Quantile Regression: An Introduction

Roger Koenker

University of Illinois, Urbana-Champaign
Aarhus: 21 June 2010

Danish Graduate Programme in Economics: Short Course

Overview of the Course

- The Basics: What, Why and How?
- Inference: Wald and Rank Tests
- Lab Session
- Computation: From the Inside and Outside
- Nonparametric QR
- QR Survival Analysis
- Lab Session
- Quantile Autoregression
- Risk Assessment and Choquet Portfolios
- QR for Longitudinal Data
- Endogoneity and IV Methods

The Basics: What, Why and How?

(1) Univariate Quantiles
(2) Scatterplot Smoothing
(3) Equivariance Properties
(9) Quantile Treatment Effects

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τ th quantile of X as

$$
\mathrm{Q}_{x}(\tau)=\mathrm{F}_{\mathrm{x}}^{-1}(\tau)=\inf \{x \mid \mathrm{F}(x) \geqslant \tau\}
$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Univariate Quantiles

Given a real-valued random variable, X, with distribution function F, we will define the τ th quantile of X as

$$
\mathrm{Q}_{x}(\tau)=\mathrm{F}_{\mathrm{x}}^{-1}(\tau)=\inf \{x \mid \mathrm{F}(x) \geqslant \tau\}
$$

This definition follows the usual convention that F is CADLAG, and Q is CAGLAD as illustrated in the following pair of pictures.

Q's are CAGLAD

Univariate Quantiles

Viewed from the perspective of densities, the τ th quantile splits the area under the density into two parts: one with area τ below the τ th quantile and the other with area $1-\tau$ above it:

Two Bits Worth of Convex Analysis

A convex function ρ and its subgradient ψ :

The subgradient of a convex function $f(u)$ at a point u consists of all the possible "tangents." Sums of convex functions are convex.

Population Quantiles as Optimizers

Quantiles solve a simple optimization problem:

$$
\hat{\alpha}(\tau)=\operatorname{argmin} \mathbb{E} \rho_{\tau}(Y-\alpha)
$$

Proof: Let $\psi_{\tau}(u)=\rho_{\tau}^{\prime}(u)$, so differentiating wrt to α :

$$
\begin{aligned}
0 & =\int_{-\infty}^{\infty} \psi_{\tau}(y-\alpha) d F(y) \\
& =(\tau-1) \int_{-\infty}^{\alpha} d F(y)+\tau \int_{\alpha}^{\infty} d F(y) \\
& =(\tau-1) F(\alpha)+\tau(1-F(\alpha))
\end{aligned}
$$

implying $\tau=F(\alpha)$ and thus $\hat{\alpha}=F^{-1}(\tau)$.

Sample Quantiles as Optimizers

For sample quantiles replace F by \hat{F}, the empirical distribution function. The objective function becomes a polyhedral convex function whose derivative is monotone decreasing, in effect we are simply counting observations above and below and weighting the sums by τ and $1-\tau$.

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{\mathfrak{m}} \mathbb{E}(Y-m)^{2}
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{m} \mathbb{E}(Y-m)^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{\mathfrak{m}} \mathbb{E}(\mathrm{Y}-\mathrm{m})^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Similarly, the unconditional τ th quantile solves

$$
\alpha_{\tau}=\operatorname{argmin}_{\mathrm{a}} \mathbb{E} \rho_{\tau}(\mathrm{Y}-\mathrm{a})
$$

Conditional Quantiles: The Least Squares Meta-Model

The unconditional mean solves

$$
\mu=\operatorname{argmin}_{\mathfrak{m}} \mathbb{E}(\mathrm{Y}-\mathfrak{m})^{2}
$$

The conditional mean $\mu(x)=E(Y \mid X=x)$ solves

$$
\mu(x)=\operatorname{argmin}_{m} \mathbb{E}_{Y \mid X=x}(Y-m(X))^{2} .
$$

Similarly, the unconditional τ th quantile solves

$$
\alpha_{\tau}=\operatorname{argmin}_{a} \mathbb{E} \rho_{\tau}(Y-a)
$$

and the conditional τ th quantile solves

$$
\alpha_{\tau}(x)=\operatorname{argmin}_{a} \mathbb{E}_{Y \mid X=x} \rho_{\tau}(Y-a(X))
$$

