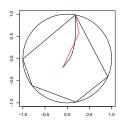
Quantile Regression Computation: From the Inside and the Outside

Roger Koenker

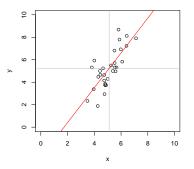
CEMMAP and University of Illinois, Urbana-Champaign

LSE: 17 May 2011



The Origin of Regression – Regression Through the Origin

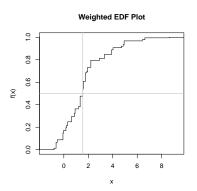
Find the line with mean residual zero that minimizes the sum of absolute residuals.



Problem: $\min_{\alpha,\beta} \sum_{i=1}^{n} |y_i - \alpha - x_i \beta|$ s.t. $\bar{y} = \alpha + \bar{x}\beta$.

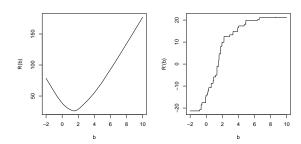
Boscovich/Laplace Methode de Situation

Algorithm: Order the n candidate slopes: $b_i = (y_i - \bar{y})/(x_i - \bar{x})$ denoting them by $b_{(i)}$ with associated weights $w_{(i)}$ where $w_i = |x_i - \bar{x}|$. Find the weighted median of these slopes.



Methode de Situation via Optimization

$$\begin{split} R(b) &= \sum |\tilde{y}_i - \tilde{x}_i b| = \sum |\tilde{y}_i / \tilde{x}_i - b| \cdot |\tilde{x}_i|. \\ R'(b) &= -\sum \text{sgn}(\tilde{y}_i / \tilde{x}_i - b) \cdot |\tilde{x}_i|. \end{split}$$



Quantile Regression through the Origin in R

This can be easily generalized to compute quantile regression estimates:

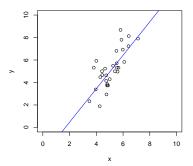
```
wquantile <- function(x, y, tau = 0.5) {
    o <- order(y/x)
    b <- (y/x)[o]
    w <- abs(x[o])
    k <- sum(cumsum(w) < ((tau - 0.5) * sum(x) + 0.5 * sum(w)))
    list(coef = b[k + 1], k = ord[k+1])
}</pre>
```

Warning: When $\bar{x} = 0$ then τ is irrelevant. Why?

Edgeworth's (1888) Plural Median

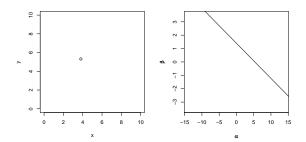
What if we want to estimate both α and β by median regression?

Problem: $\min_{\alpha,\beta} \sum_{i=1}^{n} |y_i - \alpha - x_i \beta|$

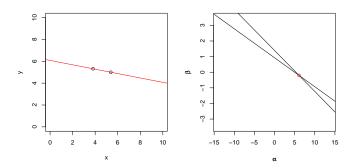


Points in sample space map to lines in parameter space.

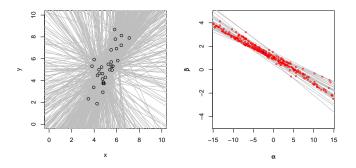
$$(x_i,y_i) \mapsto \{(\alpha,\beta): \alpha = y_i - x_i\beta\}$$



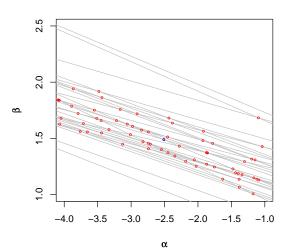
Lines through pairs of points in sample space map to points in parameter space.



All pairs of observations produce $\binom{n}{2}$ points in dual plot.



Follow path of steepest descent through points in the dual plot.



