# Quantile Regression for Longitudinal Data

Roger Koenker

CEMMAP and University of Illinois, Urbana-Champaign

LSE: 17 May 2011

# Classical Linear Fixed/Random Effects Model

Consider the model,

$$y_{ij} = \boldsymbol{x}_{ij}^{\top}\boldsymbol{\beta} + \boldsymbol{\alpha}_i + \boldsymbol{u}_{ij} \quad j = 1,...m_i, \quad i = 1,...,n,$$

or

$$y = X\beta + Z\alpha + u.$$

The matrix Z represents an incidence matrix that identifies the  $\pi$  distinct individuals in the sample. If u and  $\alpha$  are independent Gaussian vectors with  $u \sim \mathcal{N}(0,R)$  and  $\alpha \sim \mathcal{N}(0,Q).$  Observing that  $v = Z\alpha + u$  has covariance matrix  $E\nu\nu^\top = R + ZQZ^\top,$  we can immediately deduce that the minimum variance unbiased estimator of  $\beta$  is,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^\top (\boldsymbol{R} + \boldsymbol{Z} \boldsymbol{Q} \boldsymbol{Z}^\top)^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^\top (\boldsymbol{R} + \boldsymbol{Z} \boldsymbol{Q} \boldsymbol{Z}^\top)^{-1} \boldsymbol{y}.$$

# A Penalty Interpretation of $\hat{\beta}$

**Proposition.**  $\hat{\beta}$  solves  $\min_{(\alpha,\beta)} \|y - X\beta - Z\alpha\|_{R^{-1}}^2 + \|\alpha\|_{Q^{-1}}^2$ , where  $\|x\|_A^2 = x^\top Ax$ .

#### Proof.

Differentiating we obtain the normal equations,

$$\boldsymbol{X}^{\top}\boldsymbol{R}^{-1}\boldsymbol{X}\boldsymbol{\hat{\beta}} + \boldsymbol{X}^{\top}\boldsymbol{R}^{-1}\boldsymbol{Z}\boldsymbol{\hat{\alpha}} = \boldsymbol{X}^{\top}\boldsymbol{R}^{-1}\boldsymbol{y}$$

$$\mathsf{Z}^{\top}\mathsf{R}^{-1}\mathsf{X}\hat{\boldsymbol{\beta}} + (\mathsf{Z}^{\top}\mathsf{R}^{-1}\mathsf{Z} + \mathsf{Q}^{-1})\hat{\boldsymbol{\alpha}} = \mathsf{Z}^{\top}\mathsf{R}^{-1}\boldsymbol{y}$$

Solving, we have  $\boldsymbol{\hat{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{\Omega}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{\Omega}^{-1} \boldsymbol{y}$  where

$$\Omega^{-1} = R^{-1} - R^{-1} Z (Z^{\top} R^{-1} Z + Q^{-1})^{-1} Z^{\top} R^{-1}.$$

But 
$$\Omega = R + ZQZ^{T}$$
, see e.g. Rao(1973, p 33.).

This result has a long history: Henderson(1950), Goldberger(1962), Lindley and Smith (1972), etc.

### Quantile Regression with Fixed Effects

Suppose that the conditional quantile functions of the response of the jth observation on the ith individual  $y_{ij}$  takes the form:

$$Q_{\mathfrak{y}_{\mathfrak{i}\mathfrak{j}}}(\tau|x_{\mathfrak{i}\mathfrak{j}})=\alpha_{\mathfrak{i}}+x_{\mathfrak{i}\mathfrak{j}}^{\top}\beta(\tau)\quad \mathfrak{j}=1,...m_{\mathfrak{i}},\quad \mathfrak{i}=1,...,n.$$

In this formulation the  $\alpha$ 's have a pure location shift effect on the conditional quantiles of the response. The effects of the covariates,  $x_{ij}$  are permitted to depend upon the quantile,  $\tau,$  of interest, but the  $\alpha$ 's do not. To estimate the model for several quantiles simultaneously, we propose solving,

$$\min_{(\alpha,\beta)} \sum_{k=1}^{q} \sum_{j=1}^{n} \sum_{i=1}^{m_i} w_k \rho_{\tau_k} (y_{ij} - \alpha_i - x_{ij}^\top \beta(\tau_k))$$

Note that the usual between/within transformations are not permitted.

# Penalized Quantile Regression with Fixed Effects



Time invariant, individual specific intercepts are quantile independent; slopes are quantile dependent.

### Penalized Quantile Regression with Fixed Effects

When n is large relative to the  $m_i$ 's shrinkage may be advantageous in controlling the variability introduced by the large number of estimated  $\alpha$  parameters. We will consider estimators solving the penalized version,

$$\min_{(\alpha,\beta)} \sum_{k=1}^q \sum_{j=1}^n \sum_{i=1}^{m_i} w_k \rho_{\tau_k} (y_{ij} - \alpha_i - x_{ij}^\top \beta(\tau_k)) + \lambda \sum_{i=1}^n |\alpha_i|.$$

For  $\lambda \to 0$  we obtain the fixed effects estimator described above, while as  $\lambda \to \infty$  the  $\hat{\alpha}_i \to 0$  for all i=1,2,...,n and we obtain an estimate of the model purged of the fixed effects. In moderately large samples this requires sparse linear algebra. Example R code is available from my webpages.

### Shrinkage of the Fixed Effects



Shrinkage of the fixed effect parameter estimates,  $\hat{\alpha}_i$ . The left panel illustrates an example of the  $\ell_1$  shrinkage effect. The right panel illustrates an example of the  $\ell_2$  shrinkage effect.

#### Dynamic Panel Models and IV Estimation

Galvao (2010) considers dynamic panel models of the form:

$$Q_{y_{it}}(\tau|y_{i,t-1},x_{it}) = \alpha_i + \gamma(\tau)y_{i,t-1} + x_{it}^\top\beta(\tau) \ t = 1,...T_i, \ i = 1,...,n.$$

In "short" panels estimation suffers from the same bias problems as seen in least squares estimators Nickel (1981) Hsiao and Anderson (1981); using the IV estimation approach of Chernozhukov and Hansen (2004) this bias can be reduced.

#### Correlated Random Effects

Abrevaya and Dahl (JBES, 2008) adapt the Chamberlain (1982) correlated random effects model and estimate a model of birthweight like that of Koenker and Hallock (2001).

The R package rqpd implements both this method and the penalized fixed effect approach. Available from R-Forge with the command:

```
install.packages("rqpd", repos="http://R-Forge.R-project.org")
```

This is a challenging, but very important, problem and hopefully there will be new and better approaches in the near future.