Computation of Linear Regression Quantiles

Primal Formulation as a linear program, split the residual vector into positive and negative parts and sum with appropriate weights:

$$
\min \left\{\tau 1^{\top} u+(1-\tau) 1^{\top} v \mid y=X b+u-v,(b, u, v) \in \mathbf{R}^{p} \times \mathbf{R}_{+}^{2 n}\right\}
$$

Dual Formulation as a Linear Program

$$
\max \left\{y^{\prime} d \mid X^{\top} d=(1-\tau) X^{\top} 1, d \in[0,1]^{n}\right\}
$$

Solutions are characterized by an exact fit to p observations.

Quantile Regression: The Movie

- Bivariate linear model with iid Student t errors
- Conditional quantile functions are parallel in blue
- 100 observations indicated in blue
- Fitted quantile regression lines in red.
- Intervals for $\tau \in(0,1)$ for which the solution is optimal.

Quantile Regression in the iid Error Model

Virtual Quantile Regression II

- Bivariate quadratic model with Heteroscedastic χ^{2} errors
- Conditional quantile functions drawn in blue
- 100 observations indicated in blue
- Fitted quadratic quantile regression lines in red
- Intervals of optimality for $\tau \in(0,1)$.

Quantile Regression in the Heteroscedastic Error Model

Conditional Means vs. Medians

Minimizing absolute errors for median regression can yield something quite different from the least squares fit for mean regression.

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$
- Regression Shift: For any $\gamma \in \mathbb{R}^{p} \hat{\beta}(\tau ; y+X \gamma, X)=\hat{\beta}(\tau ; y, X)+\gamma$

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$
- Regression Shift: For any $\gamma \in \mathbb{R}^{p} \hat{\beta}(\tau ; y+X \gamma, X)=\hat{\beta}(\tau ; y, X)+\gamma$
- Reparameterization of Design: For any $|\mathcal{A}| \neq 0$, $\hat{\beta}(\tau ; y, A X)=A^{-1} \hat{\beta}(\tau ; y X)$

Equivariance of Regression Quantiles

- Scale Equivariance: For any $a>0, \hat{\beta}(\tau ; a y, X)=a \hat{\beta}(\tau ; y, X)$ and $\hat{\beta}(\tau ;-a y, X)=a \hat{\beta}(1-\tau ; y, X)$
- Regression Shift: For any $\gamma \in \mathbb{R}^{p} \hat{\beta}(\tau ; y+X \gamma, X)=\hat{\beta}(\tau ; y, X)+\gamma$
- Reparameterization of Design: For any $|\mathcal{A}| \neq 0$, $\hat{\beta}(\tau ; y, A X)=A^{-1} \hat{\beta}(\tau ; y X)$
- Robustness: For any diagonal matrix D with nonnegative elements. $\hat{\beta}(\tau ; y, X)=\hat{\beta}(\tau, y+D \hat{u}, X)$

Equivariance to Monotone Transformations

For any monotone function h, conditional quantile functions $\mathrm{Q}_{\mathrm{Y}}(\tau \mid x)$ are equivariant in the sense that

$$
\mathrm{Q}_{\mathrm{h}(\mathrm{Y}) \mid X}(\tau \mid x)=\mathrm{h}\left(\mathrm{Q}_{\mathrm{Y} \mid \mathrm{X}}(\tau \mid x)\right)
$$

In contrast to conditional mean functions for which, generally,

$$
E(h(Y) \mid X) \neq h(E Y \mid X)
$$

Examples:
$h(y)=\min \{0, y\}$, Powell's (1985) censored regression estimator. $h(y)=\operatorname{sgn}\{y\}$ Rosenblatt's (1957) perceptron, Manski's (1975) maximum score estimator. estimator.

Beyond Average Treatment Effects

Lehmann (1974) proposed the following general model of treatment response:
"Suppose the treatment adds the amount $\Delta(x)$ when the response of the untreated subject would be x . Then the distribution G of the treatment responses is that of the random variable $\mathrm{X}+\Delta(\mathrm{X})$ where X is distributed according to F ."