Barrodale-Roberts Implementation of Edgeworth

```
rqx<- function(x, y, tau = 0.5, max.it = 50) { # Barrodale and Roberts -- lite
        p <- ncol(x): n <- nrow(x)
        h <- sample(1:n. size = p) #Phase I -- find a random (!) initial basis
        it <- 0
        repeat {
                it <- it + 1
                Xhinv <- solve(x[h, ])</pre>
                bh <- Xhinv %*% v[h]
                rh <- v - x %*% bh
        #find direction of steepest descent along one of the edges
                g \leftarrow -t(Xhinv) %*% t(x[-h, ]) %*% c(tau - (rh[-h] < 0))
                g \leftarrow c(g + (1 - tau), -g + tau)
                ming <- min(g)
                if(ming >= 0 || it > max.it) break
                h.out <- seq(along = g)[g == ming]
                sigma <- ifelse(h.out <= p, 1, -1)
                if(sigma < 0) h.out <- h.out - p
                d <- sigma * Xhinv[, h.out]
        #find step length by one-dimensional wquantile minimization
                xh <- x %*% d
                step <- wquantile(xh, rh, tau)
                h.in <- step$k
                h \leftarrow c(h[-h.out], h.in)
        if(it > max.it) warning("non-optimal solution: max.it exceeded")
        return(bh)
```

}

Linear Programming Duality

Primal: $\min_{\mathbf{x}} \{ c^{\top} \mathbf{x} | A\mathbf{x} - \mathbf{b} \in \mathsf{T}, \ \mathbf{x} \in \mathsf{S} \}$ **Dual:** $\max_{\mathbf{y}} \{ b^{\top} \mathbf{y} | c - A^{\top} \mathbf{y} \in \mathsf{S}^*, \ \mathbf{y} \in \mathsf{T}^* \}$

The sets S and T are closed convex cones, with dual cones S^* and T^* . A cone K^* is dual to K if:

$$K^* = \{y \in \mathbb{R}^n | x^\top y \geqslant 0 \text{ if } x \in K\}$$

Linear Programming Duality

Primal: $\min_{\mathbf{x}} \{ c^{\top} \mathbf{x} | A\mathbf{x} - \mathbf{b} \in \mathsf{T}, \ \mathbf{x} \in \mathsf{S} \}$ **Dual:** $\max_{\mathbf{u}} \{ b^{\top} \mathbf{y} | \mathbf{c} - A^{\top} \mathbf{y} \in \mathsf{S}^*, \ \mathbf{u} \in \mathsf{T}^* \}$

The sets S and T are closed convex cones, with dual cones S^* and T^* . A cone K^* is dual to K if:

$$K^* = \{y \in \mathbb{R}^n | x^\top y \geqslant 0 \text{ if } x \in K\}$$

Note that for any feasible point (x, y)

$$b^\top y \leqslant y^\top A x \leqslant c^\top x$$

while optimality implies that

$$b^{\top}y = c^{\top}x.$$

Splitting the QR "residual" into positive and negative parts, yields the primal linear program,

$$\min_{(b,u,\nu)} \{\tau \mathbf{1}^\top \mathbf{u} + (\mathbf{1} - \tau) \mathbf{1}^\top \mathbf{v} \mid Xb + u - v - y \in \{0\}, \quad (b,u,\nu) \in \mathbb{R}^p \times \mathbb{R}^{2n}_+\}.$$

Splitting the QR "residual" into positive and negative parts, yields the primal linear program,

$$\min_{(b,u,\nu)} \{\tau \mathbf{1}^\top u + (1-\tau)\mathbf{1}^\top \nu \mid Xb + u - \nu - y \in \{0\}, \quad (b,u,\nu) \in R^p \times R^{2n}_+\}.$$

with dual program:

$$\max_{d} \{ \boldsymbol{y}^{\top} \boldsymbol{d} \mid \boldsymbol{X}^{\top} \boldsymbol{d} \in \{0\}, \quad \tau \boldsymbol{1} - \boldsymbol{d} \in \boldsymbol{R}^{n}_{+}, \quad (1 - \tau) \boldsymbol{1} + \boldsymbol{d} \in \boldsymbol{R}^{n}_{+} \},$$

