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Classical Linear Fixed/Random Effects Model

Consider the model,

yij = x>ijβ+ αi + uij j = 1, ...mi, i = 1, ...,n,

or
y = Xβ+ Zα+ u.

The matrix Z represents an incidence matrix that identifies the n distinct
individuals in the sample. If u and α are independent Gaussian vectors
with u ∼ N(0,R) and α ∼ N(0,Q). Observing that v = Zα+ u has
covariance matrix Evv> = R+ ZQZ>, we can immediately deduce that
the minimum variance unbiased estimator of β is,

β̂ = (X>(R+ ZQZ>)−1X)−1X>(R+ ZQZ>)−1y.
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A Penalty Interpretation of β̂
Proposition. β̂ solves min(α,β) ‖y− Xβ− Zα‖2

R−1 + ‖α‖2
Q−1 , where

‖x‖2
A = x>Ax.

Proof.

Differentiating we obtain the normal equations,

X>R−1Xβ̂+ X>R−1Zα̂ = X>R−1y

Z>R−1Xβ̂+ (Z>R−1Z+Q−1)α̂ = Z>R−1y

Solving, we have β̂ = (X>Ω−1X)−1X>Ω−1y where

Ω−1 = R−1 − R−1Z(Z>R−1Z+Q−1)−1Z>R−1.

But Ω = R+ ZQZ>, see e.g. Rao(1973, p 33.).

This result has a long history: Henderson(1950), Goldberger(1962),
Lindley and Smith (1972), etc.
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Quantile Regression with Fixed Effects

Suppose that the conditional quantile functions of the response of the jth
observation on the ith individual yij takes the form:

Qyij(τ|xij) = αi + x>ijβ(τ) j = 1, ...mi, i = 1, ...,n.

In this formulation the α’s have a pure location shift effect on the
conditional quantiles of the response. The effects of the covariates, xij are
permitted to depend upon the quantile, τ, of interest, but the α’s do not.
To estimate the model for several quantiles simultaneously, we propose
solving,

min
(α,β)

q∑
k=1

n∑
j=1

mi∑
i=1

wkρτk(yij − αi − x>ijβ(τk))

Note that the usual between/within transformations are not permitted.
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Penalized Quantile Regression with Fixed Effects
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Time invariant, individual specific intercepts are quantile independent;
slopes are quantile dependent.
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Penalized Quantile Regression with Fixed Effects

When n is large relative to the mi’s shrinkage may be advantageous in
controlling the variability introduced by the large number of estimated α
parameters. We will consider estimators solving the penalized version,

min
(α,β)

q∑
k=1

n∑
j=1

mi∑
i=1

wkρτk(yij − αi − x>ijβ(τk)) + λ

n∑
i=1

|αi|.

For λ→ 0 we obtain the fixed effects estimator described above, while as
λ→ ∞ the α̂i → 0 for all i = 1, 2, ...,n and we obtain an estimate of the
model purged of the fixed effects. In moderately large samples this requires
sparse linear algebra. Example R code is available from my webpages.
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Shrinkage of the Fixed Effects

0 1 2 3 4 5

−
2

0
2

4
6

8
10

λ

α

0 1 2 3 4 5

−
4

0
2

4
6

8

λ

α

Shrinkage of the fixed effect parameter estimates, α̂i. The left panel illustrates an

example of the `1 shrinkage effect. The right panel illustrates an example of the `2
shrinkage effect.

Roger Koenker (UIUC) Quantile Regression for Longitudinal Data Aarhus: 23.6.2010 7 / 8



Dynamic Panel Models and IV Estimation

Galvao (2010) considers dynamic panel models of the form:

Qyit(τ|yi,t−1, xit) = αi + γ(τ)yi,t−1 + x>itβ(τ) t = 1, ...Ti, i = 1, ...,n.

In “short” panels estimation suffers from the same bias problems as seen
in least squares estimators Nickel (1981) Hsiao and Anderson (1981);
using the IV estimation approach of Chernozhukov and Hansen (2004) this
bias can be reduced.
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