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As noted by Persi Diaconis, the apparently simple problem
of calculating the face probabilities of a shaved die defies exact
mathematical analysis. However, this problem can be used to
provide amusing and instructive examples of sufficiency, effi-
ciency, information, ancillarity, and the value of statistical de-
sign.
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1. INTRODUCTION

Our friend Persi Diaconis has fascinated many audiences
with a probability problem that is easy to state yet defies math-
ematical analysis. What are the face probabilities of a shaved
die?

A standard gaming die is a cube whose six faces are num-
bered from 1 to 6 with all pairs of opposing faces summing
to 7. By symmetry, each face of the die has probability 1/6
when the die is rolled. When one face of the die is shaved, the
shaved face and its opposite retain the same surface area while
the surface areas of the other four faces are reduced by the same
amount, hence have lower probability than the shaved face and
its opposite.

For simplicity, assume that each edge of the cubical die has
unit length 1. If face 1 is shaved by a uniform amount s (0 <

s < 1), then face 1 and its opposite, face 6, continue to have
area 1 but faces 2, 3, 4, and 5 now have area 1 − s. Thus, by
symmetry, the probabilities rk of the six faces are now of the
form

r1 = r6 = a(s), r2 = r3 = r4 = r5 = b(s), (1.1)

where 2a(s) + 4b(s) = 1 and a(s) ≥ b(s) > 0; equivalently,
1/6 ≤ a(s) < 1/2. Notice that the same probabilities would be
obtained if face 6 were shaved instead.

It is one of the more surprising facts of probability the-
ory that, for this very simple problem, the function a(s)

remains unknown (see http://news.stanford.edu/news/2004/
june9/diaconis-69.html). The dynamics of a rolling, bouncing
die are so complex that no exact analytic expression for a(s)
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seems possible, leaving empirical experimentation as the sole
approach to this question. This is a standard problem of esti-
mating the binomial probability p = 2a(s) = P [1 or 6] (see,
e.g., Dunn 2003). Persi actually enlisted teams of energetic
undergraduates to gather enough data to distinguish between
competing dynamic models of a rolling, shaved die.

Unfortunately, Persi found that many millions of dice rolls
would be needed for this purpose, well beyond the reach of
his enthusiastic students, so the probabilistic dynamics of a
rolling die remain unresolved. As a consolation, however, we
have found an amusing formulation of this estimation prob-
lem that nicely illustrates the fundamental statistical ideas of
information, efficiency, sufficiency, and ancillarity, and along
the way provides a few surprises concerning experimental de-
sign.

For the rest of this article, we usually will abbreviate a(s)

and b(s) to a and b, respectively. Note that b = (1 − 2a)/4.

2. A HYPOTHETICAL SCENARIO

The problem can be motivated by the following scenario:
In order to accumulate the massive amounts of data needed,

Persi decided to enlist the aid of the Eagle and Dove Casino.
The craps tables of the casino are electronically equipped to
record the result of each roll of the dice. The management
agreed to stage a charity event, donating the use of its craps
tables to gather empirical data for shaved dice. As he was to be
out of town, Persi asked us to collect the data for him.

When we arrived at the casino, however, a complication
arose: In craps, two dice are rolled simultaneously and the out-
come of the game depends only on the sum X + Y showing on
the pair. (We assume that the two dice are shaved identically.)
Therefore, the electronic equipment was designed to record
only X + Y , not the individual values of X and Y . Thus, the
formulation as a standard binomial estimation problem would
not apply.

“Oh well,” we thought, “surely rolling a pair of identical dice
once should be equivalent to rolling a single die twice for the
purpose of estimation.” To be safe, however, we sent a message
to Persi:

Question 1. For estimating the face probability a(s) of a
shaved die, based on repeated rolls of a pair of identically
shaved dice, is a loss of efficiency incurred if only partial data,
namely the sum of the two dice, are recorded at each roll?

Persi soon texted a reply to us:
“Well, boys, this is a little exercise with sufficient statistics

and Fisher information. First, let’s introduce some notation: If
a pair of identically shaved dice is rolled n times, your data will
consist of n pairs (X1, Y1), . . . , (Xn,Yn) that comprise 2n inde-
pendent and identically distributed (iid) rolls of a single shaved

© 2010 American Statistical Association DOI: 10.1198/tast.2009.09141 The American Statistician, February 2010, Vol. 64, No. 1 37

http://news.stanford.edu/news/2004/june9/diaconis-69.html
mailto:m.pavlides@frederick.ac.cy
mailto:michael@stat.washington.edu
http://www.amstat.org
http://dx.doi.org/10.1198/tast.2009.09141
http://pubs.amstat.org/loi/tas
http://news.stanford.edu/news/2004/june9/diaconis-69.html


(a) The sums X + Y for regular (six-sided and 7-sum) dice
X and Y .