Splitting the QR "residual" into positive and negative parts, yields the primal linear program,

$$\min_{(b,u,\nu)} \{\tau \mathbf{1}^\top u + (1-\tau)\mathbf{1}^\top \nu \mid Xb + u - \nu - y \in \{0\}, \quad (b,u,\nu) \in R^p \times R^{2n}_+\}.$$

with dual program:

$$\max_{\mathbf{d}} \{ \mathbf{y}^{\top} \mathbf{d} \mid \mathbf{X}^{\top} \mathbf{d} \in \{0\}, \quad \tau \mathbf{1} - \mathbf{d} \in \mathsf{R}^{\mathsf{n}}_{+}, \quad (\mathbf{1} - \tau)\mathbf{1} + \mathbf{d} \in \mathsf{R}^{\mathsf{n}}_{+} \},$$

$$\max_{\boldsymbol{d}} \{ \boldsymbol{y}^{\top} \boldsymbol{d} \mid \boldsymbol{X}^{\top} \boldsymbol{d} = \boldsymbol{0}, \ \boldsymbol{d} \in [\tau - 1, \tau]^{n} \},$$

Splitting the QR "residual" into positive and negative parts, yields the primal linear program,

$$\min_{(b,u,\nu)} \{\tau \mathbf{1}^\top u + (1-\tau)\mathbf{1}^\top \nu \mid Xb + u - \nu - y \in \{0\}, \quad (b,u,\nu) \in R^p \times R^{2n}_+\}.$$

with dual program:

$$\begin{split} \max_d &\{y^\top d \mid X^\top d \in \{0\}, \quad \tau 1 - d \in \mathsf{R}^n_+, \quad (1 - \tau) 1 + d \in \mathsf{R}^n_+\}, \\ &\max_d \{y^\top d \mid X^\top d = 0, \ d \in [\tau - 1, \tau]^n\}, \\ &\max_d \{y^\top \alpha \mid X^\top \alpha = (1 - \tau) X^\top 1, \quad \alpha \in [0, 1]^n\} \end{split}$$

Quantile Regression Dual

The dual problem for quantile regression may be formulated as:

$$\max_{\boldsymbol{\alpha}} \{ \boldsymbol{y}^{\top} \boldsymbol{\alpha} | \boldsymbol{X}^{\top} \boldsymbol{\alpha} = (1-\tau) \boldsymbol{X}^{\top} \boldsymbol{1}, \ \boldsymbol{\alpha} \in [0,1]^n \}$$

What do these $\hat{a}_i(\tau)$'s mean statistically? They are regression rank scores (Gutenbrunner and Jurečková (1992)):

$$\hat{\boldsymbol{a}}_i(\tau) \in \left\{ \begin{array}{ll} \{1\} & \text{if} \quad \boldsymbol{y}_i > \boldsymbol{x}_i^\top \hat{\boldsymbol{\beta}}(\tau) \\ (0,1) & \text{if} \quad \boldsymbol{y}_i = \boldsymbol{x}_i^\top \hat{\boldsymbol{\beta}}(\tau) \\ \{0\} & \text{if} \quad \boldsymbol{y}_i < \boldsymbol{x}_i^\top \hat{\boldsymbol{\beta}}(\tau) \end{array} \right.$$

The integral $\int \hat{a}_i(\tau) d\tau$ is something like the rank of the ith observation. It answers the question: On what quantile does the ith observation lie?

Linear Programming: The Inside Story

The Simplex Method (Edgeworth/Dantzig/Kantorovich) moves from vertex to vertex on the outside of the constraint set until it finds an optimum.

Interior point methods (Frisch/Karmarker/et al) take Newton type steps toward the optimal vertex from inside the constraint set.

Linear Programming: The Inside Story

The Simplex Method (Edgeworth/Dantzig/Kantorovich) moves from vertex to vertex on the outside of the constraint set until it finds an optimum.

Interior point methods (Frisch/Karmarker/et al) take Newton type steps toward the optimal vertex from inside the constraint set.

