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Inference for Quantile Regression

Asymptotics of the Sample Quantiles

QR Asymptotics in iid Error Models

QR Asymptotics in Heteroscedastic Error Models

Classical Rank Tests and the Quantile Regression Dual

Inference on the Quantile Regression Process
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Asymptotics for the Sample Quantiles

Minimizing
∑n
i=1 ρτ(yi − ξ) consider

gn(ξ) = −n−1
n∑
i=1

ψτ(yi − ξ) = n−1
n∑
i=1

(I(yi < ξ) − τ).

By convexity of the objective function,

{ξ̂τ > ξ}⇔ {gn(ξ) < 0}

and the DeMoivre-Laplace CLT yields, expanding F,

√
n(ξ̂τ − ξ) N(0,ω2(τ, F))

where ω2(τ, F) = τ(1 − τ)/f2(F−1(τ)). Classical Bahadur-Kiefer
representation theory provides further refinement of this result.
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Some Gory Details
Instead of a fixed ξ = F−1(τ) consider,

P{ξ̂n > ξ+ δ/
√
n} = P{gn(ξ+ δ/

√
n) < 0}

where gn ≡ gn(ξ+ δ/
√
n) is a sum of iid terms with

Egn = En−1
n∑
i=1

(I(yi < ξ+ δ/
√
n) − τ)

= F(ξ+ δ/
√
n) − τ

= f(ξ)δ/
√
n+ o(n−1/2)

≡ µnδ+ o(n−1/2)

Vgn = τ(1 − τ)/n+ o(n−1) ≡ σ2
n + o(n−1).

Thus, by (a triangular array form of) the DeMoivre-Laplace CLT,

P(
√
n(ξ̂n − ξ) > δ) = Φ((0 − µnδ)/σn) ≡ 1 −Φ(ω−1δ)

where ω = µn/σn =
√
τ(1 − τ)/f(F−1(τ)).
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Finite Sample Theory for Quantile Regression

Let h ∈ H index the
(
n
p

)
p-element subsets of {1, 2, . . . ,n} and X(h),y(h)

denote corresponding submatrices and vectors of X and y.
Lemma: β̂ = b(h) ≡ X(h)−1y(h) is the τth regression quantile iff
ξh ∈ C where

ξh =
∑
i/∈h

ψτ(yi − xiβ̂)x>i X(h)−1,

C = [τ− 1, τ]p, and ψτ(u) = τ− I(u < 0).

Theorem: (KB, 1978) In the linear model with iid errors, {ui} ∼ F, f,
the density of β̂(τ) is given by

g(b) =
∑
h∈H

∏·
i∈h f(x

>
i (b− β(τ)) + F−1(τ))

·P(ξh(b) ∈ C)|det(X(h))|

Asymptotic behavior of β̂(τ) follows by (painful) consideration of the
limiting form of this density, see also Knight and Goh (ET, 2009).
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Asymptotic Theory of Quantile Regression I

In the classical linear model,

yi = xiβ+ ui

with ui iid from dfF, with density f(u) > 0 on its support
{u|0 < F(u) < 1}, the joint distribution of

√
n(β̂n(τi) − β(τi))

m
i=1 is

asymptotically normal with mean 0 and covariance matrix Ω⊗D−1. Here
β(τ) = β+ F−1

u (τ)e1, e1 = (1, 0, . . . , 0)>, x1i ≡ 1,n−1
∑
xix
>
i → D, a

positive definite matrix, and

Ω = ((τi ∧ τj − τiτj)/(f(F
−1(τi))f(F

−1(τj)))
m
i,j=1.
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Asymptotic Theory of Quantile Regression II

When the response is conditionally independent over i, but not identically
distributed, the asymptotic covariance matrix of ζ(τ) =

√
n(β̂(τ) − β(τ))

is somewhat more complicated. Let ξi(τ) = xiβ(τ), fi(·) denote the
corresponding conditional density, and define,

Jn(τ1, τ2) = (τ1 ∧ τ2 − τ1τ2)n
−1

n∑
i=1

xix
>
i ,

Hn(τ) = n−1
∑

xix
>
i fi(ξi(τ)).

Under mild regularity conditions on the {fi}’s and {xi}’s, we have joint
asymptotic normality for (ζ(τi), . . . , ζ(τm)) with covariance matrix

Vn = (Hn(τi)
−1Jn(τi, τj)Hn(τj)

−1)mi,j=1.
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Making Sandwiches

The crucial ingredient of the QR Sandwich is the quantile density function
fi(ξi(τ)), which can be estimated by a difference quotient.
Differentiating the identity: F(Q(t)) = t we get

s(t) =
dQ(t)

dt
=

1

f(Q(t))

sometimes called the “sparsity function” so we can compute

f̂i(x
>
i β̂(τ)) = 2hn/(x

>
i (β̂(τ+ hn) − β̂(τ− hn))

with hn = O(n−1/3). Prudence suggests a modified version:

f̃i(x
>
i β̂(τ)) = max{0, f̂i(x

>
i β̂(τ))}

Various other strategies can be employed including a variety of
bootstrapping options. More on this in the first lab session.
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Rank Based Inference for Quantile Regression

Ranks play a fundamental dual role in QR inference.

