Quantile Autoregression

Roger Koenker
CEMMAP and University of Illinois, Urbana-Champaign
Les Diablerets 3-6 February 2013

Based on joint work with Zhijie Xiao, Boston College.

Outline

(1) A Motivating Example
(2) The QAR Model
(3) Estimation of the QAR Model
(4) Inference for QAR models
(5) Forecasting with QAR Models
(6) Surgeon General's Warning
(7) Conclusions

Introduction

In classical regression and autoregression models

$$
\begin{aligned}
& y_{i}=h\left(x_{i}, \theta\right)+u_{i} \\
& y_{t}=\alpha y_{t-1}+u_{t}
\end{aligned}
$$

conditioning covariates influence only the location of the conditional distribution of the response:

$$
\text { Response }=\text { Signal + IID Noise } .
$$

But why should noise always be so well-behaved?

A Motivating Example

Daily Temperature in Melbourne: An AR(1) Scatterplot

Estimated Conditional Quantiles of Daily Temperature

Daily Temperature in Melbourne: A Nonlinear QAR(1) Model

Conditional Densities of Melbourne Daily Temperature

Location, scale and shape all change with y_{t-1}. When today is hot, tomorrow's temperature is bimodal!

Linear $\operatorname{AR}(1)$ and $\operatorname{QAR}(1)$ Models

The classical linear $\operatorname{AR}(1)$ model

$$
y_{t}=\alpha_{0}+\alpha_{1} y_{t-1}+u_{t}
$$

with iid errors, $\mathfrak{u}_{\mathrm{t}}: \mathrm{t}=1, \cdots, \mathrm{~T}$, implies

$$
\mathrm{E}\left(\mathrm{y}_{\mathrm{t}} \mid \mathcal{F}_{\mathrm{t}-1}\right)=\alpha_{0}+\alpha_{1} y_{\mathrm{t}-1}
$$

and conditional quantile functions are all parallel:

$$
\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathcal{F}_{\mathrm{t}-1}\right)=\alpha_{0}(\tau)+\alpha_{1} y_{\mathrm{t}-1}
$$

with $\alpha_{0}(\tau)=\mathrm{F}_{\mathfrak{u}}^{-1}(\tau)$ just the quantile function of the u_{t} 's.
But isn't this rather boring? What if we let α_{1} depend on τ too?

A Random Coefficient Interpretation

If the conditional quantiles of the response satisfy:

$$
\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathcal{F}_{\mathrm{t}-1}\right)=\alpha_{0}(\tau)+\alpha_{1}(\tau) \mathrm{y}_{\mathrm{t}-1}
$$

then we can generate responses from the model by replacing τ by uniform random variables:

$$
y_{t}=\alpha_{0}\left(u_{t}\right)+\alpha_{1}\left(u_{t}\right) y_{t-1} \quad u_{t} \sim \operatorname{iid} \mathrm{U}[0,1]
$$

This is a very special form of random coefficient autoregressive (RCAR) model with comonotonic coefficients.

On Comonotonicity

Definition: Two random variables $X, Y: \Omega \rightarrow \mathrm{R}$ are comonotonic if there exists a third random variable $Z: \Omega \rightarrow R$ and increasing functions f and g such that $X=f(Z)$ and $Y=g(Z)$.

- If X and Y are comonotonic they have rank correlation one.
- From our point of view the crucial property of comonotonic random variables is the behavior of quantile functions of their sums, X, Y comonotonic implies:

$$
F_{X+\gamma}^{-1}(\tau)=F_{X}^{-1}(\tau)+F_{Y}^{-1}(\tau)
$$

- X and Y are driven by the same random (uniform) variable.