Lehmann QTE as a QQ-Plot

Doksum (1974) defines $\Delta(x)$ as the "horizontal distance" between F and G at x, i.e.

$$
F(x)=G(x+\Delta(x))
$$

Then $\Delta(x)$ is uniquely defined as

$$
\Delta(x)=\mathrm{G}^{-1}(\mathrm{~F}(\mathrm{x}))-\mathrm{x} .
$$

This is the essence of the conventional QQ-plot. Changing variables so $\tau=F(x)$ we have the quantile treatment effect (QTE):

$$
\delta(\tau)=\Delta\left(\mathrm{F}^{-1}(\tau)\right)=\mathrm{G}^{-1}(\tau)-\mathrm{F}^{-1}(\tau) .
$$

Lehmann-Doksum QTE

Lehmann-Doksum QTE

An Asymmetric Example

Treatment shifts the distribution from right skewed to left skewed making the QTE U-shaped.

The Erotic is Unidentified

The Lehmann QTE characterizes the difference in the marginal distributions, F and G, but it cannot reveal anything about the joint distribution, H. The copula function, Schweizer and Wolf (1981), Genest and McKay, (1986),

$$
\varphi(u, v)=\mathrm{H}\left(\mathrm{~F}^{-1}(\mathrm{u}), \mathrm{G}^{-1}(v)\right)
$$

is not identified. Lehmann's formulation assumes that the treatment leaves the ranks of subjects invariant. If a subject was going to be the median control subject, then he will also be the median treatment subject. This is an inherent limitation of the Neymann-Rubin potential outcomes framework.

QTE via Quantile Regression

The Lehmann QTE is naturally estimable by

$$
\hat{\delta}(\tau)=\hat{G}_{n}^{-1}(\tau)-\hat{F}_{m}^{-1}(\tau)
$$

where $\hat{\mathrm{G}}_{\mathrm{n}}$ and $\hat{\mathrm{F}}_{\mathrm{m}}$ denote the empirical distribution functions of the treatment and control observations, Consider the quantile regression model

$$
\mathrm{Q}_{Y_{i}}\left(\tau \mid \mathrm{D}_{i}\right)=\alpha(\tau)+\delta(\tau) \mathrm{D}_{i}
$$

where D_{i} denotes the treatment indicator, and $Y_{i}=h\left(T_{i}\right)$, e.g. $Y_{i}=\log T_{i}$, which can be estimated by solving,

$$
\min \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\alpha-\delta D_{i}\right)
$$

Francis Galton's (1885) Anthropometric Quantiles

224
NATURE
[7an. 8, 1885

ANTHROPOMETRIC PER-CENTILES

Values surpassed, and Values unreached, by various percentages of the persons measured at the Anthropometric Laboratory in the late International Health Exhibition
(The volue that i: unvached by n per cent, of any large group of measurements, and surpass da by $100-n$ of thim, is called its nth perantile)

