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Introduction

In classical regression and autoregression models

yi = h(xi, θ) + ui,

yt = αyt−1 + ut

conditioning covariates influence only the location of the conditional
distribution of the response:

Response = Signal + IID Noise.

But why should noise always be so well-behaved?
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A Motivating Example
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Daily Temperature in Melbourne: An AR(1) Scatterplot
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Estimated Conditional Quantiles of Daily Temperature
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Daily Temperature in Melbourne: A Nonlinear QAR(1) Model
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Conditional Densities of Melbourne Daily Temperature
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Location, scale and shape all change with yt−1.
When today is hot, tomorrow’s temperature is bimodal!
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Linear AR(1) and QAR(1) Models

The classical linear AR(1) model

yt = α0 + α1yt−1 + ut,

with iid errors, ut : t = 1, · · · , T , implies

E(yt|Ft−1) = α0 + α1yt−1

and conditional quantile functions are all parallel:

Qyt(τ|Ft−1) = α0(τ) + α1yt−1

with α0(τ) = F
−1
u (τ) just the quantile function of the ut’s.

But isn’t this rather boring? What if we let α1 depend on τ too?
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A Random Coefficient Interpretation

If the conditional quantiles of the response satisfy:

Qyt(τ|Ft−1) = α0(τ) + α1(τ)yt−1

then we can generate responses from the model by replacing τ by uniform
random variables:

yt = α0(ut) + α1(ut)yt−1 ut ∼ iid U[0, 1].

This is a very special form of random coefficient autoregressive (RCAR)
model with comonotonic coefficients.
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On Comonotonicity

Definition: Two random variables X, Y : Ω→ |R are comonotonic if there
exists a third random variable Z : Ω→ |R and increasing functions f and g
such that X = f(Z) and Y = g(Z).

If X and Y are comonotonic they have rank correlation one.

From our point of view the crucial property of comonotonic random
variables is the behavior of quantile functions of their sums, X, Y
comonotonic implies:

F−1
X+Y(τ) = F

−1
X (τ) + F−1

Y (τ)

X and Y are driven by the same random (uniform) variable.
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The QAR(p) Model

Consider a p-th order QAR process,

Qyt(τ|Ft−1) = α0(τ) + α1(τ)yt−1 + ... + αp(τ)yt−p

Equivalently, we have random coefficient model,

yt = α0(ut) + α1(ut)yt−1 + · · ·+ αp(ut)yt−p
≡ x>t α(ut).

Now, all p+ 1 random coefficients are comonotonic, functionally
dependent on the same uniform random variable.
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Vector QAR(1) representation of the QAR(p) Model

Yt = µ+AtYt−1 + Vt

where

µ =

[
µ0

0p−1

]
, At =

[
at αp(ut)
Ip−1 0p−1

]
, Vt =

[
vt

0p−1

]
at = [α1(ut), . . . ,αp−1(ut)],

Yt = [yt, · · · ,yt−p+1]
>,

vt = α0(ut) − µ0.

It all looks rather complex and multivariate, but it is really still nicely
univariate and very tractable.
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Slouching Toward Asymptopia

We maintain the following regularity conditions:

A.1 {vt} are iid with mean 0 and variance σ2 <∞. The CDF of
vt, F, has a continuous density f with f(v) > 0 on
V = {v : 0 < F(v) < 1}.

A.2 Eigenvalues of ΩA = E(At ⊗At) have moduli less than
unity.

A.3 Denote the conditional CDF Pr[yt < y|Ft−1] as Ft−1(y) and
its derivative as ft−1(y), ft−1 is uniformly integrable on V.
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Stationarity

Theorem 1: Under assumptions A.1 and A.2, the QAR(p) process yt is
covariance stationary and satisfies a central limit theorem

1√
n

n∑
t=1

(yt − µy)⇒ N
(
0,ω2

y

)
,

with

µy =
µ0

1 −
∑p
j=1 µp

,

µj = E(αj(ut)), j = 0, ...,p,

ω2
y = lim

1

n
E[

n∑
t=1

(yt − µy)]
2.
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Example: The QAR(1) Model
For the QAR(1) model,

Qyt(τ|yt−1) = α0(τ) + α1(τ)yt−1,

or with ut iid U[0, 1].

yt = α0(ut) + α1(ut)yt−1,

if ω2 = E(α2
1(ut)) < 1, then yt is covariance stationary and

1√
n

n∑
t=1

(yt − µy)⇒ N
(
0,ω2

y

)
,

where µ0 = Eα0(ut), µ1 = E(α1(ut), σ
2 = V(α0(ut)), and

µy =
µ0

(1 − µ1)
, ω2

y =
(1 + µ1)σ

2

(1 − µ1)(1 −ω2)
,
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Qualitative Behavior of QAR(p) Processes

The model can exhibit unit-root-like tendencies, even temporarily
explosive behavior, but episodes of mean reversion are sufficient to
insure stationarity.

