}/n \\ 0 & \text{if } R_{i}/n \leq t \end{cases}$$

Some Asymptotic Heuristics

The Hájek functions are approximately indicator functions

$$\hat{a}_i(t) \approx I(Y_i > F^{-1}(t)) = I(F(Y_i) > t)$$

Since $F(Y_{i}) \sim U[0,1],$ linear rank statistics may be represented as

$$\begin{split} \int_0^1 \hat{a}_i(t) d\phi(t) &\approx \int_0^1 I(F(Y_i) > t) d\phi(t) = \phi(F(Y_i)) - \phi(0) \\ &\int_0^1 Z_n(t) d\phi(t) = \sum w_i \int \hat{a}_i(t) d\phi(t) \end{split}$$

$$= \sum w_i \varphi(F(Y_i)) + o_p(1),$$

which is asymptotically distribution free, i.e. independent of F.

Asymptotic Relative Efficiency of Wilcoxon versus Student t-test

 $\begin{array}{l} \mbox{Pitman (Local) Alternatives: } H_n: \theta_n = \theta_0/\sqrt{n} \\ (t\text{-test})^2 \rightsquigarrow \chi_1^2(\theta_0^2/\sigma^2(F)) \\ (\mbox{Wilcoxon})^2 \rightsquigarrow \chi_1^2(12\theta_0^2(\int f^2)^2) \\ \mbox{ARE}(W, t, F) = 12\sigma^2(F)[\int f^2(x)dx]^2 \end{array}$

F	N	U	Logistic	DExp	LogN	t ₂
ARE	.955	1.0	1.1	1.5	7.35	∞

Theorem (Hodges-Lehmann) For all F, $ARE(W, t, F) \ge .864$.

LSE: 16.5.2010 14 / 29

LSE: 16.5.2010 16 / 29

LSE: 16.5.2010 18 / 29

Linear Rank Statistics Asymptotics

Theorem (Hájek (1965)) Let $c_n=(c_{1n},\ldots,c_{nn})$ be a triangular array of real numbers such that

 $\label{eq:max_i} \underset{i}{\text{max}} (c_{in} - \overline{c}_n)^2 / \sum_{i=1}^n (c_{in} - \overline{c}_n)^2 \rightarrow 0.$

Then

LSE: 16.5.2010

LSE: 16.5.2010 15 / 29

LSE: 16.5.2010

$$\begin{split} Z_n(t) &= (\sum_{i=1}^n (c_{in} - \bar{c}_n)^2)^{-1/2} \sum_{j=1}^n (c_{jn} - \bar{c}_n) \hat{a}_j(t) \\ &\equiv \sum_{i=1}^n w_j \hat{a}_j(t) \end{split}$$

converges weakly to a Brownian Bridge, i.e., a Gaussian process on [0,1] with mean zero and covariance function $\mathsf{Cov}(Z(s),Z(t))=s\wedge t-st.$

Duality of Ranks and Quantiles

Quantiles may be *defined* as

$$\hat{\xi}(\tau) = \text{argmin} \sum \rho_{\tau}(y_i - \xi)$$

where $\rho_\tau(u)=u(\tau-I(u<0)).$ This can be formulated as a linear program whose dual solution

$$\hat{\mathfrak{a}}(\tau) = \operatorname{argmax}\{y^{\top}\mathfrak{a}|1_n^{\top}\mathfrak{a} = (1-\tau)\mathfrak{n}, \mathfrak{a} \in [0,1]^n\}$$

generates the Hájek rankscore functions.

Reference: Gutenbrunner and Jurečková (1992).

Regression Rankscore "Residuals"

The Wilcoxon rankscores,

$$\tilde{u}_{i} = \int_{0}^{1} \hat{a}_{i}(t) dt$$

play the role of quantile regression residuals. For each observation y_i they answer the question: on which quantile does y_i lie? The \tilde{u}_i satisfy an orthogonality restriction:

$$X^\top \tilde{u} = X^\top \int_0^1 \hat{a}(t) dt = n\bar{x} \int_0^1 (1-t) dt = n\bar{x}/2.$$

This is something like the $X^{\top}\hat{u}=0$ condition for OLS. Note that if the X is "centered" then $\bar{x}=(1,0,\cdots,0).$ The \tilde{u} vector is approximately uniformly "distributed;" in the one-sample setting $u_i=(R_i+1/2)/n$ so they are obviously "too uniform."

Regression Rank Tests

$$Y = X \ \beta + Z \ \gamma + u$$
 $H_0: \gamma = 0 \ \text{versus} \ H_n: \gamma = \gamma_0 / \sqrt{n}$

Given the regression rank score process for the restricted model,

$$\hat{a}_{n}(\tau) = \operatorname{argmax} \left\{ Y^{\top} a \,|\, X^{\top} a = (1 - \tau) X^{\top} \mathbf{1}_{n} \right\}$$

A test of $H_{0}\xspace$ is based on the linear rank statistics,

ŀ

$$\hat{b}_{n} = \int_{0}^{1} \hat{a}_{n}(t) \, d\phi(t)$$

Obs No 6 rank= -0.33

Choice of the score function $\boldsymbol{\phi}$ permits test of location, scale or (potentially) other effects.

Regression Rankscores for Stackloss Data

Roger Koenker (CEMMAP & UIUC)

Theorem: (Gutenbrunner, Jurečková , Koenker and Portnoy) Under H_n and regularity conditions, the test statistic $T_n = S_n^\top Q_n^{-1} S_n$ where $S_n = (Z - \hat{Z})^\top \hat{b}_n$, $\hat{Z} = X(X^\top X)^{-1} X^\top Z$, $Q_n = n^{-1} (Z - \hat{Z})^\top Z - \hat{Z})$

 $T_n \rightsquigarrow \chi^2_q(\eta)$

where

$$\begin{split} \eta^2 &= \ \omega^2(\phi,F)\gamma_0^\top Q\gamma_0 \\ \omega(\phi,F) &= \ \int_0^1 f(F^{-1}(t))\,d\phi(t) \end{split}$$

LSE: 16.5.2010 22 / 29

Inversion of Rank Tests for Confidence Intervals

For the scalar γ case and using the score function

$$\label{eq:phi} \begin{split} \phi_\tau(t) = \tau - I(t < \tau) \\ \hat{b}_{ni} = - \int^1 \phi_\tau(t) d\hat{a}_{ni}(t) = \hat{a}_{ni}(\tau) - (1-\tau) \end{split}$$

where $\bar{\phi} = \int_0^1 \phi_\tau(t) dt = 0$ and $A^2(\phi_\tau) = \int_0^1 (\phi_\tau(t) - \bar{\phi})^2 dt = \tau(1 - \tau).$ Thus, a test of the hypothesis $H_0: \gamma = \xi$ may be based on \hat{a}_n from solving,

$$\max\{(y - x_2\xi)^{\top} a | X_1^{\top} a = (1 - \tau) X_1^{\top} 1, a \in [0, 1]^n\}$$
(1)

and the fact that

$$S_n(\boldsymbol{\xi}) = n^{-1/2} x_2^\top \hat{\boldsymbol{b}}_n(\boldsymbol{\xi}) \rightsquigarrow \mathcal{N}(\boldsymbol{0}, A^2(\boldsymbol{\phi}_\tau)\boldsymbol{q}_n^2) \tag{2}$$

Inference on the Quantile Regression Process

Using the quantile score function, $\phi_\tau(t)=\tau-I(t<\tau)$ we can consider the quantile rankscore process,

$$T_n(\tau) = S_n(\tau)^\top Q_n^{-1} S_n(\tau) / (\tau(1-\tau)).$$

where

$$\begin{split} S_n &= n^{-1/2} (X_2 - \hat{X}_2)^\top \hat{b}_n, \\ \hat{X}_2 &= X_1 (X_1^\top X_1)^{-1} X_1^\top X_2, \\ Q_n &= (X_2 - \hat{X}_2)^\top (X_2 - \hat{X}_2) / n, \\ \hat{b}_n &= (-\int \phi(t) d\hat{a}_{in}(t))_{i=1}^n, \end{split}$$

Inversion of Rank Tests for Confidence Intervals

That is, we may compute

$$T_n(\xi) = S_n(\xi) / (A(\varphi_\tau)q_n)$$

where $q_n^2 = n^{-1} x_2^\top (I - X_1 (X_1^\top X_1)^{-1} X_1^\top) x_2.$ and reject H_0 if $|\mathsf{T}_n(\xi)| > \Phi^{-1}(1-\alpha/2).$

Inverting this test, that is finding the interval of ξ 's such that the test fails to reject. This is a quite straightforward parametric linear programming problem and provides a simple and effective way to do inference on individual quantile regression coefficients. Unlike the Wald type inference it delivers asymmetric intervals. This is the default approach to parametric inference in quantreg for problems of modest sample size.

LSE: 16.5.2010 26 / 29

LSE: 16.5.2010 28 / 29

Inference on the Quantile Regression Process

Theorem: (K & Machado) Under $H_n : \gamma(\tau) = O(1/\sqrt{n})$ for $\tau \in (0, 1)$ the process $T_n(\tau)$ converges to a non-central Bessel process of order $q = \dim(\gamma)$. Pointwise, T_n is non-central χ^2 .

Related Wald and LR statistics can be viewed as providing a general apparatus for testing goodness of fit for quantile regression models. This approach is closely related to classical p-dimensional goodness of fit tests introduced by Kiefer (1959).

When the null hypotheses under consideration involve unknown nuisance parameters things become more interesting. In Koenker and Xiao (2001) we consider this "Durbin problem" and show that the elegant approach of Khmaladze (1981) yields practical methods.

Four Concluding Comments about Inference

- Asymptotic inference for quantile regression poses some statistical challenges since it involves elements of nonparametric density estimation, but this shouldn't be viewed as a major obstacle.
- Classical rank statistics and Hájek 's rankscore process are closely linked via Gutenbrunner and Jurečková 's regression rankscore process, providing an attractive approach to many inference problems while avoiding density estimation.
- Inference on the quantile regression process can be conducted with the aid of Khmaladze's extension of the Doob-Meyer construction.
- Resampling offers many further lines of development for inference in the quantile regression setting.

LSE: 16.5.2010 27 / 29

LSE: 16.5.2010 29 / 29

Total Variation Regularization II

For bivariate functions we consider the analogous problem:

$$\text{min}_{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}(y_i - g(x_{1i}, x_{2i})) + \lambda V(\nabla g)$$

where the total variation variation penalty is now:

$$V(\nabla g) = \int \|\nabla^2 g(x)\| dx$$

Solutions are again continuous, but now they are piecewise linear on a triangulation of the observed x observations. Again, as $\lambda \to \infty$ solutions are forced toward linearity.

LSE: 17.5.2010

LSE: 17.5.2010

Additive Models: Putting the pieces together

We can combine such models:

$$\min_{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}(y_{i} - \sum_{j} g_{j}(x_{ij})) + \sum_{j} \lambda_{j} V(\nabla g_{j})$$

- Components g_j can be univariate, or bivariate.
- Additivity is intended to muffle the curse of dimensionality.
- Linear terms are easily allowed, or enforced.
- And shape restrictions like monotonicity and convexity/concavity as well as boundry conditions on g_j's can also be imposed.

Tuning Parameter Selection

There are two tuning parameters:

- () $\tau=0.15$ the (low) quantile chosen to represent the SMR,
- $\textcircled{0} \lambda \text{ controls the smoothness of the SDA cycle.}$

One way to interpret the parameter λ is to note that it controls the number of effective parameters of the fitted model (Meyer and Woodroofe(2000):

$$p(\lambda) = \mathsf{div} \ \hat{g}_{\lambda,\tau}(y_1,...,y_n) = \sum_{\mathfrak{i}=1}^n \vartheta \hat{y}_\mathfrak{i} / \vartheta y_\mathfrak{i}$$

This is equivalent to the number of interpolated observations, the number of zero residuals. Selection of λ can be made by minimizing, e.g. Schwarz Criterion:

$$\mathsf{SIC}(\lambda) = n \log(n^{-1} \sum \rho_\tau(y_i - \hat{g}_{\lambda,\tau}(x_i))) + \frac{1}{2} p(\lambda) \log n.$$

Example 2: Chicago Land Values via TV Regularization

Chicago Land Values: Based on 1194 vacant land sales and 7505 "virtual" sales introduced to increase the flexibility of the triangulation. K and Mizera (2004).