The $\operatorname{QAR}(p)$ Model

Consider a p-th order QAR process,

$$
\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathcal{F}_{\mathrm{t}-1}\right)=\alpha_{0}(\tau)+\alpha_{1}(\tau) \mathrm{y}_{\mathrm{t}-1}+\ldots+\alpha_{p}(\tau) \mathrm{y}_{\mathrm{t}-\mathrm{p}}
$$

Equivalently, we have random coefficient model,

$$
\begin{aligned}
y_{t} & =\alpha_{0}\left(u_{t}\right)+\alpha_{1}\left(u_{t}\right) y_{t-1}+\cdots+\alpha_{p}\left(u_{t}\right) y_{t-p} \\
& \equiv x_{t}^{\top} \alpha\left(u_{t}\right)
\end{aligned}
$$

Now, all $p+1$ random coefficients are comonotonic, functionally dependent on the same uniform random variable.

Vector $\operatorname{QAR}(1)$ representation of the $\operatorname{QAR}(p)$ Model

$$
Y_{t}=\mu+A_{t} Y_{t-1}+V_{t}
$$

where

$$
\begin{gathered}
\mu=\left[\begin{array}{c}
\mu_{0} \\
0_{p-1}
\end{array}\right], A_{t}=\left[\begin{array}{cc}
a_{t} & \alpha_{p}\left(u_{t}\right) \\
I_{p-1} & 0_{p-1}
\end{array}\right], V_{t}=\left[\begin{array}{c}
v_{t} \\
0_{p-1}
\end{array}\right] \\
a_{t}=\left[\alpha_{1}\left(u_{t}\right), \ldots, \alpha_{p-1}\left(u_{t}\right)\right] \\
Y_{t}=\left[y_{t}, \cdots, y_{t-p+1}\right]^{\top} \\
v_{t}=\alpha_{0}\left(u_{t}\right)-\mu_{0} .
\end{gathered}
$$

It all looks rather complex and multivariate, but it is really still nicely univariate and very tractable.

Slouching Toward Asymptopia

We maintain the following regularity conditions:
A. $1\left\{v_{t}\right\}$ are iid with mean 0 and variance $\sigma^{2}<\infty$. The CDF of $v_{\mathrm{t}}, \mathrm{F}$, has a continuous density f with $\mathrm{f}(v)>0$ on $\mathcal{V}=\{v: 0<\mathrm{F}(v)<1\}$.
A. 2 Eigenvalues of $\Omega_{A}=E\left(A_{t} \otimes A_{t}\right)$ have moduli less than unity.
A. 3 Denote the conditional $\operatorname{CDF} \operatorname{Pr}\left[y_{t}<y \mid \mathcal{F}_{t-1}\right]$ as $F_{t-1}(y)$ and its derivative as $f_{t-1}(y), f_{t-1}$ is uniformly integrable on \mathcal{V}.

Stationarity

Theorem 1: Under assumptions A. 1 and A.2, the $\operatorname{QAR}(\mathrm{p})$ process y_{t} is covariance stationary and satisfies a central limit theorem

$$
\frac{1}{\sqrt{n}} \sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right) \Rightarrow N\left(0, w_{y}^{2}\right)
$$

with

$$
\begin{aligned}
\mu_{y} & =\frac{\mu_{0}}{1-\sum_{j=1}^{p} \mu_{p}} \\
\mu_{j} & =E\left(\alpha_{j}\left(u_{t}\right)\right), \quad j=0, \ldots, p \\
\omega_{y}^{2} & =\lim \frac{1}{n} E\left[\sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right)\right]^{2}
\end{aligned}
$$

Example: The QAR(1) Model

For the QAR(1) model,

$$
\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathrm{y}_{\mathrm{t}-1}\right)=\alpha_{0}(\tau)+\alpha_{1}(\tau) y_{\mathrm{t}-1}
$$

or with u_{t} iid $\mathrm{U}[0,1]$.