Classical rank tests for the p-sample problem extended to regression

Rank tests play the role of Rao (score) tests for QR.
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Two Sample Location-Shift Model

X1, . . . ,Xn ∼ F(x) “Controls”

Y1, . . . ,Ym ∼ F(x− θ) “Treatments”

Hypothesis:

H0 : θ = 0

H1 : θ > 0

The Gaussian Model F = Φ

T = (Ȳm − X̄n)/
√
n−1 +m−1

UMP Tests:
critical region {T > Φ−1(1 − α)}
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Wilcoxon-Mann-Whitney Rank Test

Mann-Whitney Form:

S =

n∑
i=1

m∑
j=1

I(Yj > Xi)

Heuristic: If treatment responses are larger than controls for most pairs
(i, j), then H0 should be rejected.
Wilcoxon Form: Set (R1, . . . ,Rn+m) = Rank(Y1, . . . ,Ym,X1, . . .Xn),

W =

m∑
j=1

Rj

Proposition: S = W −m(m+ 1)/2 so Wilcoxon and Mann-Whitney tests
are equivalent.
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Pros and Cons of the Transformation to Ranks

Thought One:
Gain: Null Distribution is independent of F.
Loss: Cardinal information about data.

Thought Two:
Gain: Student t-test has quite accurate size provided σ2(F) <∞.
Loss: Student t-test uses cardinal information badly for long-tailed F.
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Asymptotic Relative Efficiency
of Wilcoxon versus Student t-test

Pitman (Local) Alternatives: Hn : θn = θ0/
√
n

(t-test)2  χ2
1(θ

2
0/σ

2(F))

(Wilcoxon)2  χ2
1(12θ2

0(
∫
f2)2)

ARE(W, t, F) = 12σ2(F)[
∫
f2(x)dx]2

F N U Logistic DExp LogN t2
ARE .955 1.0 1.1 1.5 7.35 ∞

Theorem (Hodges-Lehmann) For all F, ARE(W, t, F) > .864.
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Hájek ’s Rankscore Generating Functions
Let Y1, . . . ,Yn be a random sample from an absolutely continuous df F
with associated ranks R1, . . . ,Rn, Hájek ’s rank generating functions are:

âi(t) =


1 if t 6 (Ri − 1)/n

Ri − tn if (Ri − 1)/n 6 t 6 Ri/n
0 ifRi/n 6 t

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

τ
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Linear Rank Statistics Asymptotics

Theorem (Hájek (1965)) Let cn = (c1n, . . . , cnn) be a triangular array of
real numbers such that

max
i

(cin − c̄n)2/

n∑
i=1

(cin − c̄n)2 → 0.

Then

Zn(t) = (

n∑
i=1

(cin − c̄n)2)−1/2
n∑
j=1

(cjn − c̄n)âj(t)

≡
n∑
j=1

wjâj(t)

converges weakly to a Brownian Bridge, i.e., a Gaussian process on [0, 1]

with mean zero and covariance function Cov(Z(s),Z(t)) = s∧ t− st.
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Some Asymptotic Heuristics

The Hájek functions are approximately indicator functions

âi(t) ≈ I(Yi > F−1(t)) = I(F(Yi) > t)

Since F(Yi) ∼ U[0, 1], linear rank statistics may be represented as∫1
0
âi(t)dϕ(t) ≈

∫1
0
I(F(Yi) > t)dϕ(t) = ϕ(F(Yi)) −ϕ(0)

∫1
0
Zn(t)dϕ(t) =

∑
wi

∫
âi(t)dϕ(t)

=
∑

wiϕ(F(Yi)) + op(1),

which is asymptotically distribution free, i.e. independent of F.
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Duality of Ranks and Quantiles

Quantiles may be defined as

ξ̂(τ) = argmin
∑

ρτ(yi − ξ)

where ρτ(u) = u(τ− I(u < 0)). This can be formulated as a linear
program whose dual solution

â(τ) = argmax{y>a|1>na = (1 − τ)n,a ∈ [0, 1]n}

generates the Hájek rankscore functions.

Reference: Gutenbrunner and Jurečková (1992).
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Regression Quantiles and Rank Scores:

β̂n(τ) = argminb∈Rp
∑

ρτ(yi − x>i b)

ân(τ) = argmaxa∈[0,1]n{y
>a|X>a = (1 − τ)X>1n}

x>β̂n(τ) Estimates QY(τ|x)

Piecewise constant on [0, 1].

For X = 1n, β̂n(τ) = F̂−1
n (τ).