LSE: 17.5.2010 10 / 25

LSE: 17.5.2010 8 / 25

Implementation in the R quantreg Package

er (CEMMAP & UIUC)

Roger Koenker (CEMMAP & UIUC

- Problems are typically large, very sparse linear programs.
- Optimization via interior point methods are quite efficient,
- Provided sparsity of the linear algebra is exploited, quite large problems can be estimated.
- The nonparametric qss components can be either univariate, or bivariate
- Each qss component has its own λ specified
- Linear covariate terms enter formula in the usual way
- The qss components can be shape constrained.

fit <- rqss(y \sim qss(x1,3) + qss(x2,8) + x3, tau = .6)

LSE: 17.5.2010 12 / 25

Pointwise Confidence Bands

It is obviously crucial to have reliable confidence bands for nonparametric components. Following Wahba (1983) and Nychka(1983), conditioning on the λ selection, we can construct bands from the covariance matrix of the full model.

$$\mathbf{V} = \tau (1 - \tau) (\tilde{\mathbf{X}}^\top \boldsymbol{\Psi} \tilde{\mathbf{X}})^{-1} (\tilde{\mathbf{X}}^\top \tilde{\mathbf{X}})^{-1} (\tilde{\mathbf{X}}^\top \boldsymbol{\Psi} \tilde{\mathbf{X}})^{-1}$$

with

$$\tilde{X} = \begin{bmatrix} X & G_1 & \cdots & G_J \\ \lambda_0 H_K & 0 & \cdots & 0 \\ 0 & \lambda_1 P_1 & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_j P_J \end{bmatrix} \text{ and } \Psi = \text{diag}(\varphi(\hat{u}_i/h_n)/h_n)$$

Pointwise bands can be constructed by extracting diagonal blocks of V.

Nonparametric QR

LSE: 17.5.2010

LSE: 17.5.2010

LSE: 17.5.2010

Uniform Confidence Bands

oger Koenker (CEMMAP & UIUC)

Hotelling's original formulation for parametric nonlinear regression has been extended to non-parametric regression. For series estimators

$$\hat{g}_{n}(x) = \sum_{j=1}^{p} \phi_{j}(x) \hat{\theta}_{j}$$

with pointwise standard error $\sigma(x) = \sqrt{\phi(x)^\top V^{-1} \phi(x)}$ we would like to invert test statistics of the form:

$$T_n = \sup_{x \in \mathcal{X}} \frac{\hat{g}_n(x) - g_0(x)}{\sigma(x)}.$$

This requires solving for the critical value, c_{α} in

$$\mathfrak{P}(T_n>c)\leqslant \frac{\kappa}{2\pi}(1+c^2/\nu)^{-\nu/2}+\mathfrak{P}(t_\nu>c)=\alpha$$

where κ is the length of a "tube" determined by the basis expansion, t_{ν} is a Student random variable with degrees of freedom $\nu = n - p$. Nonparametric QR

Simulation Performance

Roger Koenker (CEMMAP & UIUC)

		Accuracy		Poin	twise	Unif	orm
	RMISE	MIAE	MEDF	Pband	Uband	Pband	Uband
Gaussian							
rqss	0.063	0.046	12.936	0.960	0.999	0.323	0.920
gam	0.045	0.035	20.461	0.956	0.998	0.205	0.898
t ₃							
rqss	0.071	0.052	11.379	0.955	0.998	0.274	0.929
gam	0.071	0.054	17.118	0.948	0.994	0.159	0.795
t ₁							
rqss	0.099	0.070	9.004	0.930	0.996	0.161	0.867
gam	35.551	2.035	8.391	0.920	0.926	0.203	0.546
χ^2_3							
rqss	0.110	0.083	8.898	0.950	0.997	0.270	0.883
gam	0.096	0.074	14.760	0.947	0.987	0.218	0.683

Performance of Penalized Estimators and Their Confidence Bands: IID Error Model

Uniform Confidence Bands

Uniform bands are also important, but more challenging. We would like:

$$B_{n}(x) = (\hat{g}_{n}(x) - c_{\alpha}\hat{\sigma}_{n}(x), \hat{g}_{n}(x) + c_{\alpha}\hat{\sigma}_{n}(x))$$

such that the true curve, g_0 , is covered with specified probability $1 - \alpha$ over a given domain \mathfrak{X} :

$$\mathcal{P}\{g_0(x) \in B_n(x) \mid x \in \mathcal{X}\} \ge 1 - \alpha.$$

We can follow the "Hotelling tube" approach based on Hotelling(1939) and Weyl (1939) as developed by Naiman (1986), Johansen and Johnstone (1990) Sun and Loader (1994) and others.

LSE: 17.5.2010 14 / 25

LSE: 17.5.2010 16 / 25

LSE: 17.5.2010 18 / 25

Confidence Bands in Simulations

Simulation Performance

		Accuracy		Poin	twise	Unif	form
	RMISE	MIAE	MEDF	Pband	Uband	Pband	Uband
Gaussian							
rqss	0.081	0.063	10.685	0.951	0.998	0.265	0.936
gam	0.064	0.050	17.905	0.957	0.999	0.234	0.940
t ₃							
rqss	0.091	0.070	9.612	0.952	0.998	0.241	0.938
gam	0.103	0.078	14.656	0.949	0.992	0.232	0.804
t ₁							
rqss	0.122	0.091	7.896	0.938	0.997	0.222	0.893
gam	78.693	4.459	7.801	0.927	0.958	0.251	0.695
χ^2_3							
rqss	0.145	0.114	7.593	0.947	0.998	0.307	0.921
gam	0.138	0.108	12.401	0.941	0.973	0.221	0.626

Performance of Penalized Estimators and Their Confidence Bands: Linear Scale Model

Conclusions

oger Koenker (CEMMAP & UIUC)

- \bullet Nonparametric specifications of $Q(\tau|x)$ improve flexibility.
- Additive models keep effective dimension in check.
- Total variation roughness penalties are natural.
- Schwarz model selection criteria are useful for λ selection

Nonparametric QR

- Hotelling tubes are useful for uniform confidence bands
- Lasso Shrinkage is useful for parametric components.

LSE: 17.5.2010 25 / 25

The (Chesher) Weighted Average Derivative Estimator

$$\begin{split} \hat{\theta}(\tau_1) &= \mbox{ argmin}_{\theta} \sum_{i=1}^n \rho_{\tau_1}(Y_i - h_1(S, \textbf{x}, \textbf{z}, \theta(\tau_1))) \\ \hat{\beta}(\tau_2) &= \mbox{ argmin}_{\beta} \sum_{i=1}^n \rho_{\tau_2}(S_i - h_2(\textbf{z}, \textbf{x}, \beta(\tau_2))) \end{split}$$

where $\rho_\tau(u) = u(\tau - I(u < 0)),$ giving structural estimators:

$$\begin{split} \hat{\pi}_{1}(\tau_{1},\tau_{2}) &= \sum_{i=1}^{n} w_{i} \Big\{ \nabla_{S} \hat{h}_{1i} \big|_{S_{i} = \hat{h}_{2i}} + \frac{\nabla_{z} h_{1i} \big|_{S_{i} = \hat{h}_{2i}}}{\nabla_{z} \hat{h}_{2i}} \Big\}, \\ \hat{\pi}_{2}(\tau_{1},\tau_{2}) &= \sum_{i=1}^{n} w_{i} \Big\{ \nabla_{x} \hat{h}_{1i} \big|_{S_{i} = \hat{h}_{2i}} - \frac{\nabla_{z} \hat{h}_{1i} \big|_{S_{i} = \hat{h}_{2i}}}{\nabla_{z} \hat{h}_{2i}} \nabla_{x} \hat{h}_{2i} \Big\} \end{split}$$

Proof of Control Variate Equivalence

$$M_{\hat{V}} = M_{M_XS} = I - M_X S(S^\top M_X S)^{-1} S^\top M_X$$

$$\begin{split} & \boldsymbol{S}^\top \boldsymbol{M}_{\hat{\boldsymbol{V}}} &= \boldsymbol{S}^\top - \boldsymbol{S}^\top \boldsymbol{M}_X = \boldsymbol{S}^\top \boldsymbol{P}_X \\ & \boldsymbol{X}_1^\top \boldsymbol{M}_{\hat{\boldsymbol{V}}} &= \boldsymbol{X}_1^\top - \boldsymbol{X}_1^\top \boldsymbol{M}_X = \boldsymbol{X}_1^\top = \boldsymbol{X}_1^\top \boldsymbol{P}_X \end{split}$$

Reward for information leading to a reference prior to Dhrymes (1970). Recent work on the control variate approach by Blundell, Powell, Smith, Newey and others.

Quantile Regression Control Variate Estimation II

oger Koenker (CEMMAP & UIUC)

$$\begin{array}{rcl} Y & = & \phi_1(S,x,\varepsilon,\nu;\,\alpha) \\ S & = & \phi_2(z,x,\nu;\,\beta) \end{array}$$

Regarding $\nu(\tau_2) = \nu - F_\nu^{-1}(\tau_2)$ as a control variate, we have

$$\begin{split} Q_Y(\tau_1|S,x,\nu(\tau_2)) &= g_1(S,x,\nu(\tau_2),\alpha(\tau_1,\tau_2)) \\ Q_S(\tau_2|z,x) &= g_2(z,x,\beta(\tau_2)) \\ \hat{\nu}(\tau_2) &= \phi_2^{-1}(S,z,x,\hat{\beta}) - \phi_2^{-1}(\hat{Q}_s,z,x,\hat{\beta}) \\ \hat{\alpha}(\tau_1,\tau_2) &= \text{argmin}_\alpha \sum_{i=1}^n \rho_{\tau_1}(Y_i - g_1(S,x,\hat{\nu}(\tau_2),\alpha)). \end{split}$$

2SLS as a Control Variate Estimator

$$\begin{array}{rcl} Y &=& S\alpha_1 + X_1\alpha_2 + u \equiv Z\alpha + u \\ S &=& X\beta + V, \mbox{ where } X = [X_1 \vdots X_2] \end{array}$$

Set $\hat{V}=S-\hat{S}\equiv M_XY_1,$ and consider the least squares estimator of the model, $Y=Z\alpha+\hat{V}\gamma+w$

Claim:
$$\hat{\alpha}_{CV} \equiv (Z^{\top}M_{\hat{W}}Z)^{-1}Z^{\top}M_{\hat{W}}Y = (Z^{\top}P_XZ)^{-1}Z^{\top}P_XY \equiv \hat{\alpha}_{2SLS}.$$

Quantile Regression Control Variate Estimation I Location scale shift model:

$$\begin{array}{rcl} Y &=& S(\alpha_1 + \varepsilon + \lambda \nu) + x^\top \alpha_2 \\ S &=& z\beta_1 + x^\top \beta_2 + \nu. \end{array}$$

LSE: 17.5.2010 8 / 16

LSE: 17.5.2010 10 / 16

LSE: 17.5.2010 12 / 16

Using $\hat{\nu}(\tau_2) = S - \hat{Q}_S(\tau_2|z,x)$ as a control variate,

$$\begin{split} Y &= w^\top \alpha(\tau_1,\tau_2) + \lambda S(\hat{Q}_S - Q_S) + S(\varepsilon - F_\varepsilon^{-1}(\tau_1)), \\ \text{where} & w^\top = (S, x^\top, S \hat{v}(\tau_2)) \\ & \alpha(\tau_1,\tau_2) = (\alpha_1(\tau_1,\tau_2),\alpha_2,\lambda)^\top \\ & \alpha_1(\tau_1,\tau_2) = \alpha_1 + F_\varepsilon^{-1}(\tau_1) + \lambda F_\nu^{-1}(\tau_2). \\ & \hat{\alpha}(\tau_1,\tau_2) = \text{argmin}_\alpha \sum_{i=1}^n \rho_{\tau_1}(Y_i - w_i^\top \alpha). \end{split}$$

Asymptopia

Roger Koenker (CEMMAP & UIUC)

LSE: 17.5.2010 9 / 16

LSE: 17.5.2010

11 / 16

Theorem: Under regularity conditions, the weighted average derivative and control variate estimators of the Chesher structural effect have an asymptotic linear (Bahadur) representation, and after efficient reweighting of both estimators, the control variate estimator has smaller covariance matrix than the weighted average derivative estimator.

