Quantile Regression: A Gentle Introduction

Roger Koenker

CEMMAP and University of Illinois, Urbana-Champaign
LSE: 16 May 2011

Overview of the Course

- The Basics: What, Why and How?
- Inference and Quantile Treatment Effects
- Nonparametric Quantile Regression
- Endogoneity and IV Methods
- Censored QR and Survival Analysis
- Quantile Autoregression
- QR for Longitudinal Data
- Risk Assessment and Choquet Portfolios
- Computional Aspects

Course outline, lecture slides, an R FAQ, and even some proposed exercises can all be found at:
http://www.econ.uiuc.edu/~roger/courses/LSE.

The Basics: What, Why and How?

(1) Univariate Quantiles
(2) Scatterplot Smoothing
(3) Equivariance Properties
(9) Quantile Treatment Effects
(5) Three Empirical Examples

Archimedes' "Eureka!" and the Middle Sized Egg

Volume of the eggs can be measure by the amount of water they displace and the median (middle-sized) egg found by sorting these measurements.

Archimedes' "Eureka!" and the Middle Sized Egg

Volume of the eggs can be measure by the amount of water they displace and the median (middle-sized) egg found by sorting these measurements.

Note that even if we measure the logarithm of the volumes, the middle sized egg is the same! Not true for the mean egg, or the modal one.

The Stem and Leaf Plot: Tukey's EDA Gadget Number 1

Given a "batch" of numbers, $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ one can make a quick and dirty histogram in R this way:

```
\(>x<-\) rchisq \((100,5)\) \# 100 Chi-squared (5)
\(>\) quantile(x) \# Tukey's Five Number Summary
    0\% 25\% \(50 \%\) 75\% \(100 \%\)
    \(\begin{array}{lllll}0.9042396 & 2.7662230 & 4.2948642 & 6.2867588 & 16.5818573\end{array}\)
```

$>$ stem (x)
The decimal point is at the |

0	92356668
2	001111244445667778889990111222455666
4	01223334666678901125567889
6	023344667802888
8	556691
10	7
12	159
14	06
16	6

Boxplot of CEO Pay: Tukey's EDA Gadget Number 2

Motivation

What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set.

Motivation

What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set. Ordinarily this is not done, and so regression often gives a rather incomplete picture.

Motivation

What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set. Ordinarily this is not done, and so regression often gives a rather incomplete picture. Just as the mean gives an incomplete picture of a single distribution, so the regression curve gives a correspondingly incomplete picture for a set of distributions.

Mosteller and Tukey (1977)

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τ th quantile of X as

$$
\mathrm{Q}_{x}(\tau)=\mathrm{F}_{\mathrm{x}}^{-1}(\tau)=\inf \{x \mid \mathrm{F}(x) \geqslant \tau\}
$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τ th quantile of X as

$$
\mathrm{Q}_{X}(\tau)=\mathrm{F}_{\mathrm{X}}^{-1}(\tau)=\inf \{x \mid \mathrm{F}(x) \geqslant \tau\}
$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Univariate Quantiles

Viewed from the perspective of densities, the τ th quantile splits the area under the density into two parts: one with area τ below the τ th quantile and the other with area $1-\tau$ above it:

Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ :

The subgradient of a convex function $f(u)$ at a point u consists of all the possible "tangents." Sums of convex functions are convex.

Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

$$
\hat{\alpha}(\tau)=\operatorname{argmin} \mathbb{E} \rho_{\tau}(Y-\alpha)
$$

Proof: Let $\psi_{\tau}(u)=\rho_{\tau}^{\prime}(u)$, so differentiating wrt to α :

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty} \psi_{\tau}(y-\alpha) d F(y) \\
& =(\tau-1) \int_{-\infty}^{\alpha} d F(y)+\tau \int_{\alpha}^{\infty} d F(y) \\
& =(\tau-1) F(\alpha)+\tau(1-F(\alpha))
\end{aligned}
$$

implying $\tau=F(\alpha)$ and thus $\hat{\alpha}=F^{-1}(\tau)$.

