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Is there IV for QR?

® Amemiya (1982) and Powell (1983) consider analogues of 2SLS for
median regression models

@ Chen and Portnoy (1986) consider extensions to quantile regression

o Abadie, Angrist and Imbens (2002) consider models with binary
endogonous treatment

@ Chernozhukov and Hansen (2003) propose
regression

[ " -
inverse” quantile

@ Chesher (2003) considers triangular models with continuous
endogonous variables.
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Chernozhukov and Hansen QRIV

Motivation: Yet another way to view two stage least squares.
Model: y=Xp +Zax+u, Wlu

Estimator:
& = argmin, [[¥(x) ||,2A:WTMXW

V(o) = argmin, |ly — XB — Zax — wWy|?
Thm &= (ZTPMXWZ)*lzTPMXWy, the 2SLS estimator.

Heuristic: & is chosen to make ||V(o)|| as small as possible to satisfy
(approximately) the exclusion restriction/assumption.

Generalization: The quantile regression version simply replaces | - ||2 in
the definition of ¥ by the corresponding QR norm.

Roger Koenker (UIUC) Endogoneity and All That Aarhus: 23.6.2010 3/16



A Linear Location Shift Recursive Model

Soq -I-XTOCQ +e+Av
zf31 —I—xT[Sz +v
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A Linear Location Shift Recursive Model

= Soy+x'op+e—+Av (1)
S = zB1+x'Por+v (2)

Suppose: € 1l v and (€,v) 1L (z,x). Substituting for v from (2) into (1),
Qv(milS,x,z) = S(oqr+A)+x' (&2 —AB2) +z(—AB1) + F ' (11)
Qs(tolz,x) = zB1+x' B2+ F, (12)

V2 Qvilsi=qs,

711(T1,T2) = VSiQYi‘Si:QSi + VziQSi
(a4 A) + (~AB1)/Br
= K
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A Linear Location-Scale Shift Model

Y = Soq+x' o+ S(e+Av)
z2B1+x P2+
m(T1,T2) = g+ Fol(m1) + AR, 12)

wn
I
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A Linear Location-Scale Shift Model

Y = Soq+x' o+ S(e+Av)
S ZB1+x Bo+v
m(T,T2) = o +Fol(t) + AR, 12)

Qv(T1/S, %, 2) = SO1(T1)+x' 02+ S2035 + Sz04 + Sx ' 05
Qs(Talz,x) = zB1+x' B2+ Fy 1 (12)

Aty w2) = 3 wi{ B (r1)+2Qs,83(w1) 42184 (1) +x{ Bs (11)+ QEG( () )}
i=1

a weighted average derivative estimator with Qsi = Qs(T2|Zi,Xi).
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The General Recursive Model

Y = @i1(S,%x,€,v; a)
S = @2z, x,v; B)

Suppose: € 1L v and (€,Vv) AL (z,x). Solving for v and substituting we
have the conditional quantile functions,

Qv(tilS,x,z) = hi(S,x,z0(11))
Qs(t2lz,x) = ha(z,x, B(T2))
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The General Recursive Model

Y = @i1(S,%x,€,v; a)
S = @2z, x,v; B)

Suppose: € 1L v and (€,Vv) AL (z,x). Solving for v and substituting we
have the conditional quantile functions,

Qv(tilS,x,z) = hi(S,x,z0(11))
Qs(t2lz,x) = ha(z,x, B(T2))

Extensions to more than two endogonous variables are " straightforward.”
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The (Chesher) Weighted Average Derivative Estimator

8(t1) = argming Z P (Yi —hi(S, %, z,0(11)))

i=1
Blta) = argming > pr,(Si — ha(z x, B(T2)))

i=1

where p(u) = u(t— I(u < 0)), giving structural estimators:
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The (Chesher) Weighted Average Derivative Estimator

O(t1) = argminezpTl(Yi_hl(S:Xere(Tl)))
im1

Blra) = argmmﬁZpTg (z.%, B(T2)))

where p(u) = u(t— I(u < 0)), giving structural estimators:

_ . =ho
(71, T2) = E 1/\)1{V5h11|51:hzl VA }
i=1 zM2i

n V. h i R

~ ~ zT1ilg, =hy; ~

o (T1, T2) = E Wi{vxhldsi:fm +Vxhzi},
o V hoi
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2SLS as a Control Variate Estimator
Y = Soy+Xim+tu=Zax+u
S = XB+V, where X= [X1:X5]

SetV=S—-S= Mx Y1, and consider the least squares estimator of the
model,
Y=Zax+Vy+w
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2SLS as a Control Variate Estimator

Y = Soy+Xim+tu=Zax+u
S = XB+V, where X = [X1:X5]

SetV=S—-S= Mx Y1, and consider the least squares estimator of the
model,
Y=Zax+Vy+w

Claim: &cy = (ZTM\A/Z)_lzTM\“/Y = (ZTPXz)_lzTP)(Y = &os1S-
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Proof of Control Variate Equivalence

My = Mmys =1 — MxS(STMxS) 1S TMx
STMV = ST — STMX = STPX

X{ My = X{ —X{ Mx=X{ =X{ Px

Reward for information leading to a reference prior to Dhrymes (1970).
Recent work on the control variate approach by Blundell, Powell, Smith,
Newey and others.
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Quantile Regression Control Variate Estimation |
Location scale shift model:

Y = S(xg+e+Av)+x
S = Z[31+XT[32—|—’V.