Under certain conditions,the QAR(p) process is a semi-strong
ARCH(p) process in the sense of Drost and Nijman (1993).

The impulse response of yt+s to a shock ut is stochastic but
converges (to zero) in mean square as s→∞.
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Estimated QAR(1) v. AR(1) Models of U.S. Interest Rates
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Data: Seasonally adjusted monthly: April, 1971 to June, 2002.
Do 3-month T-bills really have a unit root?
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Estimation of the QAR model

Estimation of the QAR models involves solving,

α̂(τ) = argminα

n∑
t=1

ρτ(yt − x
>
t α),

where ρτ(u) = u(τ− I(u < 0)), the
√

-function.
Fitted conditional quantile functions of yt, are given by,

Q̂t(τ|xt) = x
>
t α̂(τ),

and conditional densities by the difference quotients,

f̂t(τ|xt−1) =
2h

Q̂t(τ+ h|xt−1) − Q̂t(τ− h|xt−1)
,
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The QAR Process

Theorem 2: Under our regularity conditions,

√
nΩ−1/2(α̂(τ) − α(τ))⇒ Bp+1(τ),

a (p+ 1)-dimensional standard Brownian Bridge, with

Ω = Ω−1
1 Ω0Ω

−1
1 .

Ω0 = E(xtx
>
t ) = limn−1

n∑
t=1

xtx
>
t ,

Ω1 = limn−1
n∑
t=1

ft−1(F
−1
t−1(τ))xtx

>
t .
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Inference for QAR models

For fixed τ = τ0 we can test the hypothesis:

H0 : Rα(τ) = r

using the Wald statistic,

Wn(τ) =
n(Rα̂(τ) − r)>[RΩ̂−1

1 Ω̂0Ω̂
−1
1 R>]−1(Rα̂(τ) − r)

τ(1 − τ)

This approach can be extended to testing on general index sets τ ∈ T with
the corresponding Wald process.
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Asymptotic Inference

Theorem: Under H0, Wn(τ)⇒ Q2
m(τ), where Qm(τ) is a Bessel process

of order m = rank(R). For fixed τ, Q2
m(τ) ∼ χ2m.

Kolmogorov-Smirov or Cramer-von-Mises statistics based on Wn(τ)
can be used to implement the tests.

For known R and r this leads to a very nice theory – estimated R
and/or r testing raises new questions.

The situation is quite analogous to goodness-of-fit testing with
estimated parameters.
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Example: Unit Root Testing

Consider the augmented Dickey-Fuller model

yt = δ0 + δ1yt−1 +

p∑
j=2

δj∆yt−j + ut.

We would like to test this constant coefficients version of the model
against the more general QAR(p) version:

Qyt(τ|xt) = δ0(τ) + δ1(τ)yt−1 +

p∑
j=2

δj(τ)∆yt−j

The hypothesis: H0 : δ1(τ) = δ̄1 = 1, for τ ∈ T = [τ0, 1 − τ0], is
considered in Koenker and Xiao (JASA, 2004).
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Example: Two Tests

When δ̄1 < 1 is known we have the candidate process,

Vn(τ) =
√
n(δ̂1(τ) − δ̄1)/ω̂11.

where ω̂2
11 is the appropriate element from Ω̂−1

1 Ω̂0Ω̂
−1
1 . Fluctuations

in Vn(τ) can be evaluated with the Kolmogorov-Smirnov statistic,

sup
τ∈T

Vn(τ)⇒ sup
τ∈T

B(τ).

When δ̄1 is unknown we may replace it with an estimate, but this
disrupts the convenient asymptotic behavior. Now,

V̂n(τ) =
√
n((δ̂1(τ) − δ̄1) − (δ̂1 − δ̄1))/ω̂11
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Martingale Transformation of V̂n(τ)

Khmaladze (1981) suggested a general approach to the transformation of
parametric empirical processes like V̂n(τ) :

Ṽn(τ) = V̂n(τ) −

∫τ
0

[
ġn(s)

>C−1
n (s)

∫1
s

ġn(r)dV̂n(r)

]
ds

where ġn(s) and Cn(s) are estimators of

ġ(r) = (1, (ḟ/f)(F−1(r)))>; C(s) =

∫1
s

ġ(r)ġ(r)>dr.

This is a generalization of the classical Doob-Meyer decomposition.
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Restoration of the ADF property

Theorem Under H0, Ṽn(τ)⇒W(τ) and therefore

sup
τ∈T

‖Ṽn(τ)‖ ⇒ sup
τ∈T

‖W(τ)‖,

with W(r) a standard Brownian motion.