Subject of measurement	Age	$\begin{gathered} \text { Unit of } \\ \text { measure- } \\ \text { ment } \end{gathered}$	Sex	No. of persons group	95	90	80	Values surpassed by per.cents as below					20	10	5		
								70		50	40	30					
					Values unreached by percents, as below												
					5			10	20	30	40	50	60	70	80	90	95
$\left.\begin{array}{c} \text { Height, standing, } \\ \text { without shoes... } \end{array}\right\}$	23-51	Inches	M.	$\begin{aligned} & 811 \\ & 770 \end{aligned}$	63.2	64.5	65.8	66.5	673	67.9	68.5	$69^{\circ} 2$	70%	71.3	${ }^{72} 4$		
					58.8	59.9	$6{ }^{1} \cdot 3$	62.1	$62^{\prime} 7$	$63 \cdot 3$	63.9	64^{6}	65.3	66.4	67'3		
$\left.\begin{array}{c} \text { Height,sitting, from } \\ \text { seat of chair } \end{array} . . .\right\}$	23-51	Inches $\{$	$\underset{\mathrm{M}}{\mathrm{M} .}$	$\begin{array}{r} 1013 \\ 775 \end{array}$	33.6	34.2	34.9	35.3	35.4	36°	36.3	36.7	37.1	37.7	38.2		
					31.8	$32 \cdot 3$	3^{2-9}	333	$33^{\circ} 6$	33.9	$34^{\circ} 2$			$35 \cdot 6$	36.0		
Span of arms ...	23-51	Inches $\{$	$\underset{\mathrm{F}}{\mathrm{M} .}$	$\begin{aligned} & 811 \\ & 770 \end{aligned}$	65°	66 I	$67 \cdot 2$	68.2	$69^{\circ} \mathrm{O}$	69.9	70.6	714	723	73.6	74.8		
					58.6	59.5	60'7	617	62.4	63°	$63 \cdot 7$	$64^{\prime} 5$	$65^{\prime} 4$	667			
Weight in ordinary indoor clothes.	23-26	Pounds $\{$	$\frac{\mathrm{M}}{\mathrm{~F}} .$	520276	121	125	131	135	139	143	147	150	156	165	172		
					102	105	$1{ }_{1}$	$1{ }^{1} 4$	118	122	129	132	136	142	149		
Breathing capacily	23-26	Cubic ${ }_{\text {inches }}($	$\begin{aligned} & \mathrm{M} . \\ & \mathrm{F} . \end{aligned}$	$\begin{aligned} & 212 \\ & 277 \end{aligned}$	161	177	187	199	211	219	226	236	248	277	290		
					92	102	115	124	131	138	144	151	164	177	186		
$\left.\begin{array}{c} \text { Strength of pull as } \\ \text { archer with bow } \end{array}\right\}$	2326	Pounds $\{$	$\begin{aligned} & \mathrm{M} . \\ & \mathrm{F} . \end{aligned}$	519276	56	60	64	68	71	74	77	88	82	89	96		
					30	32	34	36	38	40	42	44	47	51	54		
Strength ofsqueeze with strongest hand \}	23-26	Pounds $\{$	$\begin{gathered} \mathrm{M} . \\ \mathrm{F} . \end{gathered}$	519	67	71	76	79	82	85	88	91	95	100	104		
				276	36	39	43	47	49	52	55	58	62	67	72		
Swiftness of blow.	23-26	$\left.\begin{array}{l} \text { Feet per } \\ \text { second } \end{array}\right\}$	M.	516	13.2	$14^{1 / 1}$	$15^{\prime} 2$	16.2	17.3	18.1	19.1	20.0	$20 \cdot 9$				
			F.	271	$9^{\prime 2}$	101	$11 \cdot 3$	$12^{\prime} 1$	12.8	13.4	14\%	14.5	$15^{\prime \prime}$	16.3	16.9		
	23-26	Inches	$\frac{\mathrm{M}}{\mathrm{~F}}$	$\begin{aligned} & 398 \\ & 433 \end{aligned}$					23	25	26	28	30	32			
					10	12	16	19	22	24		27	29	31	32		

Quantile Treatment Effects: Strength of Squeeze

Quantile Treatment Effects: Strength of Squeeze

"Very powerful women exist, but happily perhaps for the repose of the other sex, such gifted women are rare."

A Model of Infant Birthweight

- Reference: Abrevaya (2001), Koenker and Hallock (2001)
- Data: June, 1997, Detailed Natality Data of the US. Live, singleton births, with mothers recorded as either black or white, between 18-45, and residing in the U.S. Sample size: 198,377.
- Response: Infant Birthweight (in grams)
- Covariates:
- Mother's Education
- Mother's Prenatal Care
- Mother's Smoking
- Mother's Age
- Mother's Weight Gain

Quantile Regression Birthweight Model I

Quantile Regression Birthweight Model II

College

No Prenatal

Cigarette's/Day

Prenatal Second

Prenatal Third

Motivation

> What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set.

Motivation

> What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set. Ordinarily this is not done, and so regression often gives a rather incomplete picture.

Motivation

> What the regression curve does is give a grand summary for the averages of the distributions corresponding to the set of of x 's. We could go further and compute several different regression curves corresponding to the various percentage points of the distributions and thus get a more complete picture of the set. Ordinarily this is not done, and so regression often gives a rather incomplete picture. Just as the mean gives an incomplete picture of a single distribution, so the regression curve gives a correspondingly incomplete picture for a set of distributions.

> Mosteller and Tukey (1977)