Remark: The control variate estimator imposes more stringent restrictions on the estimation of the hybrid structural equation and should thus be expected to perform better when the specification is correct. The advantages of the control variate approach are magnified in situations of overidentification.

Roger Koenker (CEMMAP & UIUC) Endogoneity and All That

Asymptotics for WAD Asymptotics for CV Theorem Theorem The $\hat{\alpha}_n(\tau_1, \tau_2)$ has the Bahadur representation, The $\hat{\pi}_n(\tau_1, \tau_2)$ has the asymptotic linear (Bahadur) representation, $\sqrt{n}(\hat{\alpha}_{n}(\tau_{1},\tau_{2})-\alpha(\tau_{1},\tau_{2}))=\ \bar{D}_{1}^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\sigma_{i1}\dot{g}_{i1}\psi_{\tau_{1}}(Y_{i1}-\xi_{i1})$ $\sqrt{n}(\hat{\pi}_{n}(\tau_{1},\tau_{2})-\pi(\tau_{1},\tau_{2})) = W_{1}\overline{J}_{1}^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\sigma_{i1}\dot{h}_{i1}\psi_{\tau_{1}}(Y_{i1}-\xi_{i1})$ $+\,\bar{D}_{1}^{-1}\bar{D}_{12}\bar{D}_{2}^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\sigma_{i2}\dot{g}_{i2}\psi_{\tau_{2}}(Y_{i2}-\xi_{i2})$ $+ W_2 \bar{J}_2^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \sigma_{i2} \dot{h}_{i2} \psi_{\tau_2} (Y_{i2} - \xi_{i2})$ $\Longrightarrow \mathcal{N}(\mathbf{0}, \ \omega_{11}\bar{D}_1^{-1}D_1\bar{D}_1^{-1} + \omega_{22}\bar{D}_1^{-1}\bar{D}_{12}\bar{D}_2^{-1}D_2\bar{D}_2^{-1}\bar{D}_{12}^{\top}\bar{D}_1^{-1})$ $\Longrightarrow \mathcal{N}(\mathbf{0}, \ \boldsymbol{\omega}_{11} W_1 \overline{J}_1^{-1} J_1 \overline{J}_1^{-1} W_1^\top + \boldsymbol{\omega}_{22} W_2 \overline{J}_2^{-1} J_2 \overline{J}_2^{-1} W_2^\top)$ $D_j = \lim_{n \to \infty} n^{-1} \sum \sigma_{ij}^2 \dot{g}_{ij} \dot{g}_{ij}^\top, \ \bar{D}_j = \lim_{n \to \infty} n^{-1} \sum \sigma_{ij} f_{ij}(\xi_{ij}) \dot{g}_{ij} \dot{g}_{ij}^\top,$ $$\begin{split} J_{j} &= \lim_{n \to \infty} \frac{1}{n} \sum \sigma_{ij}^{2} \dot{h}_{ij} \dot{h}_{ij}^{\top}, \ \bar{J}_{j} = \lim_{n \to \infty} \frac{1}{n} \sum \sigma_{ij} f_{ij}(\xi_{ij}) \dot{h}_{ij} \dot{h}_{ij}^{\top}, \\ W_{1} &= \nabla_{\theta} \pi(\tau_{1}, \tau_{2}), \ W_{2} = \nabla_{\beta} \pi(\tau_{1}, \tau_{2}), \end{split}$$ $\bar{D}_{12} = \text{ lim } \mathfrak{n}^{-1} \sum \sigma_{i1} \mathfrak{f}_{i1} \eta_i \dot{g}_{i1} \dot{g}_{i2}^\top,$ $\dot{h}_{i1} = \nabla_{\theta} h_{i1}, \quad \dot{h}_{i2} = \nabla_{\beta} h_{i2}, \quad \omega_{jj} = \tau_j (1 - \tau_j).$ $\dot{g}_{\mathfrak{i}1}=\nabla_{\alpha}g_{\mathfrak{i}1},\ \dot{g}_{\mathfrak{i}2}=\nabla_{\beta}g_{\mathfrak{i}2},\ \eta_{\mathfrak{i}}=(\mathfrak{d}g_{\mathfrak{1}\mathfrak{i}}/\mathfrak{d}\nu_{\mathfrak{i}2}(\tau_2))(\nabla_{\nu_{\mathfrak{i}2}}\phi_{\mathfrak{i}2})^{-1}.$ ARE of WAD and CV Conclusions • Efficient weights: $\sigma_{ij} = f_{ij}(\xi_{ij})$ $\sqrt{n}(\hat{\pi}_{n}(\tau_{1},\tau_{2})-\pi(\tau_{1},\tau_{2})) \Rightarrow \mathcal{N}(0,\omega_{11}W_{1}J_{1}^{-1}W_{1}^{\top}+\omega_{22}W_{2}J_{2}^{-1}W_{2}^{\top})$ • Triangular structural models facilitate causal analysis via recursive $\sqrt{n}(\hat{\alpha}_{n}(\tau_{1},\tau_{2}) - \alpha(\tau_{1},\tau_{2})) \Rightarrow \mathcal{N}(0, \omega_{11}D_{1}^{-1} + \omega_{22}D_{1}^{-1}D_{12}D_{2}^{-1}D_{12}^{\top}D_{1}^{-1}).$ conditioning, directed acyclic graph representation. The mapping: $\tilde{\pi}_n = L \hat{\alpha}_n$, $L \alpha = \pi$. • Recursive conditional quantile models yield interpretable heterogeneous structural effects. $\begin{array}{lll} W_1 J_1^{-1} W_1^\top & \geqslant & L D_1^{-1} L^\top \\ W_2 J_2^{-1} W_2^\top & \geqslant & L D_1^{-1} D_{12} D_2^{-1} D_{12}^\top D_1^{-1} L^\top. \end{array}$ • Control variate methods offer computationally and statistically efficient strategies for estimating heterogeneous structural effects. • Weighted average derivative methods offer a less restrictive strategy for estimation that offers potential for model diagnostics and testing. Theorem Under efficient reweighting of both estimators, $\operatorname{Avar}(\sqrt{n}\tilde{\pi}_n) \leq \operatorname{Avar}(\sqrt{n}\hat{\pi}_n).$

LSE: 17.5.2010 16 / 16

$$\begin{array}{c} \label{eq:constraints} \mbox{Constraints} \$$


```
require(quantreg)
data(uis)
fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 +
        TREAT + FRAC + RACE + AGE * SITE, data = uis, method = "Por")
Sfit <- summary(fit,1:19/20)
PHit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +
        TREAT + FRAC + RACE + AGE * SITE, data = uis)
plot(Sfit, CoxPHit = PHit)</pre>
```

Peng and Huang's Approach for Random Censoring I

Rationale Extend the martingale representation of the Nelson-Aalen estimator of the cumulative hazard function to produce an "estimating equation" for conditional quantiles. Model AFT form of the quantile regression model:

 $\textit{Prob}(\log T_i \leqslant x_i^\top \beta(\tau)) = \tau$

 $\begin{array}{l} \mbox{Data } \{(Y_i, \delta_i): i=1, \cdots, n\} \ Y_i = T_i \wedge C_i, \ \delta_i = I(T_i < C_i) \\ \mbox{Martingale } \ \mbox{We have } EM_i(t) = 0 \ \mbox{for } t \geqslant 0, \ \mbox{where:} \end{array}$

 $\begin{array}{lll} M_i(t) &=& N_i(t) - \Lambda_i(t \wedge Y_i | x_i) \\ N_i(t) &=& I(\{Y_i \leqslant t\}, \{\delta_i = 1\}) \\ \Lambda_i(t) &=& -log(1 - F_i(t | x_i)) \\ F_i(t) &=& \textit{Prob}(T_i \leqslant t | x_i) \end{array}$

Alice in Asymptopia

It might be thought that the Powell estimator would be more efficient than the Portnoy and Peng-Huang estimators given that it imposes more stringent data requirements. Comparing asymptotic behavior and finite sample performance in the simplest one-sample setting indicates otherwise.

	median	Kaplan-Meier	Nelson-Aalen	Powell	Leurgans Ĝ	Leurgans G
n= 50	1.602	1.972	2.040	2.037	2.234	2.945
n= 200	1.581	1.924	1.930	2.110	2.136	2.507
n= 500	1.666	2.016	2.023	2.187	2.215	2.742
n= 1000	1.556	1.813	1.816	2.001	2.018	2.569
$n = \infty$	1.571	1.839	1.839	2.017	2.017	2.463

Scaled MSE for Several Estimators of the Median: Mean squared error estimates are scaled by sample size to conform to asymptotic variance computations. Here, $T_{\rm t}$ is standard lognormal, and $C_{\rm t}$ is exponential with rate parameter .25, so the proportion of censored observations is roughly 30 percent. 1000 replications.

Simulations I-A

		Intercept			Slope	
	Bias	MAE	RMSE	Bias	MAE	RMSE
Portnoy						
n = 100	-0.0032	0.0638	0.0988	0.0025	0.0702	0.1063
n = 400	-0.0066	0.0406	0.0578	0.0036	0.0391	0.0588
n = 1000	-0.0022	0.0219	0.0321	0.0006	0.0228	0.0344
Peng-Huang						
n = 100	0.0005	0.0631	0.0986	0.0092	0.0727	0.1073
n = 400	-0.0007	0.0393	0.0575	0.0074	0.0389	0.0598
n = 1000	0.0014	0.0215	0.0324	0.0019	0.0226	0.0347
Powell						
n = 100	-0.0014	0.0694	0.1039	0.0068	0.0827	0.1252
n = 400	-0.0066	0.0429	0.0622	0.0098	0.0475	0.0734
n = 1000	-0.0008	0.0224	0.0339	0.0013	0.0264	0.0396
GMLE						
n = 100	0.0013	0.0528	0.0784	-0.0001	0.0517	0.0780
n = 400	-0.0039	0.0307	0.0442	0.0031	0.0264	0.0417
n = 1000	0.0003	0.0172	0.0248	-0.0001	0.0165	0.0242

Comparison of Performance for the iid Error, Constant Censoring Configuration

Peng and Huang's Approach for Random Censoring II

The estimating equation becomes,

$$\mathsf{E}\mathfrak{n}^{-1/2}\sum x_i[\mathsf{N}_i(\mathsf{exp}(x_i^\top\beta(\tau))) - \int_0^\tau \mathrm{I}(Y_i \geqslant \mathsf{exp}(x_i^\top\beta(\mathfrak{u})))d\mathsf{H}(\mathfrak{u}) = 0.$$

where $H(\mathfrak{u})=-\log(1-\mathfrak{u})$ for $\mathfrak{u}\in[0,1),$ after rewriting:

$$\begin{split} \Lambda_i(\text{exp}(x_i^\top\beta(\tau))\wedge Y_i|x_i)) &= & H(\tau)\wedge H(F_i(Y_i|x_i)) \\ &= & \int_0^\tau I(Y_i \geqslant \text{exp}(x_i^\top\beta(u)))dH(u), \end{split}$$

Approximating the integral on a grid, $0 = \tau_0 < \tau_1 < \cdots < \tau_J < 1$ yields a simple linear programming formulation to be solved at the gridpoints.