(b) Pr(X = x,Y = y) for case (1,6).

Figure 1. (a) Shows the sum X + Y for all 36 outcomes of (X,Y ),
where X and Y represent rolls of a regular (six-sided, 7-sum) die.
(b) Shows the probabilities of the 36 outcomes of (X,Y ) where X

and Y are iid rolls of a regular die whose face 1 has been shaved and
6 is its opposite. Here, a represents the probability of the shaved face,
and that of its opposite while b represents the probability of the four
remaining FACES.

die. However, you will only observe Z1, . . . ,Zn, where each
Zi := Xi + Yi has range {2, . . . ,12}. Since face 1 is shaved [re-
call (1.1)], the probability distribution (p2(a), . . . , p12(a)) of
Zi can be found from Figure 1:

p2(a) = p12(a) = a2, p3(a) = p11(a) = 2ab,

p4(a) = p10(a) = 2ab + b2,
(2.1)

p5(a) = p9(a) = 2ab + 2b2,

p6(a) = p8(a) = 2ab + 3b2, p7(a) = 2a2 + 4b2.

“We can represent Z := (Z1, . . . ,Zn) equivalently by a
multinomial random vector N ≡ (N2, . . . ,N12) as follows:

Zi ↔ (I {Zi = 2}, . . . , I {Zi = 12}), (2.2)

Z ↔
(

n∑
i=1

I {Zi = 2}, . . . , I {Zi = 12}
)

(2.3)

=: (N2, . . . ,N12), (2.4)

N ∼ Multinomial(n;p2(a), . . . , p12(a)). (2.5)

This constitutes a one-parameter statistical model, which we
denote by M1,6, with multinomial probability mass function
given by

f1,6(a) = n!
N2! · · ·N12! ·

12∏
j=2

pj (a)Nj

= c · aT1bT2(2a + b)T3(a + b)T4

× (2a + 3b)T5(a2 + 2b2)T6

= c̃ · aT1(1 − 2a)T2(6a + 1)T3(2a + 1)T4

× (2a + 3)T5(12a2 − 4a + 1)T6,

where

T1 = 2N2 + N3 + N11 + 2N12,

T2 = N3 + N4 + N5 + N6 + N8 + N9 + N10 + N11,

T3 = N4 + N10,

T4 = N5 + N9,

T5 = N6 + N8,

T6 = N7.

Here c and c̃ denote varying factors possibly depending on the
Nj or the Tj , but not on a. The subscript (1,6) on M1,6 and
f1,6(a) indicates that face 1 is shaved and 6 is its opposite face,
and n denotes the number of trials.

“By the Fisher–Neyman Factorization Theorem (cf. Leh-
mann and Casella 1998, theorem 1.6.5),

T1,6 := (T1, T2, T3, T4, T5, T6)

is a sufficient statistic for M1,6. Because T1,6 satisfies the linear
relation

T1 + T2 + T3 + T4 + T5 + 2T6 = 2n,

T1,6 is actually five-dimensional, and is, in fact, minimal suffi-
cient.”

Exercise 1. Show that T1,6 is a minimal sufficient statistic
for M1,6.

Hint. Because M1,6 is an exponential family, the Lehmann–
Scheffé Theorem can be readily applied—cf. Lehmann and
Casella [1998, corollary 1.6.16(ii)].