A toy problem: Given a polygon inscribed in a circle, find the point on the polygon that maximizes the sum of its coordinates:

$$\max\{e^\top u|A^\top x=u,\ e^\top x=1,\ x\geqslant 0\}$$

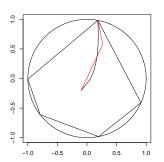
were e is vector of ones, and A has rows representing the $\mathfrak n$ vertices. Eliminating $\mathfrak u$, setting c=Ae, we can reformulate the problem as:

$$\max\{c^{\top}x|e^{\top}x=1,\quad x\geqslant 0\},$$

Toy Story: From the Inside

Simplex goes around the outside of the polygon; interior point methods tunnel from the inside, solving a sequence of problems of the form:

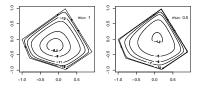
$$\max\{c^\top x + \mu \sum_{i=1}^n \log x_i | e^\top x = 1\}$$

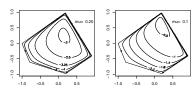


Toy Story: From the Inside

By letting $\mu \to 0$ we get a sequence of smooth problems whose solutions approach the solution of the LP:

$$\text{max}\{c^\top x + \mu \sum_{i=1}^n \log x_i | e^\top x = 1\}$$





Implementation: Meketon's Affine Scaling Algorithm

```
meketon <- function (x, y, eps = 1e-04, beta = 0.97) {
   f \leftarrow lm.fit(x,y)
   n <- length(y)
   w \leftarrow rep(0, n)
   d \leftarrow rep(1, n)
   its <- 0
   while(sum(abs(f$resid)) - crossprod(y, w) > eps) {
        its <- its + 1
        s <- f$resid * d
        alpha <- \max(pmax(s/(1 - w), -s/(1 + w)))
        w \leftarrow w + (beta/alpha) * s
        d \leftarrow pmin(1 - w, 1 + w)^2
        f \leftarrow lm.wfit(x,y,d)
   list(coef = f$coef, iterations = its)
   }
```

Mehrotra Primal-Dual Predictor-Corrector Algorithm

The algorithms implemented in quantreg for R are based on Mehrotra's Predictor-Corrector approach. Although somewhat more complicated than Meketon this has several advantages:

- Better numerical stability and efficiency due to better central path following,
- Easily generalized to incorporate linear inequality constraints.
- Easily generalized to exploit sparsity of the design matrix.

These features are all incorporated into various versions of the algorithm in quantreg, and coded in Fortran.

Back to Basics

Which is easier to compute: the median or the mean?

```
> x <- rnorm(100000000) # n = 10^8
> system.time(mean(x))
    user    system elapsed
    10.277    0.035    10.320
> system.time(kuantile(x,.5))
    user    system elapsed
    5.372    3.342    8.756
```

kuantile is a quantreg implementation of the Floyd-Rivest (1975) algorithm. For the median it requires $1.5n + O((n \log n)^{1/2})$ comparisons.

Portnoy and Koenker (1997) propose a similar strategy for "preprocessing" quantile regression problems to improve efficiency for large problems.

Globbing for Median Regression

Rather than solving min $\sum |y_i - x_i b|$ consider:

- $\begin{tabular}{ll} \blacksquare & Preliminary estimation using r and om $m=n^{2/3}$ subset, \\ \end{tabular}$
- ② Construct confidence band $x_i^{\top} \hat{\beta} \pm \kappa \|\hat{V}^{1/2} x_i\|$.
- **3** Find $J_L = \{i | y_i \text{ below band } \}$, and $J_H = \{i | y_i \text{ above band } \}$,
- Glob observations together to form pseudo observations:

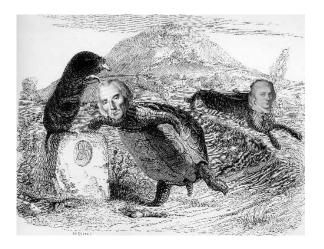
$$(x_L,y_L)=(\sum_{\mathfrak{i}\in J_L}x_{\mathfrak{i}},-\infty),\quad (x_H,y_H)=(\sum_{\mathfrak{i}\in J_H}x_{\mathfrak{i}},+\infty)$$

5 Solve the problem (with m+2 observations)

$$\min \sum |y_i - x_i b| + |y_L - x_L b| + |y_H - x_H b|$$

Verify that globbed observations have the correct predicted signs.

The Laplacian Tortoise and the Gaussian Hare



Retouched 18th century woodblock photo-print