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Overview of the Lectures

The Basics: What, Why and How?

Inference and Quantile Treatment Effects

Nonparametric Quantile Regression

Endogoneity and IV Methods

Censored QR and Survival Analysis

Quantile Autoregression

QR for Longitudinal Data

Risk Assessment and Choquet Portfolios

Computional Aspects

Course outline, lecture slides, an R FAQ, and even some proposed exercises
can be found at:

http://www.econ.uiuc.edu/~roger/courses/Copenhagen.
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My Danish Connection: Margaret Friis, Robert Linn, Robert Friis, and Betty and
Jimmy van Vleck, near Kenmare, North Dakota circa 1920.
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The Basics: What, Why and How?

1 Univariate Quantiles

2 Scatterplot Smoothing

3 Equivariance Properties

4 Quantile Treatment Effects

5 Three Empirical Examples
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Archimedes’s “Eureka!” and the Middle Sized Egg

Volume of the eggs can be measure by the amount of water they displace
and the median (middle-sized) egg found by sorting these measurements.

Note that even if we measure the logarithm of the volumes, the middle
sized egg is the same. Not true for the mean egg!
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The Stem and Leaf Plot: Tukey’s EDA Gadget Number 1

Given a “batch” of numbers, {X1,X2, ...,Xn} one can make a quick and
dirty histogram in R this way:

> x <− r c h i s q (100 ,5 ) # 100 Chi−squa red (5 )
> q u a n t i l e ( x ) # Tukey ’ s F i v e Number Summary

0% 25% 50% 75% 100%
0.9042396 2.7662230 4.2948642 6.2867588 16.5818573

> stem ( x )

The dec ima l p o i n t i s a t the |

0 | 92356668
2 | 001111244445667778889990111222455666
4 | 01223334666678901125567889
6 | 023344667802888
8 | 556691

10 | 7
12 | 159
14 | 06
16 | 6
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Boxplot of CEO Pay: Tukey’s EDA Gadget Number 2
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Motivation

What the regression curve does is give a grand summary for the
averages of the distributions corresponding to the set of of x’s.
We could go further and compute several different regression
curves corresponding to the various percentage points of the
distributions and thus get a more complete picture of the set.
Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture
of a single distribution, so the regression curve gives a
correspondingly incomplete picture for a set of distributions.

Mosteller and Tukey (1977)
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Univariate Quantiles
Given a real-valued random variable, X, with distribution function F, we
will define the τth quantile of X as

QX(τ) = F
−1
X (τ) = inf{x | F(x) > τ}.

This definition follows the usual convention that F is CADLAG, and Q is
CAGLAD as illustrated in the following pair of pictures.

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

τ

Q
(τ

)

Roger Koenker (UIUC) Introduction Copenhagen 18-20.5.2016 9 / 64



Univariate Quantiles
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Univariate Quantiles

Viewed from the perspective of densities, the τth quantile splits the area
under the density into two parts: one with area τ below the τth quantile
and the other with area 1 − τ above it:
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Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ:

ττ − 1

ρτ(u)
τ

τ − 1

ψτ(u)

The subgradient of a convex function f(u) at a point u consists of all the
possible “tangents.” Sums of convex functions are convex.
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Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

α̂(τ) = argmin E ρτ(Y − α)

Proof: Let ψτ(u) = ρ
′
τ(u), so differentiating wrt to α:

0 =

∫∞
−∞ψτ(y− α)dF(y)

= (τ− 1)

∫α
−∞ dF(y) + τ

∫∞
α

dF(y)

= (τ− 1)F(α) + τ(1 − F(α))

implying τ = F(α) and thus α̂ = F−1(τ).
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Sample Quantiles as Optimizers

For sample quantiles replace F by F̂, the empirical distribution function.
The objective function becomes a polyhedral convex function whose
derivative is monotone decreasing, in effect the gradient simply counts
observations above and below and weights the sums by τ and τ− 1.
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Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

µ = argminmE(Y −m)2

The conditional mean µ(x) = E(Y|X = x) solves

µ(x) = argminmEY|X=x(Y −m(X))2.