Sample Quantiles as Optimizers

For sample quantiles replace F by \hat{F}, the empirical distribution function. The objective function becomes a polyhedral convex function whose derivative is monotone decreasing, in effect the gradient simply counts observations above and below and weights the sums by τ and $1-\tau$.

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{\mathfrak{m}} \mathbb{E}(Y-m)^{2}
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{m} \mathbb{E}(Y-m)^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{\mathfrak{m}} \mathbb{E}(\mathrm{Y}-\mathrm{m})^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Similarly, the unconditional τ th quantile solves

$$
\alpha_{\tau}=\operatorname{argmin}_{\mathrm{a}} \mathbb{E} \rho_{\tau}(\mathrm{Y}-\mathrm{a})
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{\mathfrak{m}} \mathbb{E}(\mathrm{Y}-\mathfrak{m})^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Similarly, the unconditional τ th quantile solves

$$
\alpha_{\tau}=\operatorname{argmin}_{a} \mathbb{E} \rho_{\tau}(Y-a)
$$

and the conditional τ th quantile solves

$$
\alpha_{\tau}(x)=\operatorname{argmin}_{a} \mathbb{E}_{Y \mid X=x} \rho_{\tau}(Y-a(X))
$$

Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into positive and negative parts and sum with appropriate weights:

$$
\min \left\{\tau 1^{\top} u+(1-\tau) 1^{\top} v \mid y=X b+u-v,(b, u, v) \in \mathbb{R}^{p} \times R_{+}^{2 n}\right\}
$$

Dual Formulation as a Linear Program

$$
\max \left\{y^{\prime} d \mid X^{\top} d=(1-\tau) X^{\top} 1, d \in[0,1]^{n}\right\}
$$

Solutions are characterized by an exact fit to p observations.
Let $h \in \mathcal{H}$ index p-element subsets of $\{1,2, \ldots, n\}$ then primal solutions take the form:

$$
\hat{\beta}=\hat{\beta}(h)=X(h)^{-1} y(h)
$$

Least Squares from the Quantile Regression Perspective

 Exact fits to p observations:$$
\hat{\beta}=\hat{\beta}(h)=X(h)^{-1} y(h)
$$

OLS is a weighted average of these $\hat{\beta}(h)$'s:

$$
\begin{gathered}
\hat{\beta}_{\mathrm{OLS}}=\left(X^{\top} X\right)^{-1} X^{\top} y=\sum_{h \in \mathcal{H}} w(h) \hat{\beta}(h), \\
w(h)=|X(h)|^{2} / \sum_{h \in \mathcal{H}}|X(h)|^{2}
\end{gathered}
$$

Least Squares from the Quantile Regression Perspective

 Exact fits to p observations:$$
\hat{\beta}=\hat{\beta}(h)=X(h)^{-1} y(h)
$$

OLS is a weighted average of these $\hat{\beta}(h)$'s:

$$
\begin{gathered}
\hat{\beta}_{\mathrm{OLS}}=\left(X^{\top} X\right)^{-1} X^{\top} y=\sum_{h \in \mathcal{H}} w(h) \hat{\beta}(h), \\
w(h)=|X(h)|^{2} / \sum_{h \in \mathcal{H}}|X(h)|^{2}
\end{gathered}
$$

The determinants $|X(h)|$ are the (signed) volumes of the parallelipipeds formed by the columns of the the matrices $X(h)$. In the simplest bivariate case, we have,

$$
|X(h)|^{2}=\left|\begin{array}{ll}
1 & x_{i} \\
1 & x_{j}
\end{array}\right|^{2}=\left(x_{j}-x_{i}\right)^{2}
$$

so pairs of observations that are far apart are given more weight.