$$
y_{t}=\alpha_{0}\left(u_{t}\right)+\alpha_{1}\left(u_{t}\right) y_{t-1}
$$

if $\omega^{2}=E\left(\alpha_{1}^{2}\left(u_{t}\right)\right)<1$, then y_{t} is covariance stationary and

$$
\frac{1}{\sqrt{n}} \sum_{t=1}^{n}\left(y_{t}-\mu_{y}\right) \Rightarrow N\left(0, \omega_{y}^{2}\right)
$$

where $\mu_{0}=E \alpha_{0}\left(u_{t}\right), \mu_{1}=E\left(\alpha_{1}\left(u_{t}\right), \sigma^{2}=V\left(\alpha_{0}\left(u_{t}\right)\right)\right.$, and

$$
\mu_{y}=\frac{\mu_{0}}{\left(1-\mu_{1}\right)}, \quad \omega_{y}^{2}=\frac{\left(1+\mu_{1}\right) \sigma^{2}}{\left(1-\mu_{1}\right)\left(1-\omega^{2}\right)}
$$

Qualitative Behavior of QAR(p) Processes

- The model can exhibit unit-root-like tendencies, even temporarily explosive behavior, but episodes of mean reversion are sufficient to insure stationarity.
- Under certain conditions, the $\operatorname{QAR}(p)$ process is a semi-strong ARCH (p) process in the sense of Drost and Nijman (1993).
- The impulse response of y_{t+s} to a shock u_{t} is stochastic but converges (to zero) in mean square as $s \rightarrow \infty$.

Estimated QAR(1) v. AR(1) Models of U.S. Interest Rates

Lag(y)

Data: Seasonally adjusted monthly: April, 1971 to June, 2002. Do 3-month T-bills really have a unit root?

Estimation of the QAR model

Estimation of the QAR models involves solving,

$$
\hat{\alpha}(\tau)=\operatorname{argmin}_{\alpha} \sum_{t=1}^{n} \rho_{\tau}\left(y_{t}-x_{t}^{\top} \alpha\right)
$$

where $\rho_{\tau}(u)=u(\tau-I(u<0))$, the $\sqrt{ }$-function.
Fitted conditional quantile functions of y_{t}, are given by,

$$
\hat{Q}_{t}\left(\tau \mid x_{t}\right)=x_{t}^{\top} \hat{\alpha}(\tau)
$$

and conditional densities by the difference quotients,

$$
\hat{f}_{\mathrm{t}}\left(\tau \mid x_{\mathrm{t}-1}\right)=\frac{2 h}{\hat{\mathrm{Q}}_{\mathrm{t}}\left(\tau+\mathrm{h} \mid \mathrm{x}_{\mathrm{t}-1}\right)-\hat{\mathrm{Q}}_{\mathrm{t}}\left(\tau-h \mid x_{\mathrm{t}-1}\right)},
$$

The QAR Process

Theorem 2: Under our regularity conditions,

$$
\sqrt{n} \Omega^{-1 / 2}(\hat{\alpha}(\tau)-\alpha(\tau)) \Rightarrow B_{p+1}(\tau)
$$

a $(p+1)$-dimensional standard Brownian Bridge, with

$$
\begin{aligned}
\Omega & =\Omega_{1}^{-1} \Omega_{0} \Omega_{1}^{-1} \\
\Omega_{0} & =\mathrm{E}\left(x_{\mathrm{t}} x_{\mathrm{t}}^{\top}\right)=\lim n^{-1} \sum_{\mathrm{t}=1}^{n} x_{\mathrm{t}} x_{\mathrm{t}}^{\top} \\
\Omega_{1} & =\lim ^{-1} \sum_{\mathrm{t}=1}^{n} f_{\mathrm{t}-1}\left(\mathrm{~F}_{\mathrm{t}-1}^{-1}(\tau)\right) x_{\mathrm{t}} x_{\mathrm{t}}^{\top}
\end{aligned}
$$

Inference for QAR models

For fixed $\tau=\tau_{0}$ we can test the hypothesis:

$$
\mathrm{H}_{0}: \quad \mathrm{R} \alpha(\tau)=\mathrm{r}
$$

using the Wald statistic,

$$
W_{n}(\tau)=\frac{n(R \hat{\alpha}(\tau)-r)^{\top}\left[R \hat{\Omega}_{1}^{-1} \hat{\Omega}_{0} \hat{\Omega}_{1}^{-1} R^{\top}\right]^{-1}(R \hat{\alpha}(\tau)-r)}{\tau(1-\tau)}
$$

This approach can be extended to testing on general index sets $\tau \in \mathcal{T}$ with the corresponding Wald process.