Simulation Settings I

LSE: 17.5.2010 22 / 28

LSE: 17.5.2010

Simulations I-B

LSE: 17.5.2010

		Intercept			Slope	
	Bias	MAE	RMSE	Bias	MAE	RMSE
Portnoy						
n = 100	-0.0042	0.0646	0.0942	0.0024	0.0586	0.0874
n = 400	-0.0025	0.0373	0.0542	-0.0009	0.0322	0.0471
n = 1000	-0.0025	0.0208	0.0311	0.0006	0.0191	0.0283
Peng-Huang						
n = 100	0.0026	0.0639	0.0944	0.0045	0.0607	0.0888
n = 400	0.0056	0.0389	0.0547	-0.0002	0.0320	0.0476
n = 1000	0.0019	0.0212	0.0311	0.0009	0.0187	0.0283
Powell						
n = 100	-0.0025	0.0669	0.1017	0.0083	0.0656	0.1012
n = 400	0.0014	0.0398	0.0581	-0.0006	0.0364	0.0531
n = 1000	-0.0013	0.0210	0.0319	0.0016	0.0203	0.0304
GMLE						
n = 100	0.0007	0.0540	0.0781	0.0009	0.0470	0.0721
n = 400	0.0008	0.0285	0.0444	-0.0008	0.0253	0.0383
n = 1000	-0.0004	0.0169	0.0248	0.0002	0.0150	0.0224