Quantile Regression: The Movie

- Bivariate linear model with iid Student t errors
- Conditional quantile functions are parallel in blue
- 100 observations indicated in blue
- Fitted quantile regression lines in red.
- Intervals for $\tau \in(0,1)$ for which the solution is optimal.

Quantile Regression in the iid Error Model

Virtual Quantile Regression II

- Bivariate quadratic model with Heteroscedastic χ^{2} errors
- Conditional quantile functions drawn in blue
- 100 observations indicated in blue
- Fitted quadratic quantile regression lines in red
- Intervals of optimality for $\tau \in(0,1)$.

Quantile Regression in the Heteroscedastic Error Model

Conditional Means vs. Medians

Minimizing absolute errors for median regression can yield something quite different from the least squares fit for mean regression.

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$
- Regression Shift: For any $\gamma \in \mathbb{R}^{p} \hat{\beta}(\tau ; y+X \gamma, X)=\hat{\beta}(\tau ; y, X)+\gamma$

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$
- Regression Shift: For any $\gamma \in \mathbb{R}^{p} \hat{\beta}(\tau ; y+X \gamma, X)=\hat{\beta}(\tau ; y, X)+\gamma$
- Reparameterization of Design: For any $|\mathcal{A}| \neq 0$, $\hat{\beta}(\tau ; y, A X)=A^{-1} \hat{\beta}(\tau ; y X)$

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$
- Regression Shift: For any $\gamma \in \mathbb{R}^{p} \hat{\beta}(\tau ; y+X \gamma, X)=\hat{\beta}(\tau ; y, X)+\gamma$
- Reparameterization of Design: For any $|\mathcal{A}| \neq 0$, $\hat{\beta}(\tau ; y, A X)=A^{-1} \hat{\beta}(\tau ; y X)$
- Robustness: For any diagonal matrix D with nonnegative elements. $\hat{\beta}(\tau ; y, X)=\hat{\beta}(\tau, y+D \hat{u}, X)$

Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions $\mathrm{Q}_{\mathrm{Y}}(\tau \mid x)$ are equivariant in the sense that

$$
\mathrm{Q}_{\mathrm{h}(\mathrm{Y}) \mid X}(\tau \mid x)=\mathrm{h}\left(\mathrm{Q}_{\mathrm{Y} \mid \mathrm{X}}(\tau \mid x)\right)
$$

In contrast to conditional mean functions for which, generally,

$$
E(h(Y) \mid X) \neq h(E Y \mid X)
$$

Examples:
$h(y)=\min \{0, y\}$, Powell's (1985) censored regression estimator. $h(y)=\operatorname{sgn}\{y\}$ Rosenblatt's (1957) perceptron, Manski's (1975) maximum score estimator. estimator.

Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment response:
"Suppose the treatment adds the amount $\Delta(x)$ when the response of the untreated subject would be x . Then the distribution G of the treatment responses is that of the random variable $\mathrm{X}+\Delta(\mathrm{X})$ where X is distributed according to F ."

Lehmann QTE as a QQ-Plot

Doksum (1974) defines $\Delta(x)$ as the "horizontal distance" between F and G at x, i.e.

$$
F(x)=G(x+\Delta(x))
$$

Then $\Delta(x)$ is uniquely defined as

$$
\Delta(x)=\mathrm{G}^{-1}(\mathrm{~F}(\mathrm{x}))-\mathrm{x} .
$$

This is the essence of the conventional QQ-plot. Changing variables so $\tau=F(x)$ we have the quantile treatment effect (QTE):

$$
\delta(\tau)=\Delta\left(\mathrm{F}^{-1}(\tau)\right)=\mathrm{G}^{-1}(\tau)-\mathrm{F}^{-1}(\tau) .
$$

Lehmann-Doksum QTE

Lehmann-Doksum QTE

An Asymmetric Example

Treatment shifts the distribution from right skewed to left skewed making the QTE U-shaped.