Asymptotic Inference

Theorem: Under $H_{0}, W_{n}(\tau) \Rightarrow Q_{m}^{2}(\tau)$, where $Q_{m}(\tau)$ is a Bessel process of order $m=\operatorname{rank}(R)$. For fixed $\tau, Q_{m}^{2}(\tau) \sim \chi_{m}^{2}$.

- Kolmogorov-Smirov or Cramer-von-Mises statistics based on $W_{n}(\tau)$ can be used to implement the tests.
- For known R and r this leads to a very nice theory - estimated R and/or r testing raises new questions.
- The situation is quite analogous to goodness-of-fit testing with estimated parameters.

Example: Unit Root Testing

Consider the augmented Dickey-Fuller model

$$
y_{t}=\delta_{0}+\delta_{1} y_{t-1}+\sum_{j=2}^{p} \delta_{j} \Delta y_{t-j}+u_{t}
$$

We would like to test this constant coefficients version of the model against the more general $\operatorname{QAR}(\mathrm{p})$ version:

$$
Q_{y_{t}}\left(\tau \mid x_{t}\right)=\delta_{0}(\tau)+\delta_{1}(\tau) y_{t-1}+\sum_{j=2}^{p} \delta_{j}(\tau) \Delta y_{t-j}
$$

The hypothesis: $\mathrm{H}_{0}: \delta_{1}(\tau)=\bar{\delta}_{1}=1$, for $\tau \in \mathcal{T}=\left[\tau_{0}, 1-\tau_{0}\right]$, is considered in Koenker and Xiao (JASA, 2004).

Example: Two Tests

- When $\bar{\delta}_{1}<1$ is known we have the candidate process,

$$
V_{n}(\tau)=\sqrt{n}\left(\hat{\delta}_{1}(\tau)-\bar{\delta}_{1}\right) / \hat{\omega}_{11} .
$$

where $\hat{\omega}_{11}^{2}$ is the appropriate element from $\hat{\Omega}_{1}^{-1} \hat{\Omega}_{0} \hat{\Omega}_{1}^{-1}$. Fluctuations in $\mathrm{V}_{\mathrm{n}}(\tau)$ can be evaluated with the Kolmogorov-Smirnov statistic,

$$
\sup _{\tau \in \mathcal{T}} V_{n}(\tau) \Rightarrow \sup _{\tau \in \mathcal{T}} B(\tau)
$$

- When $\bar{\delta}_{1}$ is unknown we may replace it with an estimate, but this disrupts the convenient asymptotic behavior. Now,

$$
\hat{V}_{n}(\tau)=\sqrt{n}\left(\left(\hat{\delta}_{1}(\tau)-\bar{\delta}_{1}\right)-\left(\hat{\delta}_{1}-\bar{\delta}_{1}\right)\right) / \hat{\omega}_{11}
$$

Martingale Transformation of $\hat{V}_{n}(\tau)$

Khmaladze (1981) suggested a general approach to the transformation of parametric empirical processes like $\hat{V}_{n}(\tau)$:

$$
\widetilde{V}_{n}(\tau)=\hat{V}_{n}(\tau)-\int_{0}^{\tau}\left[\dot{g}_{n}(s)^{\top} C_{n}^{-1}(s) \int_{s}^{1} \dot{g}_{n}(r) d \hat{V}_{n}(r)\right] d s
$$

where $\dot{g}_{n}(s)$ and $C_{n}(s)$ are estimators of

$$
\dot{\mathrm{g}}(\mathrm{r})=\left(1,(\dot{\mathrm{f}} / \mathrm{f})\left(\mathrm{F}^{-1}(\mathrm{r})\right)\right)^{\top} ; \mathrm{C}(\mathrm{~s})=\int_{\mathrm{s}}^{1} \dot{\mathrm{~g}}(\mathrm{r}) \dot{\mathrm{g}}(\mathrm{r})^{\top} \mathrm{dr} .
$$

This is a generalization of the classical Doob-Meyer decomposition.