{âi(τ)}
n
i=1 Regression rankscore functions

Piecewise linear on [0, 1].
For X = 1n, âi(τ) are Hajek rank generating functions.
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Regression Rankscore “Residuals”

The Wilcoxon rankscores,

ũi =

∫1
0
âi(t)dt

play the role of quantile regression residuals. For each observation yi they
answer the question: on which quantile does yi lie? The ũi satisfy an
orthogonality restriction:

X>ũ = X>
∫1
0
â(t)dt = nx̄

∫1
0
(1 − t)dt = nx̄/2.

This is something like the X>û = 0 condition for OLS. Note that if the X
is “centered” then x̄ = (1, 0, · · · , 0). The ũ vector is approximately
uniformly “distributed;” in the one-sample setting ui = (Ri + 1/2)/n so
they are obviously “too uniform.”
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Regression Rank Tests

Y = Xβ+ Zγ+ u

H0 : γ = 0 versus Hn : γ = γ0/
√
n

Given the regression rank score process for the restricted model,

ân(τ) = argmax
{
Y>a |X>a = (1 − τ)X>1n

}
A test of H0 is based on the linear rank statistics,

b̂n =

∫1
0
ân(t)dϕ(t)

Choice of the score function ϕ permits test of location, scale or
(potentially) other effects.
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Regression Rankscore Tests

Theorem: (Gutenbrunner, Jurečková , Koenker and Portnoy) Under Hn
and regularity conditions, the test statistic Tn = S>nQ

−1
n Sn where

Sn = (Z− Ẑ)>b̂n, Ẑ = X(X>X)−1X>Z, Qn = n−1(Z− Ẑ)>Z− Ẑ)

Tn  χ2
q(η)

where

η2 = ω2(ϕ, F)γ>0 Qγ0

ω(ϕ, F) =

∫1
0
f(F−1(t))dϕ(t)
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Regression Rankscores for Stackloss Data
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Regression Rankscores for Stackloss Data
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Inversion of Rank Tests for Confidence Intervals

For the scalar γ case and using the score function

ϕτ(t) = τ− I(t < τ)

b̂ni = −

∫1
0
ϕτ(t)dâni(t) = âni(τ) − (1 − τ)

where ϕ̄ =
∫1

0 ϕτ(t)dt = 0 and A2(ϕτ) =
∫1

0(ϕτ(t) − ϕ̄)2dt = τ(1 − τ).
Thus, a test of the hypothesis H0 : γ = ξ may be based on ân from
solving,

max{(y− x2ξ)
>a|X>1 a = (1 − τ)X>1 1,a ∈ [0, 1]n} (1)

and the fact that

Sn(ξ) = n−1/2x>2 b̂n(ξ) N(0,A2(ϕτ)q
2
n) (2)
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Inversion of Rank Tests for Confidence Intervals

That is, we may compute

Tn(ξ) = Sn(ξ)/(A(ϕτ)qn)

where q2
n = n−1x>2 (I− X1(X

>
1 X1)

−1X>1 )x2. and reject H0 if
|Tn(ξ)| > Φ−1(1 − α/2).

Inverting this test, that is finding the interval of ξ’s such that the test fails
to reject. This is a quite straightforward parametric linear programming
problem and provides a simple and effective way to do inference on
individual quantile regression coefficients. Unlike the Wald type inference
it delivers asymmetric intervals. This is the default approach to parametric
inference in quantreg for problems of modest sample size.
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Inference on the Quantile Regression Process

Using the quantile score function, ϕτ(t) = τ− I(t < τ) we can consider
the quantile rankscore process,

Tn(τ) = Sn(τ)>Q−1
n Sn(τ)/(τ(1 − τ)).

where

Sn = n−1/2(X2 − X̂2)
>b̂n,

X̂2 = X1(X
>
1 X1)

−1X>1 X2,

Qn = (X2 − X̂2)
>(X2 − X̂2)/n,

b̂n = (−

∫
ϕ(t)dâin(t))ni=1,
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Inference on the Quantile Regression Process

Theorem: (K & Machado) Under Hn : γ(τ) = O(1/
√
n) for τ ∈ (0, 1)

the process Tn(τ) converges to a non-central Bessel process of order
q = dim(γ). Pointwise, Tn is non-central χ2.

Related Wald and LR statistics can be viewed as providing a general
apparatus for testing goodness of fit for quantile regression models. This
approach is closely related to classical p-dimensional goodness of fit tests
introduced by Kiefer (1959).
When the null hypotheses under consideration involve unknown nuisance
parameters things become more interesting. In Koenker and Xiao (2001)
we consider this “Durbin problem” and show that the elegant approach of
Khmaladze (1981) yields practical methods.
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Four Concluding Comments about Inference

Asymptotic inference for quantile regression poses some statistical
challenges since it involves elements of nonparametric density
estimation, but this shouldn’t be viewed as a major obstacle.

Classical rank statistics and Hájek ’s rankscore process are closely
linked via Gutenbrunner and Jurečková ’s regression rankscore
process, providing an attractive approach to many inference problems
while avoiding density estimation.

Inference on the quantile regression process can be conducted with
the aid of Khmaladze’s extension of the Doob-Meyer construction.

Resampling offers many further lines of development for inference in
the quantile regression setting.
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