Comparison of Performance for the iid Error, Variable Censoring Configuration

Simulation Se	ettings II							Simulati	ions II-A								
										1	Intercept			Slope		1	
									Destroy 1	Bias	MAE	RMSE	Bias	MAE	RMSE		
									n = 100	0.0084	0.0316	0.0396	-0.0251	0.0763	0.0964		
									n = 400	0.0076	0.0194	0.0243	-0.0247	0.0429	0.0533		
									Portnov Q	0.0001	0.0121	0.0149	-0.0241	0.0309	0.0370		
α –		/ /	8	-		//			n = 100	0.0018	0.0418	0.0527	0.0144	0.1576	0.2093		
						0			n = 400 n = 1000	-0.0010	0.0228	0.0290	0.0047	0.0708	0.0909		
						/// 2			Peng-Huang L								
~ -			~	-					n = 100 n = 400	0.0077	0.0313	0.0392	-0.0145	0.0749	0.0949		
	2000 C	Cocher Carlos				800			n = 1000 n = 1000	0.0077	0.0133	0.0147	-0.0123	0.0279	0.0342		
- ω -	3. 22		≻ 9	- /					Peng-Huang Q	0.0070	0.0425	0.0520	0.0402	0.1707	0.0000		
	and								n = 100 n = 400	0.0078	0.0425	0.0538	0.0483	0.1707 0.0775	0.2328		
	2			and the second	•				n = 1000	0.0015	0.0123	0.0155	0.0101	0.0483	0.0611		
	•		4,			•			n = 100	0.0021	0.0304	0.0385	-0.0034	0.0790	0.0993		
		•							n = 400	-0.0017	0.0191	0.0239	0.0028	0.0431	0.0544		
4 -			4	-ا					n = 1000	-0.0001	0.0099	0.0125	0.0003	0.0257	0.0316		
0.0	0.5 1.0	1.5 2.0		0.0 0.5	1.0	1.5 2.0			n = 100	0.1080	0.1082	0.1201	-0.2040	0.2042	0.2210		
									n = 400	0.1209	0.1209	0.1241	-0.2134	0.2134	0.2173		
	x				х				n = 1000	0.1118	0.1118	0.1130	-0.2075	0.2075	0.2091	I	
								Compariso	n of Perform	ance for	the Cor	nstant C	ensoring	g, Heter	oscedast	tic Cont	figu-
								ration									-
Roger Koenker (CEMMAP	& UIUC) Censo	red Quantile I	Regression ar	nd Survival N	1	LSE: 17.5.2010	25 / 28	Roger Koenker	(CEMMAP & UIUC) Censore	d Quantile F	Regression an	d Survival N	٨	LSE: 17.	.5.2010	26 / 28
Simulations	LR							Conclus	ions								
Simulations I	I-B							Conclus	ions								
Simulations I	I-B	Intercept			Slope			Conclus	ions								
Simulations I	I-B Bias	Intercept MAE	RMSE	Bias	Slope MAE	RMSE		Conclus	ions								
Simulations I	I-B Bias 00 0.0024	Intercept MAE 0.0278	RMSE 0.0417	Bias -0.0067	Slope MAE 0.0690	RMSE 0.1007		Conclus	ions								
Portnoy n = 10 n = 44	I-B Bias 0 0.0024 00 0.0019	Intercept MAE 0.0278 0.0145 0.0097	RMSE 0.0417 0.0213 0.0139	Bias -0.0067 -0.0080 -0.0062	Slope MAE 0.0690 0.0333 0.0210	RMSE 0.1007 0.0493 0.0312		Conclusi	ions		('				·		
Portnoy n = 10 n = 10 n = 10 Portnoy	L 00 0.0024 00 0.0019 000 0.0016 Q	Intercept MAE 0.0278 0.0145 0.0097	RMSE 0.0417 0.0213 0.0139	Bias -0.0067 -0.0080 -0.0062	Slope MAE 0.0690 0.0333 0.0210	RMSE 0.1007 0.0493 0.0312		• Simu	ions Ilation evide	nce con	firms tl	he asym	nptotic	conclus	sion tha	it the	
Portnoy n = 10 n = 40 n = 10 Portnoy n = 10	L 00 0.0024 00 0.0016 00 0.0016 Q 00 0.0016	Intercept MAE 0.0278 0.0145 0.0097 0.0352	RMSE 0.0417 0.0213 0.0139 0.0540	Bias -0.0067 -0.0080 -0.0062 0.0094	Slope MAE 0.0690 0.0333 0.0210 0.1121	RMSE 0.1007 0.0493 0.0312 0.1902		• Simu Portr	ions Ilation evide noy and Pen	nce con g-Huan	firms tl g estim	he asym	nptotic re quite	conclus e simila	sion tha r.	it the	
Portnoy n = 10	L Bias 00 00 00 00 00 00 00 00 00 00 00 00 00	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169	Bias -0.0067 -0.0080 -0.0062 0.0094 -0.0012 -0.0011	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511		• Simu Portr	ions Ilation evide noy and Pen	nce con g-Huan	firms tl g estim	he asym ators a	nptotic re quite	conclus e simila	sion tha r.	t the	
Portnoy n = 10 n = 40 n = 10 Portnoy n = 10 n = 10 Portnoy n = 10 n = 10 Portnoy	L Bias b0 00 000 0.0024 0.0019 0.0010 Q 0.0010 0.0002 0.0002 0.0002 0.0005 0.0005	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169	Bias -0.0067 -0.0080 -0.0062 0.0094 -0.0012 -0.0011	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511		• Simu Portr	ions Ilation evide noy and Pen martingale 1	nce con g-Huan represen	firms tl g estim tation (he asym ators a of the F	nptotic re quite Peng-Hi	conclus e simila uang es	sion tha r. stimator	it the vields	а
Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy	L Bias D0 0.0024 00 0.0016 00 0.0016 Q 0.0011 00 0.0002 000 0.0001 000 0.0001 000 -0.0002 000 -0.0002 000 -0.0002 000 -0.0002	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116 0.0281 0.0142	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212	Bias -0.0067 -0.0080 -0.0062 0.0094 -0.0011 0.0041 0.0041	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0332	RMSE 0.1007 0.0493 0.0312 0.0702 0.0774 0.0511 0.1017 0.0400		• Simu Portr • The more	ions Ilation evide noy and Pen martingale r complete a	nce con g-Huan represen sympto	firms tl g estim tation tic theo	he asym ators a of the F ory than	nptotic re quite Peng-Hu n is curr	conclus e simila uang es rently a	sion tha r. stimator vailable	t the yields for th	a
Portnoy n = 10	I-B Bias L 00 0.0024 00 0.0016 Q 0.0010 00 0.0011 00 0.0001 0.0002 uang L 00 0.0018 00 0.0018 00 0.0018 00 0.0018 00 0.0018 00 0.0018	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116 0.0281 0.0142 0.0096	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139	Bias -0.0067 -0.0080 -0.0062 0.0094 -0.0011 0.0041 0.0035 0.0002	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310		• Simu Portr • The more	ions Ilation evide noy and Pen martingale r complete a	nce con g-Huan represen sympto	firms the firms	he asym ators a of the F ory than	nptotic re quite Peng-Hu n is curr	conclus e simila uang es rently a	sion tha r. stimator vailable	t the yields for th	a
Portnoy n = 10 Peng-Hu	I-B	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116 0.0281 0.0281 0.0142 0.0096	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139	Bias -0.0067 -0.0080 -0.0062 0.0094 -0.0012 -0.0011 0.0041 0.0035 0.0002	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.0511 0.1017 0.0490 0.0310		• Simu Portr • The Portr	ions Ilation evide noy and Pen martingale n complete a noy estimato	nce con g-Huan represen sympto or.	firms the g estime tation of the construction	he asym lators a of the F ory than	nptotic re quite Peng-Hu i is curr	conclus e simila uang es rently a	sion tha r. stimator vailable	t the yields for th	a e
Portnoy n = 10 n = 10 n = 10 n = 10 Portnoy n = 10 Portnoy n = 10 Perfuse n = 10 Perfuse Perfuse Perg-Hi n = 10	I-B Bias L 00 0 0.0024 00 0 0.001 0 001 0 00 0 0 0 0 0 0 0 0 0	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116 0.0281 0.0142 0.0096 0.0364 0.0368	RMSE 0.0417 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139 0.0550 0.0250	Bias -0.0067 -0.0080 -0.0062 -0.0012 -0.0011 0.0041 0.0035 0.0002 0.0322 0.0154	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0504	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.0490 0.0310 0.2105 0.0813		 Simu Portr The Portr The 	ions llation evide noy and Pen martingale n complete a noy estimato Powell estin	nce con g-Huan epresen sympto or. nator. a	firms tl g estim tation d tic theo lthough	he asym lators a of the F ory than	nptotic re quite Peng-Hi i is curr ptually	conclus e simila uang es rently a attract	sion tha r. timator vailable ive. suff	t the yields for th	a e m
Portnoy n = 10 n = 40 n = 10 Portnoy n = 10	L Bias L 000 0.0024 000 0.0016 000 0.0016 00 0.00010 000 0.00010 000 0.00010 000 0.00012 000 0.00012 000 0.0002 000 0.0004 000 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.00	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0146 0.0281 0.0142 0.0096 0.0364 0.0188 0.0188	RMSE 0.0417 0.0213 0.0139 0.0540 0.0169 0.0169 0.0417 0.0212 0.0139 0.0550 0.0255 0.0169	Bias -0.0067 -0.0080 -0.0052 0.0094 -0.0011 -0.0011 0.0041 0.0035 0.0002 0.0322 0.0154 0.0077	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0508	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0813 0.0520		 Simu Portr The more Portr The 	ions lation evide noy and Pen martingale n complete a noy estimato Powell estin	nce con g-Huan represen sympto or. nator, a	firms tl g estim tation t tic theo lthough	he asym hators a of the F ory than h concep ficultion	nptotic re quite Peng-Hu i is curr otually	conclus e simila uang es rently a attractions	sion tha r. stimator vailable ive, suff	t the yields for th	a ie m
Portnoy n = 10 n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 Peng-HH n = 10 Peng-HH n = 10 Peng-HH n = 10 Peng-H	I-B	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0116 0.0281 0.0142 0.0096 0.0364 0.0364 0.0188 0.0113	RMSE 0.0417 0.0213 0.0139 0.0540 0.0169 0.0417 0.0220 0.0139 0.0540 0.0275 0.0169 0.0550 0.0275 0.0169	Bias -0.0067 -0.0080 -0.002 -0.0012 -0.0011 0.0041 0.0035 0.0002 0.0322 0.0154 0.0077	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0504 0.0333 0.0504	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.4940 0.0310 0.2105 0.0813 0.0520		 Simu Portr The more Portr The some 	ions lation evide noy and Pen martingale n complete a noy estimato Powell estin e serious cor	nce con g-Huan represen sympto or. nator, a nputatio	firms ti g estim tation tic theo lthough onal dif	he asym ators a of the F ory than concep ficulties	nptotic re quite Peng-Hu i is curr otually a s, impos	conclus e simila uang es rently a attracti ses stro	sion tha r. stimator vailable ive, suff ng data	t the yields for th fers fro	a e m
Portnoy n = 10	I-B Bias L 00 0 0002 0001 000 0001 000 0001 000 000	Intercept MAE 0.0278 0.0145 0.0097 0.0352 0.0185 0.0146 0.0281 0.0364 0.0138 0.0138 0.0138 0.0288 0.0288	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139 0.0550 0.0275 0.0169 0.0430 0.0225	Bias -0.0067 -0.0080 -0.0080 -0.0012 -0.0011 0.0094 -0.0012 -0.0011 0.0041 0.0035 0.0002 0.0322 0.154 0.0077 0.0055 0.0055	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0504 0.0333 0.0733 0.0733	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0613 0.0520		 Simu Portr The portr The some requi 	ions llation evide noy and Pen e complete a noy estimato Powell estin e serious cor rements, an	nce con g-Huan epresen sympto or. nator, a nputatio d has a	firms the stimulation of the structure o	he asym lators a of the F ory than I concep ficulties ent asym	nptotic re quite Peng-Hi i is curr otually a, impos mptotic	conclus e simila uang es rently a attractions ses stro c efficie	sion tha r. stimator vailable ive, suff ng data ncy disa	t the yields for th fers fro advanta	a ne m age.
Portnoy n = 10	General Constraints Bias L 0.0024 00 0.0016 00 0.0016 00 0.0011 00 0.0011 00 0.0011 000 0.0011 000 0.0011 000 0.0012 000 0.0012 000 0.0012 000 0.0012 000 0.0012 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017 000 0.00017	Intercept MAE 0.0278 0.0145 0.0352 0.0352 0.016 0.0316 0.0042 0.00364 0.00364 0.00364 0.0113 0.0288 0.0142 0.0045	RMSE 0.0417 0.0139 0.0540 0.0270 0.0139 0.0417 0.0139 0.0550 0.0159 0.0169 0.0430 0.0226	Bias -0.0067 -0.0060 -0.0062 -0.0062 -0.0012 -0.0011 0.0041 0.0041 0.0041 0.0041 0.0022 0.0322 0.0322 0.0322 0.0322 0.0055 0.0001 0.0001	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0504 0.0333 0.0733 0.0733 0.0733	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0813 0.05561 0.0350		 Simu Portr The more Portr The some requi 	ions llation evide noy and Pen martingale r complete a noy estimato Powell estin e serious cor rements, an	nce con g-Huan epresen sympto or. nator, a nputatic d has a	firms the g estiment of the second se	he asym lators a of the F ory than i concep ficulties ent asymitation	ptotic re quite Peng-Hu i is curr otually a, impos mptotic	conclus simila uang es rently a attracti ses stro c efficie	sion tha r. stimator vailable ive, suff ng data ncy disa	t the yields for th fers fro advanta	a e m age.
Portnoy n = 10 n = 44 Portnoy n = 10	I-B Bias L 00 0 0.0024 00 0.0001 0 0 0 0.001 0 0 0 0.001 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Intercept MAE 0.0278 0.0145 0.0352 0.0185 0.0142 0.0281 0.0364 0.0364 0.0142 0.0364 0.0138 0.0147 0.0364 0.0364 0.0364 0.0364 0.0142 0.005 0.0147	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0139 0.0550 0.0550 0.0226 0.0146 0.0146	Bias -0.0067 -0.0080 -0.0081 -0.0012 -0.0011 -0.0011 0.0041 0.0035 0.0035 0.0032 0.0322 0.0154 0.0055 0.0001 0.0137	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0333 0.0333 0.0373 0.0277	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0813 0.0550 0.1105 0.0550 0.1105 0.0350 0.1852		 Simu Portr The more Portr The some requi Quar 	ions llation evide noy and Pen martingale n complete a noy estimato Powell estim e serious cor rements, an ntile regressi	nce con g-Huan epresen sympto or. nator, a nputatio d has a on prov	firms tl g estim tation o tic theo lthough onal dif n inher ides a f	he asym lators a of the F ory than I concep ficulties ent asyn flexible	ptotic re quite Peng-Hi i is curr otually , impos mptotic complet	conclus e simila uang es rently a attracti ses stro c efficie ment to	sion tha r. vailable ive, suff ng data ncy disa o classio	t the yields for th fers fro advanta	a ie m age. vival
Portnoy n = 10 n = 44 Portnoy n = 10 Portnoy n = 10 Peng-HH n = 10 n = 10 n = 44 n = 10 n = 10 <t< td=""><td>I-B Bias L 00 0 0002 0001 0 000 0 0001 0 000 0 0001 0 0 0 0</td><td>Intercept MAE 0.0278 0.0145 0.0145 0.0352 0.0352 0.0352 0.0352 0.0142 0.0364 0.0138 0.0138 0.0288 0.0139 0.0286 0.0364 0.0364 0.0386 0.0138 0.1038 0.1138</td><td>RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0350 0.0550 0.0275 0.0430 0.0226 0.0146 0.1272 0.1168</td><td>Bias -0.0067 -0.0082 -0.0082 -0.0012 -0.0011 -0.0012 -0.0011 0.0035 0.0032 0.0322 0.0322 0.0322 0.0325 0.0001 0.0001 0.0013 -0.1576 -0.1576</td><td>Slope MAE 0.0690 0.0333 0.0210 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0208 0.1183 0.0504 0.0333 0.0733 0.0379 0.0237 0.1582 0.1578</td><td>RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.4900 0.0310 0.2105 0.0813 0.0520 0.1105 0.0350 0.1862 0.1647</td><td></td><td> Simu Portr The more Portr The some requi Quar analy </td><td>ions lation evide noy and Pen martingale n o estimate Powell estim e serious cor rements, an ntile regressi vsis methods</td><td>nce con g-Huan represen sympto or. nator, a nputatio d has a on prov s, and is</td><td>firms tl g estim tation t tic theo lthough onal dif n inher ides a f s now w</td><td>he asym ators a of the F ory than i concep ficulties ent asym ilexible vell equi</td><td>ptotic re quite Peng-Hu is curr otually i, impos mptotic complei pped to</td><td>conclus simila uang es rently a attracti ses stro : efficie ment to o handl</td><td>sion tha r. stimator vailable ive, suff ng data ncy disa o classic e censo</td><td>t the yields for th fers fro advanta cal survoring.</td><td>a ne mage. <i>v</i>ival</td></t<>	I-B Bias L 00 0 0002 0001 0 000 0 0001 0 000 0 0001 0 0 0 0	Intercept MAE 0.0278 0.0145 0.0145 0.0352 0.0352 0.0352 0.0352 0.0142 0.0364 0.0138 0.0138 0.0288 0.0139 0.0286 0.0364 0.0364 0.0386 0.0138 0.1038 0.1138	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0350 0.0550 0.0275 0.0430 0.0226 0.0146 0.1272 0.1168	Bias -0.0067 -0.0082 -0.0082 -0.0012 -0.0011 -0.0012 -0.0011 0.0035 0.0032 0.0322 0.0322 0.0322 0.0325 0.0001 0.0001 0.0013 -0.1576 -0.1576	Slope MAE 0.0690 0.0333 0.0210 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0208 0.1183 0.0504 0.0333 0.0733 0.0379 0.0237 0.1582 0.1578	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.4900 0.0310 0.2105 0.0813 0.0520 0.1105 0.0350 0.1862 0.1647		 Simu Portr The more Portr The some requi Quar analy 	ions lation evide noy and Pen martingale n o estimate Powell estim e serious cor rements, an ntile regressi vsis methods	nce con g-Huan represen sympto or. nator, a nputatio d has a on prov s, and is	firms tl g estim tation t tic theo lthough onal dif n inher ides a f s now w	he asym ators a of the F ory than i concep ficulties ent asym ilexible vell equi	ptotic re quite Peng-Hu is curr otually i, impos mptotic complei pped to	conclus simila uang es rently a attracti ses stro : efficie ment to o handl	sion tha r. stimator vailable ive, suff ng data ncy disa o classic e censo	t the yields for th fers fro advanta cal survoring.	a ne mage. <i>v</i> ival
Portnoy n = 10 n = 10 n = 10 Portnoy n = 10 Portnoy n = 10 Perfuge n = 10	I-B Bias L 00 0 0002 000 0 000 0 000 0 000 0 000 0 000 0 0 0	Intercept MAE 0.0278 0.145 0.0352 0.0352 0.0352 0.0185 0.0146 0.0281 0.0142 0.0096 0.0368 0.0113 0.0288 0.0147 0.0095 0.1038 0.1138	RMSE 0.0417 0.0139 0.0270 0.0169 0.0417 0.0270 0.0169 0.0417 0.0212 0.0139 0.0555 0.0169 0.0226 0.0146 0.1272 0.1168 0.1174	Bias -0.0067 -0.0062 -0.0062 -0.0062 -0.0012 -0.0011 0.0031 0.0035 0.0002 0.0322 0.0154 0.0077 0.0055 0.0001 0.0013 -0.1576 -0.1581 -0.1609	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0504 0.0333 0.0504 0.0333 0.0237 0.1582 0.1582 0.1578 0.1601	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0520 0.1055 0.0350 0.1862 0.1647 0.1639		 Simu Portr The more Portr The some requi Quar analy 	ions llation evide noy and Pen martingale n complete a noy estimato Powell estim e serious cor rements, an ntile regressi vsis methods	nce con g-Huan represen sympto or. nator, a nputatic d has a on prov s, and is	firms the g estimation of the second	he asym lators a of the F ory than i concep ficulties ent asyn flexible vell equi	ptotic re quite Peng-Hu is curr otually , impos mptotic complet ipped to	conclus e simila uang es rently a attracti ses stro c efficie ment to o handl	sion tha r. stimator vailable ng data ncy disa o classic e censo	t the yields for th fers fro advanta cal surv oring.	a e m age. vival
Portnoy n = 10	I-B Bias L 00 0 0.0024 00 0 0.0015 00 0 0.001 0 00 0 0.001 0 000 0 0.000 0 000 0 000 0 000 0 000 0 000 0 000 0	Intercept MAE 0.0278 0.0145 0.0352 0.0352 0.0181 0.0281 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0188 0.0147 0.0288 0.1138	RMSE 0.0417 0.0213 0.0139 0.0540 0.0275 0.0139 0.0550 0.0275 0.0169 0.0430 0.0226 0.0146 0.1272 0.1174	Bias -0.0067 -0.0080 -0.0081 0.0094 -0.0011 0.0041 0.0021 0.0032 0.0322 0.0322 0.0322 0.0332 0.0055 0.0001 0.0015 0.0015 0.0015 0.01576 -0.1576 -0.1609	Slope MAE 0.06690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0337 0.05504 0.1183 0.0337 0.05504 0.0733 0.0237 0.1582 0.1578 0.1601	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0520 0.1105 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.1862 0.1639		 Simu Portr The more Portr The some requi Quar analy 	ions llation evide noy and Pen complete a noy estimato Powell estin e serious cor rements, an ntile regressi rsis methods	nce con g-Huan represen sympto or. nator, a nputatic d has a on prov s, and is	firms the g estiment of the sector of the se	he asym lators a of the F ory than ficulties ent asyn flexible vell equi	ptotic re quite Peng-Hi i is curr otually , impos mptotic complet pped to	conclus e simila uang es rently a attracti ses stro c efficie ment to o handl	sion tha r. timator vailable ng data ncy disa o classic e censo	t the yields for th fers fro advant: cal surv rring.	a e m age. <i>r</i> ival
Portnoy n = 10 n = 44 n = 10 Comparison of Period	I-B	Intercept MAE 0.0278 0.0145 0.0352 0.0185 0.0142 0.0364 0.0364 0.0364 0.0364 0.0142 0.0364 0.0364 0.0138 0.0147 0.0364 0.118 0.0288 0.1138 0.1038 0.1138	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139 0.0550 0.0275 0.0140 0.0226 0.0146 0.1272 0.1168 0.1174	Bias -0.0067 -0.0080 -0.0081 -0.0011 -0.0011 0.0041 0.002 0.0035 0.0001 0.0055 0.0001 0.0154 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.01576 0.1576 0.1609	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0333 0.0694 0.0333 0.0208 0.1183 0.0504 0.0333 0.0733 0.0379 0.0228 0.1582 0.1576 0.1601	RMSE 0.1007 0.493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0813 0.0550 0.1105 0.0550 0.1862 0.1639	iigura-	 Simu Portr The more Portr The some requi Quar analy 	ions lation evide noy and Pen martingale n complete a noy estimato Powell estim e serious cor rements, an ntile regressi <i>r</i> sis methods	nce con g-Huan epresen sympto or. nator, a nputatio d has a on prov s, and is	firms tl g estim tation o tic theo lthough onal dif n inher ides a f s now w	he asym ators a of the F ory than i concep ficulties ent asy flexible <i>i</i> ell equi	ptotic re quite Peng-Hu otually , impos mptotic complet pped to	conclus e simila uang es rently a attracti ses stro c efficie ment to o handl	sion tha r. stimator vailable ive, suff ng data ncy disa o classic e censo	r yields e for th fers fro advanta cal surv oring.	a e m age. <i>r</i> ival
Portnoy n = 10 n = 10 Portnoy n = 10 Portnoy n = 10 Persymbol n = 10 Powell n = 10 GMLE n = 10 Comparison of Pertion tion	I-B	Intercept MAE 0.0278 0.0145 0.0145 0.0352 0.0352 0.0352 0.0142 0.0046 0.0364 0.0147 0.0364 0.0138 0.0281 0.0147 0.0364 0.1138 0.1138 0.1138 v.1116 0.1138	RMSE 0.0417 0.0139 0.0270 0.0169 0.0417 0.0270 0.0169 0.0417 0.0212 0.0350 0.0550 0.0275 0.0169 0.0430 0.0226 0.1166 0.1174 iable Cel	Bias -0.0067 -0.0080 -0.0082 0.0094 -0.0012 -0.0011 0.0035 0.0002 0.0322 0.0154 0.0007 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0007 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0052 0.0094 0.0012 0.0013 0.0013 0.0013 0.01576 0.01576 0.01576 0.01576 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.01576 0.0169 0.015767 0.015767 0.015767 0.01576 0.0	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.05510 0.0337 0.0208 0.1183 0.0208 0.1183 0.0504 0.0333 0.0208 0.1183 0.0208 0.1183 0.0208 0.1183 0.0237 0.1582 0.1582 0.1582 0.1601	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0813 0.0520 0.1105 0.0350 0.1862 0.1647 0.1639	iigura-	 Simu Portr The more Portr The some requi Quar analy 	ions llation evide noy and Pen martingale n complete a noy estimato Powell estin e serious cor rements, an ntile regressi vsis methods	nce con g-Huan represen sympto or. nator, a nputatio d has a on prov s, and is	firms tl g estim tation o tic theo lthough onal dif n inher ides a f s now w	he asym ators a of the F ory than concep ficulties ent asym flexible vell equi	Peng-Hu Peng-Hu o is curr otually of impos mptotic complet ipped to	conclus e simila uang es rently a attract ses stro c efficie ment to o handl	sion tha r. stimator vailable ive, suff ng data ncy disa o classic e censo	r yields r yields fers fro advant: cal surv oring.	a ne age. <i>v</i> ival
Portnoy n = 10 n = 40 n = 10 Portnoy n = 10 Portnoy n = 10 Portnoy n = 10 n = 40 n = 10 Peng-Hi n = 10 Peng-Hi n = 10 Portnoy n = 10 n = 40 n = 10 Portnoy n = 10 n = 40 n = 10 Portnoy n = 10 Source (n = 10) Portnoy n = 10 Portnoy n = 10 n = 40 n = 10 n = 40 Portnoy n = 10 n = 40 n = 10 n = 10 n = 10 n = 10 Portnoy n = 10 n	I-B	Intercept MAE 0.0278 0.0145 0.0352 0.0352 0.0185 0.0142 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0138 0.0138 0.0138 0.0138 0.1038 0.1138 v1116 v1138 v1118	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139 0.0550 0.0550 0.0147 0.0550 0.0140 0.0225 0.0146 0.1174 0.1174	Bias -0.0067 -0.0062 -0.0022 -0.0012 -0.0011 0.0041 0.0035 0.0002 0.0332 0.0322 0.0154 0.0077 0.0055 0.0001 0.0013 -0.1576 -0.1576 -0.1576 -0.1576 -0.1576	Slope MAE 0.0690 0.0333 0.0210 0.01121 0.0510 0.0333 0.0208 0.1183 0.0504 0.0333 0.0504 0.0333 0.0504 0.0333 0.0237 0.1582 0.1578 0.1601 Heteros	RMSE 0.1007 0.0493 0.0312 0.0312 0.0511 0.0511 0.1017 0.0490 0.0310 0.2105 0.0520 0.1050 0.1051 0.1052 0.10530 0.1647 0.1639 sceedastic Conf	ïgura-	 Simu Portr The more Portr The some requi Quar analy 	ions llation evide noy and Pen martingale n e complete a noy estimato Powell estin e serious cor rements, an ntile regressi vsis methods	nce con g-Huan represen sympto or. nator, a nputatio d has a on prov s, and is	firms the gestime tation of the tation of tati	he asym lators a of the F ory than i concep ficulties ent asyn ilexible rell equi	ptotic re quite Peng-Hu is curr otually , impos mptotic complet pped to	conclus e simila uang es rently a attracti ses stro c efficie ment to o handl	sion tha r. timator vailable ive, suff ng data ncy disa o classic e censo	t the yields fers fro advant: cal surv yring.	a e m age. <i>v</i> ival
Simulations	I-B	Intercept MAE 0.0278 0.0145 0.0352 0.0352 0.0181 0.0281 0.0164 0.0364 0.0364 0.0147 0.0364 0.0188 0.0147 0.0364 0.1138 0.1038 0.1138 r the Var	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0275 0.0139 0.0550 0.0275 0.0164 0.0226 0.0146 0.1174 iable Cel	Bias -0.0067 -0.0080 -0.0081 0.0094 -0.0011 0.0041 0.0021 0.0022 0.0322 0.0322 0.0322 0.0154 0.0001 0.0015 0.0015 0.0016 0.01576 -0.1576 -0.1609	Slope MAE 0.0690 0.0333 0.0210 0.1121 0.0510 0.0337 0.0694 0.0333 0.0208 0.1183 0.0208 0.1183 0.0337 0.0337 0.0337 0.0337 0.0337 0.0237 0.1582 0.1578 0.1601 Heteros	RMSE 0.1007 0.0493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0520 0.1105 0.0550 0.1862 0.1639 sceedastic Conf	iigura-	 Simu Portr The more Portr The some requi Quar analy 	ions llation evide noy and Pen martingale r complete a noy estimato Powell estin e serious cor rements, an ntile regressi vsis methods	nce con g-Huan represen sympto or. hator, a nputatio d has a on prov s, and is	firms the g estimation of the constraints of the co	he asym lators a of the F ory than i concep ficulties ent asyn flexible vell equi	ptotic re quite Peng-Hi i is curr otually , impos mptotic complet pped to	conclus e simila uang es rently a attracti ses stro c efficie ment to o handl	sion tha r. timator vailable ive, suff ng data ncy disa o classic e censo	t the yields for th fers fro advant: cal surv rring.	a e m age. <i>r</i> ival
Simulations I Portnoy n = 10 Portnoy n = 10 n = 44 n = 10 Portnoy n = 10 n = 44 n = 10 Portnoy n = 10 n = 44 n = 10 Portnoy n = 10 Portnoy n = 10 n = 44 n = 10 Portnoy n = 10 n = 44 n = 10 n = 10	L Bias L 00 0.0024 00 0.0016 0.0016 00 0.0016 0.0002 00 0.0001 0.0002 00 0.0001 0.0002 00 0.0002 0.0002 00 0.0002 0.0012 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.0002 0.0002 00 0.1076 0.1123 0000 0.11153 Thornance fo & UUUC) Censor Censor	Intercept MAE 0.0278 0.0145 0.0145 0.018 0.0142 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.0364 0.1138 0.1038 0.1138 r the Var red Quantile I	RMSE 0.0417 0.0213 0.0139 0.0540 0.0270 0.0169 0.0417 0.0212 0.0139 0.0550 0.0275 0.0146 0.0226 0.0146 0.1174 iable Cert	Bias -0.0067 -0.0080 -0.0081 0.0094 -0.0011 0.0041 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0055 0.0010 0.01576 -0.1576 -0.1609	Slope MAE 0.6690 0.0333 0.0210 0.1121 0.0337 0.0694 0.0333 0.0208 0.1183 0.0504 0.0333 0.0733 0.0379 0.0237 0.1582 0.1578 0.1601 Heteros	RMSE 0.1007 0.493 0.0312 0.1902 0.0774 0.0511 0.1017 0.0490 0.0310 0.2105 0.0813 0.0550 0.1105 0.0551 0.1639	íigura- 27 / 28	 Simu Portr The more Portr The some requi Quar analy 	ions llation evide noy and Pen martingale n complete a noy estimato Powell estin e serious cor rements, an ntile regressi <i>r</i> sis methods	nce con g-Huan epresen sympto or. nator, a nputatio d has a on prov s, and is	firms tl g estim tation o tic theo lthough onal dif n inher ides a f s now w	he asym hators a of the F ory than i concep ficulties ent asy flexible vell equi	ptotic re quite Peng-Hu otually o , impos mptotic complet pped to	conclus e simila uang es rently a attracti ses stro c efficie ment to o handl	sion tha r. stimator vailable ive, suff ng data ncy disa o classic e censo	t the yields for th fers fro advanta cal surv oring.	a e m age. vival

