## Quantile Regression for Longitudinal Data

Roger Koenker

University of Illinois, Urbana-Champaign

Aarhus: 23 June 2010

### Classical Linear Fixed/Random Effects Model

Consider the model,

$$y_{ij} = x_{ij}^\top \beta + \alpha_i + u_{ij}$$
  $j = 1, ...m_i$ ,  $i = 1, ..., n$ ,

or

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\alpha} + \mathbf{u}.$$

The matrix Z represents an incidence matrix that identifies the n distinct individuals in the sample. If u and  $\alpha$  are independent Gaussian vectors with  $u \sim \mathcal{N}(0, R)$  and  $\alpha \sim \mathcal{N}(0, Q)$ . Observing that  $\nu = Z\alpha + u$  has covariance matrix  $E\nu\nu^{\top} = R + ZQZ^{\top}$ , we can immediately deduce that the minimum variance unbiased estimator of  $\beta$  is,

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^\top (\boldsymbol{R} + \boldsymbol{Z} \boldsymbol{Q} \boldsymbol{Z}^\top)^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^\top (\boldsymbol{R} + \boldsymbol{Z} \boldsymbol{Q} \boldsymbol{Z}^\top)^{-1} \boldsymbol{y}$$

# A Penalty Interpretation of $\hat{\beta}$

**Proposition.**  $\hat{\beta}$  solves  $\min_{(\alpha,\beta)} \|y - X\beta - Z\alpha\|_{R^{-1}}^2 + \|\alpha\|_{Q^{-1}}^2$ , where  $\|x\|_A^2 = x^\top Ax$ .

#### Proof.

Differentiating we obtain the normal equations,

$$\begin{split} X^{\top} R^{-1} X \hat{\beta} + X^{\top} R^{-1} Z \hat{\alpha} &= X^{\top} R^{-1} y \\ Z^{\top} R^{-1} X \hat{\beta} + (Z^{\top} R^{-1} Z + Q^{-1}) \hat{\alpha} &= Z^{\top} R^{-1} y \\ \end{split}$$
  
Solving, we have  $\hat{\beta} &= (X^{\top} \Omega^{-1} X)^{-1} X^{\top} \Omega^{-1} y$  where  
$$\Omega^{-1} &= R^{-1} - R^{-1} Z (Z^{\top} R^{-1} Z + Q^{-1})^{-1} Z^{\top} R^{-1}.$$
  
But  $\Omega = R + Z Q Z^{\top}$ , see e.g. Rao(1973, p 33.).

This result has a long history: Henderson(1950), Goldberger(1962), Lindley and Smith (1972), etc.

Roger Koenker (UIUC)

### Quantile Regression with Fixed Effects

Suppose that the conditional quantile functions of the response of the jth observation on the ith individual  $y_{ij}$  takes the form:

$$Q_{\mathfrak{y}_{\mathfrak{i}\mathfrak{j}}}(\tau|x_{\mathfrak{i}\mathfrak{j}}) = \alpha_{\mathfrak{i}} + x_{\mathfrak{i}\mathfrak{j}}^\top\beta(\tau) \quad \mathfrak{j} = 1,...,\mathfrak{m}_{\mathfrak{i}}, \quad \mathfrak{i} = 1,...,\mathfrak{n}.$$

In this formulation the  $\alpha$ 's have a pure location shift effect on the conditional quantiles of the response. The effects of the covariates,  $x_{ij}$  are permitted to depend upon the quantile,  $\tau$ , of interest, but the  $\alpha$ 's do not. To estimate the model for several quantiles simultaneously, we propose solving,

$$\min_{(\alpha,\beta)} \sum_{k=1}^{q} \sum_{j=1}^{n} \sum_{i=1}^{m_i} w_k \rho_{\tau_k} (y_{ij} - \alpha_i - x_{ij}^\top \beta(\tau_k))$$

Note that the usual between/within transformations are not permitted.

### Penalized Quantile Regression with Fixed Effects



Time invariant, individual specific intercepts are quantile independent; slopes are quantile dependent.

#### Penalized Quantile Regression with Fixed Effects

When n is large relative to the  $m_i$ 's shrinkage may be advantageous in controlling the variability introduced by the large number of estimated  $\alpha$  parameters. We will consider estimators solving the penalized version,

$$\min_{(\alpha,\beta)} \sum_{k=1}^{q} \sum_{j=1}^{n} \sum_{i=1}^{m_i} w_k \rho_{\tau_k}(y_{ij} - \alpha_i - x_{ij}^\top \beta(\tau_k)) + \lambda \sum_{i=1}^{n} |\alpha_i|.$$

For  $\lambda \to 0$  we obtain the fixed effects estimator described above, while as  $\lambda \to \infty$  the  $\hat{\alpha}_i \to 0$  for all i = 1, 2, ..., n and we obtain an estimate of the model purged of the fixed effects. In moderately large samples this requires sparse linear algebra. Example R code is available from my webpages.

### Shrinkage of the Fixed Effects



Shrinkage of the fixed effect parameter estimates,  $\hat{\alpha}_i$ . The left panel illustrates an example of the  $\ell_1$  shrinkage effect. The right panel illustrates an example of the  $\ell_2$  shrinkage effect.

#### Dynamic Panel Models and IV Estimation

Galvao (2010) considers dynamic panel models of the form:

 $Q_{y_{\mathfrak{i}\mathfrak{t}}}(\tau|y_{\mathfrak{i},\mathfrak{t}-1},x_{\mathfrak{i}\mathfrak{t}})=\alpha_{\mathfrak{i}}+\gamma(\tau)y_{\mathfrak{i},\mathfrak{t}-1}+x_{\mathfrak{i}\mathfrak{t}}^{\top}\beta(\tau)\ \mathfrak{t}=1,...,\mathfrak{l},\ \mathfrak{i}=1,...,\mathfrak{n}.$ 

In "short" panels estimation suffers from the same bias problems as seen in least squares estimators Nickel (1981) Hsiao and Anderson (1981); using the IV estimation approach of Chernozhukov and Hansen (2004) this bias can be reduced.