The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal distributions, F and G , but it cannot reveal anything about the joint distribution, H. The copula function, Schweizer and Wolf (1981), Genest and McKay, (1986),

$$
\varphi(u, v)=\mathrm{H}\left(\mathrm{~F}^{-1}(\mathrm{u}), \mathrm{G}^{-1}(v)\right),
$$

is not identified. Lehmann's formulation assumes that the treatment leaves the ranks of subjects invariant. If a subject was going to be the median control subject, then he will also be the median treatment subject. This is an inherent limitation of the Neymann-Rubin potential outcomes framework.

QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

$$
\hat{\delta}(\tau)=\hat{G}_{n}^{-1}(\tau)-\hat{F}_{m}^{-1}(\tau)
$$

where $\hat{\mathrm{G}}_{\mathrm{n}}$ and $\hat{\mathrm{F}}_{\mathrm{m}}$ denote the empirical distribution functions of the treatment and control observations, Consider the quantile regression model

$$
\mathrm{Q}_{Y_{i}}\left(\tau \mid \mathrm{D}_{i}\right)=\alpha(\tau)+\delta(\tau) \mathrm{D}_{i}
$$

where D_{i} denotes the treatment indicator, and $Y_{i}=h\left(T_{i}\right)$, e.g. $Y_{i}=\log T_{i}$, which can be estimated by solving,

$$
\min \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\alpha-\delta D_{i}\right)
$$

Francis Galton's (1885) Anthropometric Quantiles

224
NATURE
[7an. 8, 1885

ANTHROPOMETRIC PER-CENTILES

Values surpassed, and Values unreached, by various percentages of the persons measured at the Anthropometric Laboratory in the late International Health Exhibition
(The volue that i: unvached by n per cent, of any large group of measurements, and surpass da by $100-n$ of thim, is called its nth perantile)

Quantile Treatment Effects: Strength of Squeeze

Quantile Treatment Effects: Strength of Squeeze

"Very powerful women exist, but happily perhaps for the repose of the other sex, such gifted women are rare."

Engel's Food Expenditure Data

Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the dependence of households' food expenditure on household income. Seven estimated quantile regression lines for $\tau \in\{.05, .1, .25, .5, .75, .9, .95\}$ are superimposed on the scatterplot. The median $\tau=.5$ fit is indicated by the blue solid line; the least squares estimate of the conditional mean function is indicated by the red dashed line.

Engel's Food Expenditure Data

Engel Curves for Food: This figure plots data taken from Engel's (1857) study of the dependence of households' food expenditure on household income. Seven estimated quantile regression lines for $\tau \in\{.05, .1, .25, .5, .75, .9, .95\}$ are superimposed on the scatterplot. The median $\tau=.5$ fit is indicated by the blue solid line; the least squares estimate of the conditional mean function is indicated by the red dashed line.

A Model of Infant Birthweight

- Reference: Abrevaya (2001), Koenker and Hallock (2001)
- Data: June, 1997, Detailed Natality Data of the US. Live, singleton births, with mothers recorded as either black or white, between 18-45, and residing in the U.S. Sample size: 198,377.
- Response: Infant Birthweight (in grams)
- Covariates:
- Mother's Education
- Mother's Prenatal Care
- Mother's Smoking
- Mother's Age
- Mother's Weight Gain

Quantile Regression Birthweight Model I

Quantile Regression Birthweight Model II

College

No Prenatal

Cigarette's/Day

Prenatal Second

Prenatal Third

Marginal Effect of Mother's Age

Marginal Effect of Mother's Weight Gain

Daily Temperature in Melbourne: $\operatorname{AR}(1)$ Scatterplot

Daily Temperature in Melbourne: Nonlinear QAR(1) Fit

Conditional Densities of Melbourne Daily Temperature

Review of Lecture 1

Least squares meethods of estimating conditional mean functions

- were developed for, and
- promote the view that,

Response $=$ Signal + iid Measurement Error
In fact the world is rarely this simple.