Linear AR(1) and QAR(1) Models

The classical linear AR(1) model

 $y_t = \alpha_0 + \alpha_1 y_{t-1} + u_t,$

with iid errors, $u_t:t=1,\cdots$, T, implies

 $E(y_t | \mathfrak{F}_{t-1}) = \alpha_0 + \alpha_1 y_{t-1}$

and conditional quantile functions are all parallel:

$$Q_{\mathtt{y}_t}(\tau|\mathfrak{F}_{t-1}) = \alpha_0(\tau) + \alpha_1 \mathtt{y}_{t-1}$$

with $\alpha_0(\tau) = F_u^{-1}(\tau)$ just the quantile function of the u_t 's. But isn't this rather boring? What if we let α_1 depend on τ too?

A Random Coefficient Interpretation

If the conditional quantiles of the response satisfy:

$$Q_{y_t}(\tau|\mathcal{F}_{t-1}) = \alpha_0(\tau) + \alpha_1(\tau)y_{t-1}$$

then we can generate responses from the model by replacing $\boldsymbol{\tau}$ by uniform random variables:

 $y_t = \alpha_0(u_t) + \alpha_1(u_t)y_{t-1} \quad u_t \sim \text{iid } U[0,1].$

LSE: 17.5.2010 8 / 33

LSE: 17.5.2010 10 / 33

LSE: 17.5.2010 12 / 33

This is a very special form of random coefficient autoregressive (RCAR) model with comonotonic coefficients.

On Comonotonicity

Definition: Two random variables $X, Y : \Omega \to R$ are comonotonic if there exists a third random variable $Z : \Omega \to R$ and increasing functions f and g such that X = f(Z) and Y = g(Z).

- If X and Y are comonotonic they have rank correlation one.
- From our point of view the crucial property of comonotonic random variables is the behavior of quantile functions of their sums, X, Y comonotonic implies:

 $F_{x+y}^{-1}(\tau) = F_x^{-1}(\tau) + F_y^{-1}(\tau)$

LSE: 17.5.2010

LSE: 17.5.2010

• X and Y are driven by the same random (uniform) variable.