Restoration of the ADF property

Theorem Under $\mathrm{H}_{0}, \tilde{\mathrm{~V}}_{\mathrm{n}}(\tau) \Rightarrow \mathrm{W}(\tau)$ and therefore

$$
\sup _{\tau \in \mathcal{T}}\left\|\tilde{V}_{\mathfrak{n}}(\tau)\right\| \Rightarrow \sup _{\tau \in \mathcal{T}}\|W(\tau)\|,
$$

with $\mathrm{W}(\mathrm{r})$ a standard Brownian motion.

- The martingale transformation of Khmaladze annihilates the contribution of the estimated parameters to the asymptotic behavior of the $\hat{V}_{n}(\tau)$ process, thereby restoring the asymptotically distribution free (ADF) character of the test.

Three Month T-Bills Again

A test of the "location-shift" hypothesis yields a test statistic of 2.76 which has a p -value of roughly 0.01 , contradicting the conclusion of the conventional Dickey-Fuller test.

QAR Models for Longitudinal Data

- In estimating growth curves it is often valuable to condition not only on age, but also on prior growth and possibly on other covariates.
- Autoregressive models are natural, but complicated due to the irregular spacing of typical longitudinal measurements.
- Finnish Height Data: $\left\{\mathrm{Y}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}, \mathrm{j}}\right): \mathfrak{j}=1, \ldots, \mathrm{~J}_{\mathrm{i}}, \mathfrak{i}=1, \ldots, \mathrm{n}.\right\}$
- Partially Linear Model [Pere, Wei, Koenker, and He (2006)]:

$$
\begin{aligned}
\mathrm{Q}_{Y_{i}\left(t_{i, j}\right)}(\tau & \left.\mid t_{i, j}, Y_{i}\left(t_{i, j-1}\right), x_{i}\right)=g_{\tau}\left(t_{i, j}\right) \\
+ & {\left[\alpha(\tau)+\beta(\tau)\left(t_{i, j}-t_{i, j-1}\right)\right] Y_{i}\left(t_{i, j-1}\right)+x_{i}^{\top} \gamma(\tau) . }
\end{aligned}
$$

Parametric Components of the Conditional Growth Model

τ	Boys			Girls		
	$\hat{\alpha}(\tau)$	$\hat{\beta}(\tau)$	$\hat{\gamma}(\tau)$	$\hat{\alpha}(\tau)$	$\hat{\beta}(\tau)$	$\hat{\gamma}(\tau)$
0.03	0.845	0.147	0.024	0.809	0.135	0.042
	(0.020)	(0.011)	(0.011)	(0.024)	(0.011)	(0.010)
0.1	0.787	0.159	0.036	0.757	0.153	0.054
	(0.020)	(0.007)	(0.007)	$0.022)$	(0.007)	(0.009)
0.25	0.725	0.170	0.051	0.685	0.163	0.061
	(0.019)	(0.006)	(0.009)	(0.021)	(0.006)	(0.008)
0.5	0.635	0.173	0.060	0.612	0.175	0.070
	(0.025)	(0.009)	(0.013)	$0.027)$	(0.008)	(0.009)
0.75	0.483	0.187	0.063	0.457	0.183	0.094
	$0.029)$	(0.009)	(0.017)	(0.027)	(0.012)	(0.015)
0.9	0.422	0.213	0.070	0.411	0.201	0.100
	(0.024)	(0.016)	$0.017)$	(0.030)	(0.015)	(0.018)
0.97	0.383	0.214	0.077	0.400	0.232	0.086
	(0.024)	(0.016)	(0.018)	(0.038)	(0.024)	(0.027)

Estimates of the $\operatorname{QAR}(1)$ parameters, $\alpha(\tau)$ and $\beta(\tau)$ and the mid-parental height effect, $\gamma(\tau)$, for Finnish children ages 0 to 2 years.