Similarly, the unconditional τth quantile solves

ατ = argminaEρτ(Y − a)

and the conditional τth quantile solves

ατ(x) = argminaEY|X=xρτ(Y − a(X))
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Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into
positive and negative parts and sum with appropriate weights:

min{τ1>u+ (1 − τ)1>v|y = Xb+ u− v, (b,u, v) ∈ |Rp × |R2n
+ }

Dual Formulation as a Linear Program

max{y ′d|X>d = (1 − τ)X>1,d ∈ [0, 1]n}

Solutions are characterized by an exact fit to p observations.
Let h ∈ H index p-element subsets of {1, 2, ...,n} then primal solutions
take the form:

β̂ = β̂(h) = X(h)−1y(h)
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Least Squares from the p-subset Perspective
Exact fits to p observations:

β̂ = β̂(h) = X(h)−1y(h)

OLS is a weighted average of these β̂(h)’s:

β̂OLS = (X>X)−1X>y =
∑
h∈H

w(h)β̂(h),

w(h) = |X(h)|2/
∑
h∈H

|X(h)|2

The determinants |X(h)| are the (signed) volumes of the parallelipipeds
formed by the columns of the the matrices X(h). In the simplest bivariate
case, we have,

|X(h)|2 =

∣∣∣∣ 1 xi
1 xj

∣∣∣∣2 = (xj − xi)
2

so pairs of observations that are far apart are given more weight.
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Quantile Regression: The Movie

Bivariate linear model with iid Student t errors

Conditional quantile functions are parallel in blue

100 observations indicated in blue

Fitted quantile regression lines in red.

Intervals for τ ∈ (0, 1) for which the solution is optimal.
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model

0 2 4 6 8 10

−
2

0
2

4
6

8
10

12

x

y

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

[ 0.3  ,  0.3  ]

Roger Koenker (UIUC) Introduction Copenhagen 18-20.5.2016 22 / 64



Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Quantile Regression in the iid Error Model
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Virtual Quantile Regression II

Bivariate quadratic model with Heteroscedastic χ2 errors

Conditional quantile functions drawn in blue

100 observations indicated in blue

Fitted quadratic quantile regression lines in red

Intervals of optimality for τ ∈ (0, 1).
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

0
20

40
60

80
10

0

x

y

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

[ 0.261  ,  0.261  ]

Roger Koenker (UIUC) Introduction Copenhagen 18-20.5.2016 33 / 64



Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model

0 2 4 6 8 10

0
20

40
60

80
10

0

x

y

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

[ 0.633  ,  0.635  ]

Roger Koenker (UIUC) Introduction Copenhagen 18-20.5.2016 38 / 64



Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Quantile Regression in the Heteroscedastic Error Model
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Conditional Means vs. Medians
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Minimizing absolute errors for median regression can yield something quite
different from the least squares fit for mean regression.
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Equivariance of Regression Quantiles

Scale Equivariance: For any a > 0, β̂(τ;ay,X) = aβ̂(τ;y,X) and
β̂(τ;−ay,X) = aβ̂(1 − τ;y,X)

Regression Shift: For any γ ∈ |Rp β̂(τ;y+ Xγ,X) = β̂(τ;y,X) + γ

Reparameterization of Design: For any |A| 6= 0,
β̂(τ;y,XA) = A−1β̂(τ;yX)

Robustness: For any diagonal matrix D with nonnegative elements.
β̂(τ;y,X) = β̂(τ,y+Dû,X)
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Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions QY(τ|x) are
equivariant in the sense that

Qh(Y)|X(τ|x) = h(QY|X(τ|x))

In contrast to conditional mean functions for which, generally,

E(h(Y)|X) 6= h(EY|X)

Examples:
h(y) = min{0,y}, Powell’s (1985) censored regression estimator.
h(y) = sgn{y} Rosenblatt’s (1957) perceptron, Manski’s (1975) maximum
score estimator. estimator.
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Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment
response:

“Suppose the treatment adds the amount ∆(x) when the
response of the untreated subject would be x. Then the
distribution G of the treatment responses is that of the random
variable X+ ∆(X) where X is distributed according to F.”
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Lehmann QTE as a QQ-Plot

Doksum (1974) defines ∆(x) as the “horizontal distance” between F and
G at x, i.e.