The QAR(p) Model

Consider a p-th order QAR process,

$$Q_{y_{t}}(\tau | \mathcal{F}_{t-1}) = \alpha_{0}(\tau) + \alpha_{1}(\tau)y_{t-1} + ... + \alpha_{p}(\tau)y_{t-p}$$

Equivalently, we have random coefficient model,

 $\begin{aligned} y_t &= & \alpha_0(u_t) + \alpha_1(u_t)y_{t-1} + \dots + \alpha_p(u_t)y_{t-p} \\ &\equiv & x_t^\top \alpha(u_t). \end{aligned}$

Now, all p + 1 random coefficients are comonotonic, functionally dependent on the same uniform random variable.

Vector QAR(1) representation of the QAR(p) Model

 $Y_t = \mu + A_t Y_{t-1} + V_t \\$

where

$$\begin{split} \boldsymbol{\mu} &= \left[\begin{array}{c} \boldsymbol{\mu}_0 \\ \boldsymbol{0}_{p-1} \end{array} \right], \, \boldsymbol{A}_t = \left[\begin{array}{c} \boldsymbol{a}_t & \boldsymbol{\alpha}_p(\boldsymbol{u}_t) \\ \boldsymbol{I}_{p-1} & \boldsymbol{0}_{p-1} \end{array} \right], \, \boldsymbol{V}_t = \left[\begin{array}{c} \boldsymbol{\nu}_t \\ \boldsymbol{0}_{p-1} \end{array} \right] \\ \boldsymbol{a}_t &= [\boldsymbol{\alpha}_1(\boldsymbol{u}_t), \dots, \boldsymbol{\alpha}_{p-1}(\boldsymbol{u}_t)], \\ \boldsymbol{Y}_t &= [\boldsymbol{y}_t, \cdots, \boldsymbol{y}_{t-p+1}]^\top, \\ \boldsymbol{\nu}_t &= \boldsymbol{\alpha}_0(\boldsymbol{u}_t) - \boldsymbol{\mu}_0. \end{split}$$

It all looks rather complex and multivariate, but it is really still nicely univariate and very tractable.

Slouching Toward Asymptopia

We maintain the following regularity conditions:

- A.1 {v_t} are iid with mean 0 and variance $\sigma^2 < \infty$. The CDF of ν_t , F, has a continuous density f with $f(\nu) > 0$ on $\mathcal{V} = \{\nu : 0 < F(\nu) < 1\}.$
- A.2 Eigenvalues of $\Omega_A = E(A_t \otimes A_t)$ have moduli less than unity.
- A.3 Denote the conditional CDF $\mathsf{Pr}[y_t < y | \mathfrak{F}_{t-1}]$ as $\mathsf{F}_{t-1}(y)$ and its derivative as $\mathsf{f}_{t-1}(y)$, f_{t-1} is uniformly integrable on $\mathcal{V}.$

Stationarity

Theorem 1: Under assumptions A.1 and A.2, the QAR(p) process y_t is covariance stationary and satisfies a central limit theorem

$$\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right) \Rightarrow N\left(0,\omega_{y}^{2}\right),$$

with

$$\begin{array}{lll} \mu_{y} & = & \frac{\mu_{0}}{1-\sum_{j=1}^{p}\mu_{p}}, \\ \mu_{j} & = & E(\alpha_{j}(u_{t})), \quad j=0,...,p, \\ \omega_{y}^{2} & = & \lim \frac{1}{n}E[\sum_{t=1}^{n}(y_{t}-\mu_{y})]^{2}. \end{array}$$

Qualitative Behavior of QAR(p) Processes

- The model can exhibit unit-root-like tendencies, even temporarily explosive behavior, but episodes of mean reversion are sufficient to insure stationarity.
- Under certain conditions, the QAR(p) process is a semi-strong ARCH(p) process in the sense of Drost and Nijman (1993).
- The impulse response of y_{t+s} to a shock u_t is stochastic but converges (to zero) in mean square as $s\to\infty.$

$$\frac{1}{\sqrt{n}}\sum_{t=1}^{n}(y_{t}-\mu_{y}) \Rightarrow N\left(0,\omega_{y}^{2}\right),$$

where $\mu_0=\mathsf{E}\alpha_0(\mathfrak{u}_t),\ \mu_1=\mathsf{E}(\alpha_1(\mathfrak{u}_t),\ \sigma^2=V(\alpha_0(\mathfrak{u}_t)),$ and

$$\mu_y = \frac{\mu_0}{(1-\mu_1)}, \quad \omega_y^2 = \frac{(1+\mu_1)\sigma^2}{(1-\mu_1)(1-\omega^2)}$$

Estimated QAR(1) v. AR(1) Models of U.S. Interest Rates

LSE: 17.5.2010 14 / 33

LSE: 17.5.2010 16 / 33

LSE: 17.5.2010 18 / 33

Data: Seasonally adjusted monthly: April, 1971 to June, 2002. Do 3-month T-bills really have a unit root?

The QAR Process

Roger Koenker (CEMMAP & U

Roger Koenker (CEMMAP & UIUC)

13 / 33

LSE: 17.5.2010 15 / 33

LSE: 17.5.2010

17 / 33

Theorem 2: Under our regularity conditions,

$$\sqrt{n}\Omega^{-1/2}(\hat{\alpha}(\tau) - \alpha(\tau)) \Rightarrow B_{p+1}(\tau)$$

a (p+1)-dimensional standard Brownian Bridge, with

$$\begin{split} \Omega &= & \Omega_1^{-1} \Omega_0 \Omega_1^{-1}. \\ \Omega_0 &= & \mathsf{E}(x_t x_t^\top) = \mathsf{lim} \, n^{-1} \sum_{t=1}^n x_t x_t^\top, \\ \Omega_1 &= & \mathsf{lim} \, n^{-1} \sum_{t=1}^n \mathsf{f}_{t-1}(\mathsf{F}_{t-1}^{-1}(\tau)) x_t x_t^\top. \end{split}$$

Estimation of the QAR model

er (CEMMAP & UIUC)

Estimation of the QAR models involves solving,

$$\hat{\alpha}(\tau) = \mathsf{argmin}_{\alpha} \sum_{t=1}^n \rho_{\tau}(y_t - x_t^\top \alpha)$$

where $\rho_\tau(u)=u(\tau-I(u<0)),$ the $\sqrt{}$ -function. Fitted conditional quantile functions of $y_t,$ are given by,

$$\hat{Q}_{t}(\tau|\mathbf{x}_{t}) = \mathbf{x}_{t}^{\top}\hat{\alpha}(\tau),$$

and conditional densities by the difference quotients,

$$\hat{f}_t(\tau|x_{t-1}) = \frac{2h}{\hat{Q}_t(\tau+h|x_{t-1}) - \hat{Q}_t(\tau-h|x_{t-1})},$$

$$\begin{aligned} & | \mathbf{h}_{1}|^{c} \text{ concerns for QAR models} \\ & | \mathbf{h}_{1}|^{c} | \mathbf{R}_{0}(\tau) = \tau \\ & \text{ using the Wold statistic.} \\ & | \mathbf{h}_{1}|^{c} | \mathbf{R}_{0}(\tau) = \tau \\ & | \mathbf{R}_{0}(\tau) = \tau | \mathbf{R}_{0}$$

But $\Omega = R + ZQZ^{\top}$, see e.g. Rao(1973, p 33.).

er (CEMMAP & UIUC)

This result has a long history: Henderson(1950), Goldberger(1962), Lindley and Smith (1972), etc.

Classical Linear Fixed/Random Effects Model

Consider the model,

$$y_{ij} = x_{ij}^{\top}\beta + \alpha_i + u_{ij}$$
 $j = 1, ..., m_i, i = 1, ..., n_i$

 $y = X\beta + Z\alpha + u$.

The matrix Z represents an incidence matrix that identifies the n distinct individuals in the sample. If u and α are independent Gaussian vectors with $u \sim \mathcal{N}(0, R)$ and $\alpha \sim \mathcal{N}(0, Q)$. Observing that $\nu = Z\alpha + u$ has covariance matrix $E\nu\nu^{\top} = R + ZQZ^{\top}$, we can immediately deduce that the minimum variance unbiased estimator of β is,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^\top (\boldsymbol{R} + \boldsymbol{Z} \boldsymbol{Q} \boldsymbol{Z}^\top)^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^\top (\boldsymbol{R} + \boldsymbol{Z} \boldsymbol{Q} \boldsymbol{Z}^\top)^{-1} \boldsymbol{y}.$$

Quantile Regression with Fixed Effects

Suppose that the conditional quantile functions of the response of the jth observation on the ith individual y_{ij} takes the form:

$$Q_{\mathfrak{y}_{\mathfrak{i}\mathfrak{j}}}(\tau|x_{\mathfrak{i}\mathfrak{j}}) = \alpha_{\mathfrak{i}} + x_{\mathfrak{i}\mathfrak{j}}^{\top}\beta(\tau) \quad \mathfrak{j} = 1,...\mathfrak{m}_{\mathfrak{i}}, \quad \mathfrak{i} = 1,...,\mathfrak{n}.$$

In this formulation the α 's have a pure location shift effect on the conditional quantiles of the response. The effects of the covariates, x_{ij} are permitted to depend upon the quantile, τ , of interest, but the α 's do not. To estimate the model for several quantiles simultaneously, we propose solving,

$$\min_{(\boldsymbol{\alpha},\boldsymbol{\beta})} \sum_{k=1}^{q} \sum_{j=1}^{n} \sum_{i=1}^{m_i} w_k \rho_{\tau_k}(y_{ij} - \boldsymbol{\alpha}_i - \boldsymbol{x}_{ij}^\top \boldsymbol{\beta}(\tau_k))$$

LSE: 17.5.2010

Note that the usual between/within transformations are not permitted.

Penalized Quantile Regression with Fixed Effects

When n is large relative to the m_i 's shrinkage may be advantageous in controlling the variability introduced by the large number of estimated α parameters. We will consider estimators solving the penalized version,

$$\label{eq:alpha_states} \underset{(\alpha,\beta)}{\text{min}} \sum_{k=1}^q \sum_{j=1}^n \sum_{i=1}^{m_i} w_k \rho_{\tau_k}(y_{ij} - \alpha_i - x_{ij}^\top \beta(\tau_k)) + \lambda \sum_{i=1}^n |\alpha_i|.$$

For $\lambda \to 0$ we obtain the fixed effects estimator described above, while as $\lambda \to \infty$ the $\hat{\alpha}_i \to 0$ for all i=1,2,...,n and we obtain an estimate of the model purged of the fixed effects. In moderately large samples this requires sparse linear algebra. Example R code is available from my webpages.

LSE: 17.5.2010

Weakening the Independence Axiom

The independence axiom seems quite innocuous, but it is extremely powerful. We will consider a weaker form of independence due to Schmeidler (1989).

(A.2') (comonotonic independence) For all pairwise comonotonic P, Q, $R \in \mathcal{P}$ and $\alpha \in (0, 1)$ P $\succ Q \Rightarrow \alpha P + (1 - \alpha)R \succ \alpha Q + (1 - \alpha)R$,

Definition Two acts P and Q in \mathcal{P} are comonotonic, or similarly ordered, if for no s and t in S,

 $\mathsf{P}(\{t\})\succ\mathsf{P}(\{s\})\quad\text{and}\quad Q(\{s\})\succ Q(\{t\}).$

"If P is better in state t than state s, then Q is also better in t than s."

Choquet Expected Utility

Among the many proposals offered to extend expected utility theory the most attractive (to us) replaces

$$E_{F}u(X) = \int_{0}^{1} u(F^{-1}(t))dt \ge \int_{0}^{1} u(G^{-1}(t))dt = E_{G}u(Y)$$

with

$$E_{\boldsymbol{\nu},F}\mathfrak{u}(X)=\int_0^1\mathfrak{u}(F^{-1}(t))d\boldsymbol{\nu}(t)\geqslant\int_0^1\mathfrak{u}(G^{-1}(t))d\boldsymbol{\nu}(t)=E_{\boldsymbol{\nu},G}\mathfrak{u}(Y)$$

The measure ν permits distortion of the probability assessments after ordering the outcomes. This rank dependent form of expected utility has been pioneered by Quiggin (1981), Yaari (1987), Schmeidler (1989), Wakker (1989) and Dennenberg (1990).