Forecasting with QAR Models

Given an estimated QAR model,

$$
\hat{Q}_{y_{t}}\left(\tau \mid \mathcal{F}_{t-1}\right)=x_{t}^{\top} \hat{\alpha}(\tau)
$$

based on data: $y_{t}: t=1,2, \cdots, T$, we can forecast

$$
\hat{y}_{\mathrm{T}+\mathrm{s}}=\tilde{x}_{\mathrm{T}+\mathrm{s}}^{\top} \hat{\alpha}\left(\mathrm{U}_{\mathrm{s}}\right), \mathrm{s}=1, \cdots, S,
$$

where $\tilde{x}_{T+s}=\left[1, \tilde{y}_{T+s-1}, \cdots, \tilde{y}_{T+s-p}\right]^{\top}, \mathrm{U}_{\mathrm{s}} \sim \mathrm{U}[0,1]$, and

$$
\tilde{y}_{t}=\left\{\begin{array}{lll}
y_{t} & \text { if } & t \leqslant T \\
\hat{y}_{t} & \text { if } & t>T
\end{array}\right.
$$

Conditional density forecasts can be made based on an ensemble of such forecast paths.

Linear QAR Models May Pose Statistical Health Risks

- Lines with distinct slopes eventually intersect. [Euclid: P5]
- Quantile functions, $\mathrm{Q}_{\mathrm{Y}}(\tau \mid x)$ should be monotone in τ for all x, intersections imply point masses - or even worse.
- What is to be done?
- Constrained QAR: Quantiles can be estimated simultaneously subject to linear inequality restrictions.
- Nonlinear QAR: Abandon linearity in the lagged y_{t} 's, as in the Melbourne temperature example, both parametric and nonparametric options are available.

Nonlinear QAR Models via Copulas

An interesting class of stationary, Markovian models can be expressed in terms of their copula functions:

$$
G\left(y_{t}, y_{t-1}, \cdots, y_{y-p}\right)=C\left(F\left(y_{t}\right), F\left(y_{t-1}\right), \cdots, F\left(y_{y-p}\right)\right)
$$

where G is the joint $d f$ and F the common marginal $d f$.

- Differentiating, $C(u, v)$, with respect to u, gives the conditional df,

$$
\mathrm{H}\left(\mathrm{y}_{\mathrm{t}} \mid \mathrm{y}_{\mathrm{t}-1}\right)=\left.\frac{\partial}{\partial u} \mathrm{C}(u, v)\right|_{\left(u=F\left(y_{t}\right), v=F\left(y_{t-1}\right)\right)}
$$

- Inverting we have the conditional quantile functions,

$$
\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathrm{y}_{\mathrm{t}-1}\right)=\mathrm{h}\left(\mathrm{y}_{\mathrm{t}-1}, \theta(\tau)\right)
$$

Example 1 (Fan and Fan)

Model: $\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathrm{y}_{\mathrm{t}-1}\right)=-(1.7-1.8 \tau) \mathrm{y}_{\mathrm{t}-1}+\Phi^{-1}(\tau)$.

Example 2 (Near Unit Root)

Model: $\mathrm{Q}_{\mathrm{y}_{\mathrm{t}}}\left(\tau \mid \mathrm{y}_{\mathrm{t}-1}\right)=2+\min \left\{\frac{3}{4}+\tau, 1\right\} \mathrm{y}_{\mathrm{t}-1}+3 \Phi^{-1}(\tau)$.

Conclusions

- QAR models are an attempt to expand the scope of classical linear time-series models permitting lagged covariates to influence scale and shape as well as location of conditional densities.
- Efficient estimation via familiar linear programming methods.
- Random coefficient interpretation nests many conventional models including ARCH.
- Wald-type inference is feasible for a large class of hypotheses; rank based inference is also an attractive option.
- Forecasting conditional densities is potentially valuable.
- Many new and challenging open problems....