F(x) = G(x+ ∆(x)).

Then ∆(x) is uniquely defined as

∆(x) = G−1(F(x)) − x.

This is the essence of the conventional QQ-plot. Changing variables so
τ = F(x) we have the quantile treatment effect (QTE):

δ(τ) = ∆(F−1(τ)) = G−1(τ) − F−1(τ).

Roger Koenker (UIUC) Introduction Copenhagen 18-20.5.2016 46 / 64



Lehmann-Doksum QTE
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Lehmann-Doksum QTE
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An Asymmetric Example
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Treatment shifts the distribution from right skewed to left skewed making
the QTE U-shaped.
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The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal
distributions, F and G, but it cannot reveal anything about the joint
distribution, H. The copula function, Schweizer and Wolf (1981), Genest
and McKay, (1986),

ϕ(u, v) = H(F−1(u),G−1(v)),

is not identified. Lehmann’s formulation assumes that the treatment
leaves the ranks of subjects invariant. If a subject was going to be the
median control subject, then he will also be the median treatment subject.
This is an inherent limitation of the Neymann-Rubin potential outcomes
framework.
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QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

δ̂(τ) = Ĝ−1
n (τ) − F̂−1

m (τ)

where Ĝn and F̂m denote the empirical distribution functions of the
treatment and control observations, Consider the quantile regression model

QYi
(τ|Di) = α(τ) + δ(τ)Di

where Di denotes the treatment indicator, and Yi = h(Ti), e.g.
Yi = log Ti, which can be estimated by solving,

min
n∑
i=1

ρτ(yi − α− δDi)
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Francis Galton’s (1885) Anthropometric Quantiles
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Quantile Treatment Effects: Strength of Squeeze
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“Very powerful women exist, but happily perhaps for the repose of the
other sex, such gifted women are rare.”
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Engel’s Food Expenditure Data

1000 2000 3000 4000 5000

50
0

10
00

15
00

20
00

Household Income

F
oo

d 
E

xp
en

di
tu

re

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.
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Engel’s Food Expenditure Data
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Engel Curves for Food: This figure plots data taken from Engel’s (1857) study of the de-

pendence of households’ food expenditure on household income. Seven estimated quantile

regression lines for τ ∈ {.05, .1, .25, .5, .75, .9, .95} are superimposed on the scatterplot.

The median τ = .5 fit is indicated by the blue solid line; the least squares estimate of the

conditional mean function is indicated by the red dashed line.
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A Model of Infant Birthweight

Reference: Abrevaya (2001), Koenker and Hallock (2001)

Data: June, 1997, Detailed Natality Data of the US. Live, singleton
births, with mothers recorded as either black or white, between 18-45,
and residing in the U.S. Sample size: 198,377.

Response: Infant Birthweight (in grams)

Covariates:
I Mother’s Education
I Mother’s Prenatal Care
I Mother’s Smoking
I Mother’s Age
I Mother’s Weight Gain
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Quantile Regression Birthweight Model I
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Quantile Regression Birthweight Model II
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Marginal Effect of Mother’s Age
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Marginal Effect of Mother’s Weight Gain
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Daily Temperature in Melbourne: AR(1) Scatterplot
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Daily Temperature in Melbourne: Nonlinear QAR(1) Fit
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Conditional Densities of Melbourne Daily Temperature
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Review of Lecture 1

Least squares meethods of estimating conditional mean functions

were developed for, and

promote the view that,

Response = Signal + iid Measurement Error

In fact the world is rarely this simple.
Quantile regression permits regression slope coefficients to “grow up” to
become distributional objects.
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