A Smoother example

A simple, yet intriguing, one-parameter family of pessimistic Choquet distortions is the measure:

$$v_{\theta}(t) = 1 - (1 - t)^{\theta} \qquad \theta \ge 1$$

Note that, changing variables, $t \to F_X(u),$ we have,

$$E_{\nu_{\theta}}X = \int_{0}^{1} F_{X}^{-1}(t) d\nu(t) = \int_{-\infty}^{\infty} u d(1 - (1 - F_{X}(u))^{\theta})$$

The pessimist imagines that he gets not a single draw from X but θ draws, and from these he always gets the worst. The parameter θ is a natural "measure of pessimism," and need not be an integer.

On Comonotonicity

 $\begin{array}{l} \mbox{Definition} \mbox{ The two functions } X,Y:\Omega \to R \mbox{ are comonotonic if there} \\ \mbox{exists a third function } Z:\Omega \to \Re \mbox{ and increasing functions } f \mbox{ and } g \mbox{ such that } X = f(Z) \mbox{ and } Y = g(Z). \end{array}$

From our point of view the crucial property of comonotonic random variables is the behavior of quantile functions of their sums. For comonotonic random variables X, Y, we have

$$F_{X+Y}^{-1}(u) = F_X^{-1}(u) + F_Y^{-1}(u)$$

By comonotonicity we have a $U \sim U[0,1]$ such that $Z = g(U) = F_x^{-1}(U) + F_y^{-1}(U)$ where g is left continuous and increasing, so by monotone invariance, $F_{g(U)}^{-1} = g \circ F_{u}^{-1} = F_x^{-1} + F_y^{-1}$. Comonotonic random variables are maximally dependent a la Fréchet

Roger Koenker (CEMMAP & UIU

By relaxing the independence axiom we obtain a larger class of preferences representable as Choquet capacities and introducing pessimism. The simplest form of Choquet expected utility is based on the "distortion"

 $\nu_{\alpha}(t) = \text{min}\{t/\alpha, 1\}$

SO

LSE: 17.5.2010 9 / 34

$$v_{\alpha,F}u(X) = \alpha^{-1} \int_0^\alpha u(F^{-1}(t))dt$$

This exaggerates the probability of the proportion α of least favorable events, and totally discounts the probability of the $1 - \alpha$ most favorable events.

Expect the worst – and you won't be disappointed.

LSE: 17.5.2010 10 / 34

LSE: 17.5.2010 12 / 34

Savage on Pessimism

Roger Koenker (CEMMAP & UIUC)

E

I have, at least once heard it objected against the personalistic view of probability that, according to that view, two people might be of different opinions, according as one is pessimistic and the other optimistic. I am not sure what position I would take in abstract discussion of whether that alleged property of personalistic views would be objectionable, but I think it is clear from the formal definition of qualitative probability that the particular personalistic view sponsored here does not leave room for optimism and pessimism, however these traits may be interpreted, to play any role in the person's judgement of probabilities. (Savage(1954), p. 68)

Pessimistic Risk Measures

$$\rho(X) = \int_0^1 \rho_{\nu_{\alpha}}(X) d\phi(\alpha)$$

By Fubini

An Example

0.8

v(t) 4 0.6

0.4

0.2

0.0

0.0 0.4 0.8

$$\begin{split} \rho(X) &= -\int_0^1 \alpha^{-1} \int_0^\alpha F^{-1}(t) dt d\phi(\alpha) \\ &= -\int_0^1 F^{-1}(t) \int_t^1 \alpha^{-1} d\phi(\alpha) dt \\ &\equiv -\int_0^1 F^{-1}(t) d\nu(t) \end{split}$$

3.0

2.0

1.0

0.0

0.0 0.4 0.8

d v(t)

 $d\phi(t) = \frac{1}{2}\delta_{1/3}(t) + \frac{1}{3}\delta_{2/3}(t) + \frac{1}{6}\delta_{1}(t)$

Approximating General Pessimistic Risk Measures

We can approximate any pessimistic risk measure by taking

$$d\phi(t) = \sum \phi_i \delta_{\tau_i}(t)$$

where δ_{τ} denotes (Dirac) point mass 1 at τ . Then

$$\rho(X) = -\phi_0 F^{-1}(0) - \int_0^1 F^{-1}(t) \gamma(t) dt$$

where $\gamma(t)=\sum \phi_i \tau_i^{-1} I(t<\tau_i) \text{ and } \phi_i>\text{0, with } \sum \phi_i=1.$

A Theorem

Theorem (Kusuoka (2001)) A regular risk measure is *coherent* in the sense of Artzner *et. al.* if and only if it is *pessimistic*.

- \bullet Pessimistic Choquet risk measures correspond to concave $\nu,$ i.e., monotone decreasing $d\nu.$
- Probability assessments are distorted to accentuate the probability of the least favorable events.
- The crucial coherence requirement is subadditivity, or submodularity, or 2-alternatingness in the terminology of Choquet capacities.

LSE: 17.5.2010 22 / 34

LSE: 17.5.2010

An Example

Samuelson (1963) describes asking a colleague at lunch whether he would be willing to make a

50-50 bet $\begin{pmatrix} \text{win } 200\\ \text{lose } 100 \end{pmatrix}$

The colleague (later revealed to be E. Cary Brown) responded "no, but I *would* be willing to make 100 such bets."

This response has been interpreted not only as reflecting a basic confusion about how to maximize expected utility but also as a fundamental misunderstanding of the law of large numbers.

Was Brown really irrational?

Suppose, for the sake of simplicity that

 $d\phi(t) = \tfrac{1}{2}\delta_{1/2}(t) + \tfrac{1}{2}\delta_1(t)$

so for one Samuelson coin flip we have the unfavorable evaluation,

$$E_{\nu,F}(X) = \frac{1}{2}(-100) + \frac{1}{2}(50) = -25$$

but for $S = \sum_{i=1}^{100} X_i \sim {\mathcal Bin}(.5,100)$ we have the favorable evaluation,

$$E_{\nu,F}(S) = \frac{1}{2} 2 \int_{0}^{1/2} F_{S}^{-1}(t) dt + \frac{1}{2} (5000) dt = 1704.11 + 2500 dt = 4204.11$$

Pessimistic Portfolios

Now let $X=(X_1,\ldots,X_p)$ denote a vector of potential portfolio asset returns and $Y=X^{\top}\pi$, the returns on the portfolio with weights $\pi.$ Consider

$$\min_{\pi} \rho_{\boldsymbol{\nu}_{\alpha}}(\mathbf{Y}) - \lambda \mu(\mathbf{Y})$$

Minimize $\alpha\text{-risk}$ subject to a constraint on mean return. This problem can be formulated as a linear quantile regression problem

$$\min_{(\beta,\xi)\in \mathcal{R}^p} \sum_{i=1}^n \rho_\alpha(x_{i1} - \sum_{j=2}^p (x_{i1} - x_{ij})\beta_j - \xi) \quad \text{s.t.} \quad \bar{x}^\top \pi(\beta) = \mu_0,$$

where $\pi(\beta) = (1 - \sum_{j=2}^{p} \beta_j, \beta^{\top})^{\top}$.

Theorem Let X be a real-valued random variable with $EX=\mu<\infty,$ and $\rho_\alpha(u)=u(\alpha-I(u<0)).$ Then

$$\min_{\xi \in \mathcal{R}} E\rho_{\alpha}(X - \xi) = \alpha \mu + \rho_{\nu_{\alpha}}(X)$$

So $\boldsymbol{\alpha}$ risk can be estimated by the sample analogue

$$\hat{\rho}_{\nu_{\alpha}}(x) = (n\alpha)^{-1} \min_{\xi} \sum \rho_{\alpha}(x_i - \xi) - \hat{\mu}_n$$

I knew it! Eventually everything looks like quantile regression to this guy!

LSE: 17.5.2010

LSE: 17.5.2010

Asset 1 Asset 2

0.3

26 / 34

Two asset return densities with identical mean and variance.

0.1

0.2

return

The Simplex Method (Edgeworth/Dantzig/Kantorovich) moves from vertex to vertex on the outside of the constraint set until it finds an optimum.

Interior point methods (Frisch/Karmarker/et al) take Newton type steps toward the optimal vertex from inside the constraint set. A toy problem: Given a polygon inscribed in a circle, find the point on the polygon that maximizes the sum of its coordinates:

$$\max\{e^{\top}\mathfrak{u}|A^{\top}x=\mathfrak{u}, e^{\top}x=1, x \ge 0\}$$

were e is vector of ones, and A has rows representing the n vertices. Eliminating u, setting c = Ae, we can reformulate the problem as:

Toy Story: From the Inside

approach the solution of the LP:

$$\max\{c^{\top}x|e^{\top}x=1, \quad x \geqslant 0\}$$

By letting $\mu \to 0$ we get a sequence of smooth problems whose solutions

 $\mathsf{max}\{c^\top x + \mu \sum_{i=1}^n \log x_i | e^\top x = 1\}$

Simplex goes around the outside of the polygon; interior point methods tunnel from the inside, solving a sequence of problems of the form:

LSE: 17.5.2010 16 / 22

LSE: 17.5.2010 18 / 22

Implementation: Meketon's Affine Scaling Algorithm

```
meketon <- function (x, y, eps = 1e-04, beta = 0.97) {
   f <- lm.fit(x,y)
   n <- length(y)
   w <- rep(0, n)
   d <- rep(1, n)
its <- 0
   while(sum(abs(f$resid)) - crossprod(y, w) > eps) {
       its <- its + 1
       s <- f$resid * d
       alpha <- max(pmax(s/(1 - w), -s/(1 + w)))
       w <- w + (beta/alpha) * s
       d <- pmin(1 - w, 1 + w)^2
       f <- lm.wfit(x,y,d)</pre>
   list(coef = f$coef, iterations = its)
```

Mehrotra Primal-Dual Predictor-Corrector Algorithm The algorithms implemented in quantreg for R are based on Mehrotra's Predictor-Corrector approach. Although somewhat more complicated than Meketon this has several advantages: • Better numerical stability and efficiency due to better central path following, • Easily generalized to incorporate linear inequality constraints. 5.372 • Easily generalized to exploit sparsity of the design matrix. These features are all incorporated into various versions of the algorithm in quantreg, and coded in Fortran.

Back to Basics

Which is easier to compute: the median or the mean?

```
> x <- rnorm(10000000) # n = 10^8
> system.time(mean(x))
  user system elapsed
10.277 0.035 10.320
> system.time(kuantile(x,.5))
    user system elapsed
           3.342 8.756
```

kuantile is a quantreg implementation of the Floyd-Rivest (1975) algorithm. For the median it requires $1.5n + O((n \log n)^{1/2})$ comparisons.

Portnoy and Koenker (1997) propose a similar strategy for "preprocessing" quantile regression problems to improve efficiency for large problems.

Globbing for Median Regression

Rather than solving min $\sum |y_i - x_i b|$ consider:

- Preliminary estimation using random $m = n^{2/3}$ subset,
- **②** Construct confidence band $\mathbf{x}_i^{\top} \hat{\boldsymbol{\beta}} \pm \kappa \| \hat{V}^{1/2} \mathbf{x}_i \|$.
- Solution Find $J_L = \{i | y_i \text{ below band }\}, \text{ and } J_H = \{i | y_i \text{ above band }\},$
- Glob observations together to form pseudo observations:

$$(\mathbf{x}_L, \mathbf{y}_L) = (\sum_{i \in J_L} \mathbf{x}_i, -\infty), \quad (\mathbf{x}_H, \mathbf{y}_H) = (\sum_{i \in J_H} \mathbf{x}_i, +\infty)$$

Solve the problem (with m+2 observations)

ger Koenker (CEMMAP & UIU

 $\mathsf{min}\sum|y_{\mathfrak{i}}-x_{\mathfrak{i}}b|+|y_L-x_Lb|+|y_H-x_Hb|$

Verify that globbed observations have the correct predicted signs.

The Laplacian Tortoise and the Gaussian Hare

Retouched 18th century woodblock photo-print

LSE: 17.5.2010 22 / 22