Using V(12) =S — Qs(Talz, x) as a control variate,

Y = wlalt, 1) +AS(Qs — Qs) + S(e — Fot (1)),
where wl = (S,XT,S‘V(Tz))

o(T1, T2) = (&1 (711, T2), %2, A

o (1, T2) = &1 + F (1) + AF ().

)T

n
&(T1, T2) = argming Z o (Vi —wi a).
i=1
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Quantile Regression Control Variate Estimation |l

Y = i1(S,x,¢6,v; )
S = iz, xv; B)

Regarding v(T2) = v — F,1(12) as a control variate, we have

Qv(Tt1lS,x,v(12)) = 91(S,x,v(12), &(T11, T2))
Qs(t2lz,x) = galz,x, B(12))

(12) = 95 1S, 2%, B) — 05 (Qs, 2. %, B)

&1, 7o) = argming ) e, (Yi — 91(S,%,9(12), a)).

i=1
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Asymptopia

Theorem: Under regularity conditions, the weighted average derivative
and control variate estimators of the Chesher structural effect have an
asymptotic linear (Bahadur) representation, and after efficient reweighting
of both estimators, the control variate estimator has smaller covariance
matrix than the weighted average derivative estimator.
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Asymptopia

Theorem: Under regularity conditions, the weighted average derivative
and control variate estimators of the Chesher structural effect have an
asymptotic linear (Bahadur) representation, and after efficient reweighting
of both estimators, the control variate estimator has smaller covariance
matrix than the weighted average derivative estimator.

Remark: The control variate estimator imposes more stringent restrictions
on the estimation of the hybrid structural equation and should thus be
expected to perform better when the specification is correct. The
advantages of the control variate approach are magnified in situations of
overidentification.
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Asymptotics for WAD

Theorem
The 7ty (T1, T2) has the asymptotic linear (Bahadur) representation,

Vn(fin (T1, T2) — 7i(T1, T2)) = WlTII% Z oithinWe, (Yir — &i1)

+ W, 5t \/— Z oiohioWr, (Yio — &i2)

= N(0, wiW1J7 m;lw1 +w22w212 JoJ5 tW5)

1 .o
Jj _Jinm—lz%h iy, ]].:J@mazaﬁfﬁ(aﬁ)hﬁh{;,

W1 Vem(ty, Tz) W, = Vpr(T1, T2),
’Ll — Vehw i2 — vﬁh12v Wi = T)(l Tj)-

Roger Koenker (UIUC) Endogoneity and All That Aarhus: 23.6.2010

13 / 16



Asymptotics for CV

Theorem
The & (T1,T2) has the Bahadur representation,

VI (&n (11, T2) — (71, 72)) = D7t 011911, (Yia — &i1)

3=
™M=

I
s

i

ME

== = 1
+D1'D12D; = ) 0i2diotn, (Yiz — &i2)
Vi s

= N(0, w11151_1D1151_1 -+ (1)22151_1]:_)]_2]:_)2_11)2152_15]—2131_1)

I
<N

D; = TL'Lmoon_l Z 03015045, Dj = lim n7! Z Sy Tl O

n—oo

D = lim n*IZGufquuQiTz:

mn—00

gi1 = Vagit, 9i2 = Vp0ia, Ni = (0911/0Vi2(12)) (Vv @i2) 1t

v
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ARE of WAD and CV

o Efficient weights: oyj = fi;(&45)

VU (ftn (T1, T2) — 7(T1, T2)) = N(0, w1t Wi W] + waaWa]y twW,) )
VUG (T1, T2) — (71, T2)) = N(0, w11D7 ! + wooD 'D12D5 1D, D).
The mapping: 7in, = L&n, La =1

Wyl twy
WaJ, tw,

LD 'LT

>
> LD;'DppDy'DLDTILT.

Theorem
Under efficient reweighting of both estimators,

Avar(yvnf,) < Avar(vnfn).
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Conclusions

@ Triangular structural models facilitate causal analysis via recursive
conditioning, directed acyclic graph representation.

@ Recursive conditional quantile models yield interpretable
heterogeneous structural effects.

@ Control variate methods offer computationally and statistically
efficient strategies for estimating heterogeneous structural effects.

@ Weighted average derivative methods offer a less restrictive strategy
for estimation that offers potential for model diagnostics and testing.
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