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1. Introduction

Recent work by Firpo, Fortin, and Lemieux (2010) and Chernozhukov, Fernández-
Val, and Melly (2010) has suggested that estimating families of binary response
models using varying “cutoffs” to construct the binary response may provide an
attractive alternative to estimating conditional quantile functions. In some very
simple iid error settings the two approaches can be directly compared; we under-
take such a comparison for two leading forms of the binary response model.

2. Models and Estimators

Consider the linear model

(2.1) Yi = α+ x>i β + ui i = 1, · · · , n,

with iid errors {ui} with distribution function, F , survival function, S = 1 − F ,
and density, f , we can estimate models for the family of binary response models

S−1(P (Yi > y|xi)) = S−1(P (ui > y − α− x>i β0))

= S−1(1− F (y − α− x>i β0))

= y − α− x>i β0.

That is, we can define the indicator functions I(Yi > y) for a particular choice of the
cutoff, y and estimate the binary response model with link function, S. The effect
of changing the cutoff, y, is simply to shift the intercept of the model. Estimating
a family of such models for a variety of cutoffs is termed “distributional regression”
in Chernozhukov, Fernández-Val, and Melly (2010).

It is well known, e.g. McCullagh and Nelder (1989), that the limiting distribution
of this binary response estimator, β̂n(y), is Gaussian with covariance matrix V̂n =
(X>WX)−1 where W = diag(wi), and wi = f2(ν(y))/(F (ν(y))(1−F (ν(y)))) where
ν(y) = y − α− x>i β0. For the corresponding quantile regression estimator,

β̌n(τ) = argmaxb
n∑
i=1

ρτ (Yi − x>i b)

we have the limiting covariance matrix, V̌n = (τ(1 − τ))/f2(F−1(τ)))(X>X)−1.
If we take y = F−1(τ) in the respective formulas we see that the two covariance
matrices look quite similar. Indeed, if β0 = 0 then they actually coincide. However,
when β0 6= 0 the situation is a bit more complicated and we provide some numerical
comparisons along with some simulation evidence on comparative performance in
the next section.
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3. A Logistic Specification

Consider the model (2.1) with {ui} iid from the logistic df , F (u) = (1+e−u)−1.
This model gives rise to logistic binary response model

logit (P (Yi > y|xi)) = logit (1− F (y − α− x>i β))

= logit (F (α− y + x>i β))

= α− y + x>i β

At each value of the cutoff, y, we have a logistic regression model with intercept
α−y. In survival analysis this model is often called the Bennett model. A valuable
general discussion of the correspondence between survival models and families of
binary response models is given in Doksum and Gasko (1990). In contrast we have
the quantile regression model

QYi|Xi
(τ |xi) = α+ F−1

u (τ) + x>i β

So both models have the same linear slope parameters, but the intercepts are
different. However, for any choice of τ ’s we can choose corresponding y’s to be
yk = −F−1(τk).

A simulation of this logistic model with n ∈ {100, 500, 1000, 5000}, {xi} iid
N (0, 1) , α = 0, and β = 1 yields the results reported in Table 1. Reported root
mean squared errors are scaled by

√
n so that they are comparable to the limiting

standard errors given by the asymptotic theory described above. The limiting
root mean squared errors were computed by numerically evaluating the limiting
covariance matrices at the simulation settings with n = 10, 000. The results provide
some evidence for the superior efficiency of the quantile regression approach.

Quantile Regression Distributional Regression
τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

α
n = 100 2.553 2.043 2.135 2.528 2.963 2.343 2.241 2.895
n = 500 2.507 1.981 2.010 2.556 2.894 2.140 2.209 2.832

n = 1000 2.427 2.008 2.024 2.417 2.719 2.225 2.212 2.724
n = 5000 2.501 1.940 1.965 2.565 2.928 2.245 2.210 2.791

n =∞ 2.500 2.042 2.042 2.500 2.796 2.249 2.253 2.808

β

n = 100 2.699 2.209 2.194 2.708 3.438 3.037 2.949 3.268
n = 500 2.450 2.033 1.942 2.395 3.096 2.651 2.629 2.972

n = 1000 2.571 2.121 2.155 2.599 3.104 2.732 2.661 3.003
n = 5000 2.377 2.093 2.111 2.594 3.024 2.743 2.746 2.996
n =∞ 2.493 2.035 2.035 2.493 2.975 2.666 2.658 2.946

Table 1. Root Mean Squared Error in 1000 Replications: Bennett Model

4. A Gumbel Specification

A variety of other models can be accommodated in a similar fashion. As another
illustration, consider the linear model (2.1) with {ui} iid from the Gumbel, or Type
1 extreme value distribution, F (u) = 1− e−eu

. Then

P (Yi > y|xi) = P (ui > y − α− x>i β)

= 1− F (y − α− x>i β),
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so
log(− log(P (Yi > y|xi))) = y − α− x>i β.

This is the complementary log-log binary response model and can be easily esti-
mated using this link function, McCullagh and Nelder (1989). In survival analysis
this model corresponds to the Cox proportional hazard model.

Again, we can compare performance of direct quantile regression estimation of
the model with estimation of the model via the corresponding binary response
estimator. In Table 2 we report results from another simulation exercise structured
exactly as in the logistic case except that ui’s are Gumbel and the binary response
uses the complementary log-log link function.

Quantile Regression Distributional Regression

τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

α

n = 100 1.248 1.315 1.587 2.188 1.662 1.550 1.866 2.796
n = 500 1.242 1.371 1.652 2.275 1.674 1.573 1.832 2.565

n = 1000 1.237 1.368 1.630 2.264 1.542 1.571 1.855 2.675
n = 5000 1.292 1.384 1.603 2.253 1.562 1.589 1.818 2.514
n =∞ 1.243 1.337 1.599 2.241 1.552 1.541 1.821 2.544

β
n = 100 1.316 1.419 1.695 2.427 2.645 2.387 2.530 2.951
n = 500 1.245 1.309 1.548 2.089 2.264 2.131 2.143 2.452

n = 1000 1.233 1.275 1.586 2.190 2.302 2.082 2.078 2.343
n = 5000 1.232 1.339 1.659 2.266 2.205 2.046 2.037 2.351
n =∞ 1.239 1.333 1.594 2.234 2.250 2.082 2.078 2.339

Table 2. Root Mean Squared Error in 1000 Replications: Cox Model

5. Dicta and Contradicta

Given the parameterization we have considered we have seen that the quantile re-
gression estimator is considerably more accurate than the distributional regression
estimator. Since the latter estimator also requires us to make a potentially contro-
versial choice of an appropriate link function, this would seem to be a compelling
argument for the quantile regression approach.

On the contrary, it should be remembered that two swallows do not make a
summer, and likewise other choices of the iid error distribution and its corresponding
link function may well yield different conclusions. Perhaps more crucially, we may
prefer to evaluate performance of the two methods differently: according to how
well they do in predicting conditional probabilities, rather than – as implicitly done
here – conditional quantiles, and this too may produce contradictory evidence.
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