The martingale transformation of Khmaladze annihilates the
contribution of the estimated parameters to the asymptotic behavior
of the V̂n(τ) process, thereby restoring the asymptotically distribution
free (ADF) character of the test.
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Three Month T-Bills Again
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A test of the “location-shift” hypothesis yields a test statistic of 2.76
which has a p-value of roughly 0.01, contradicting the conclusion of the
conventional Dickey-Fuller test.
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QAR Models for Longitudinal Data

In estimating growth curves it is often valuable to condition not only
on age, but also on prior growth and possibly on other covariates.

Autoregressive models are natural, but complicated due to the
irregular spacing of typical longitudinal measurements.

Finnish Height Data: {Yi(ti,j) : j = 1, . . . , Ji, i = 1, . . . ,n.}

Partially Linear Model [Pere, Wei, Koenker, and He (2006)]:

QYi(ti,j)(τ | ti,j, Yi(ti,j−1), xi) = gτ(ti,j)

+ [α(τ) + β(τ)(ti,j − ti,j−1)]Yi(ti,j−1) + x
>
i γ(τ).
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Parametric Components of the Conditional Growth Model

τ Boys Girls

α̂(τ) β̂(τ) γ̂(τ) α̂(τ) β̂(τ) γ̂(τ)

0.03 0.845
(0.020)

0.147
(0.011)

0.024
(0.011)

0.809
(0.024)

0.135
(0.011)

0.042
(0.010)

0.1 0.787
(0.020)

0.159
(0.007)

0.036
(0.007)

0.757
(0.022)

0.153
(0.007)

0.054
(0.009)

0.25 0.725
(0.019)

0.170
(0.006)

0.051
(0.009)

0.685
(0.021)

0.163
(0.006)

0.061
(0.008)

0.5 0.635
(0.025)

0.173
(0.009)

0.060
(0.013)

0.612
(0.027)

0.175
(0.008)

0.070
(0.009)

0.75 0.483
(0.029)

0.187
(0.009)

0.063
(0.017)

0.457
(0.027)

0.183
(0.012)

0.094
(0.015)

0.9 0.422
(0.024)

0.213
(0.016)

0.070
(0.017)

0.411
(0.030)

0.201
(0.015)

0.100
(0.018)

0.97 0.383
(0.024)

0.214
(0.016)

0.077
(0.018)

0.400
(0.038)

0.232
(0.024)

0.086
(0.027)

Estimates of the QAR(1) parameters, α(τ) and β(τ) and the mid-parental height

effect, γ(τ), for Finnish children ages 0 to 2 years.
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Forecasting with QAR Models

Given an estimated QAR model,

Q̂yt(τ|Ft−1) = x
>
t α̂(τ)

based on data: yt : t = 1, 2, · · · , T , we can forecast

ŷT+s = x̃
>
T+sα̂(Us), s = 1, · · · ,S,

where x̃T+s = [1, ỹT+s−1, · · · , ỹT+s−p]
>, Us ∼ U[0, 1], and

ỹt =

{
yt if t 6 T ,
ŷt if t > T .

Conditional density forecasts can be made based on an ensemble of such
forecast paths.
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Linear QAR Models May Pose Statistical Health Risks

Lines with distinct slopes eventually intersect. [Euclid: P5]

Quantile functions, QY(τ|x) should be monotone in τ for all x,
intersections imply point masses – or even worse.

What is to be done?
I Constrained QAR: Quantiles can be estimated simultaneously subject

to linear inequality restrictions.
I Nonlinear QAR: Abandon linearity in the lagged yt’s, as in the

Melbourne temperature example, both parametric and nonparametric
options are available.
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Nonlinear QAR Models via Copulas

An interesting class of stationary, Markovian models can be expressed in
terms of their copula functions:

G(yt,yt−1, · · · ,yy−p) = C(F(yt), F(yt−1), · · · , F(yy−p))

where G is the joint df and F the common marginal df.

Differentiating, C(u, v), with respect to u, gives the conditional df,

H(yt|yt−1) =
∂

∂u
C(u, v)|(u=F(yt),v=F(yt−1))

Inverting we have the conditional quantile functions,

Qyt(τ|yt−1) = h(yt−1, θ(τ))
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Example 1 (Fan and Fan)
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Example 2 (Near Unit Root)
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Model: Qyt(τ|yt−1) = 2 + min{34 + τ, 1}yt−1 + 3Φ−1(τ).
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Conclusions

QAR models are an attempt to expand the scope of classical linear
time-series models permitting lagged covariates to influence scale and
shape as well as location of conditional densities.

Efficient estimation via familiar linear programming methods.

Random coefficient interpretation nests many conventional models
including ARCH.

Wald-type inference is feasible for a large class of hypotheses; rank
based inference is also an attractive option.

Forecasting conditional densities is potentially valuable.

Many new and challenging open problems. . . .
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