“To answer Question 1, we just need to find the Fisher in-
formation for the parameter a in the model M1,6, since the
inverse of the Fisher information determines the efficiency of
the maximum likelihood estimator (MLE) â1,6 as measured
by its asymptotic variance (Lehmann and Casella 1998, theo-
rem 6.3.10). Because we expect only a small shaving, we are
most interested in evaluating the Fisher information in a neigh-
borhood of a = 1/6, where the die is unshaved (fair). To avoid
the added complication of a truncated parameter space, we now
remove the constraint that a ≥ b (equivalently a ≥ 1/6) which
corresponds to allowing elongation of face 1 as well as shaving.
Thus, the only constraint on a is 0 < a < 1/2. (The sufficiency
properties of T1,6 are unchanged.)
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“We can now compute the Fisher information per trial, de-
noted by I1,6(a), for the multinomial model M1,6:

d logf1,6(a)

da
= T1

a
− 2T2

1 − 2a
+ 6T3

6a + 1
+ 2T4

2a + 1

+ 2T5

2a + 3
+ 4T6(6a − 1)

12a2 − 4a + 1
,

d2 logf1,6(a)

da2
= −T1

a2
− 4T2

(1 − 2a)2
− 36T3

(6a + 1)2
− 4T4

(2a + 1)2

− 4T5

(2a + 3)2
− 8T6(36a2 − 12a − 1)

(12a2 − 4a + 1)2
,

I1,6(a) = −1

n
E

[
d2 logf1,6(a)

da2

]

= 2a + 1

a
+ 10a + 3

1 − 2a
+ 9(1 − 2a)

2(6a + 1)
+ 1 − 2a

2a + 1

+ 1 − 2a

2(2a + 3)
+ 2(36a2 − 12a − 1)

12a2 − 4a + 1

= 1

a
+ 8

1 − 2a
+ 6

6a + 1
+ 2

2a + 1

+ 2

2a + 3
− 8

12a2 − 4a + 1
,

where we have used Mathematica and the relations

1

n
ET1 = 2p2 + p3 + p11 + 2p12 = a(2a + 1),

1

n
ET2 = p3 + p4 + p5 + p6 + p8 + p9 + p10 + p11

= 1

4
(10a + 3)(1 − 2a),

1

n
ET3 = p4 + p10 = 1

8
(6a + 1)(1 − 2a),

1

n
ET4 = p5 + p9 = 1

4
(2a + 1)(1 − 2a),

1

n
ET5 = p6 + p8 = 1

8
(2a + 3)(1 − 2a),

1

n
ET6 = p7 = 1

4
(12a2 − 4a + 1),

with pj = pj (a) given in (2.1). The likelihood equation

d logf1,6(a)

da
= 0

is equivalent to a sixth-degree polynomial equation in a. By
the classical theory of maximum likelihood estimation for
regular (smooth) parametric statistical models (Lehmann and
Casella 1998, sections 6.3 and 6.4; Perlman 1983, theorems 3.1
and 4.3), the MLE â1,6 is a consistent root of this equation and
is asymptotically normal and asymptotically efficient:

√
n(â1,6 − a)

d→ N
(

0,
1

I1,6(a)

)
, as n → ∞. (2.6)

“We can now compare (2.6) to the asymptotic distribution of
the MLE ã1,6 based on the complete data (X1, Y1), . . . , (Xn,

Yn). Because

U1,6 :=
n∑

i=1

[I {Xi = 1 or 6} + I {Yi = 1 or 6}]

∼ Binomial(2n;p),

where p = 2a = P [1 or 6], the MLE p̃1,6 ≡ U1,6/2n of p is the
usual binomial estimator. By the De Moivre–Laplace Theorem
(Feller 1968, theorem VII.3.2),

√
2n(p̃1,6 − p)

d→ N (0,p(1 − p)), as n → ∞.

Because p̃1,6 = 2ã1,6, it follows that

√
n(ã1,6 − a)

d→ N
(

0,
a(1 − 2a)

4

)
, as n → ∞. (2.7)

Thus, using Mathematica, the relative asymptotic efficiency of
â1,6 compared to ã1,6, as measured by the inverse of the ratio
of their asymptotic variances, is

e1,6(a) = 29

12
− 1

3(6a + 1)
− 1

2(2a + 1)

− 3

2a + 3
− 2a + 1

3(12a2 − 4a + 1)

for 0 < a < 1/2. The graph of this function is shown in Figure 3
(Section 4). Because we expect the alteration (shaving or elon-
gation) to be small, we evaluate this efficiency ratio at a = 1/6
(the case of a fair die) to find that

e1,6(1/6) = 37/120 = 0.3083 . . . .

“So, boys, I’m sorry to tell you that observing only the sum
of each pair of altered dice is just 31% as efficient for estimating
a ≡ a(s) as observing the individual outcomes of each die. A lot
of information will be lost so it will take a lot longer to achieve
the accuracy we need, but look on the bright side—the drinks
in the casino are free!”

“Goodness,” we thought, “how can he text so fast?” Wiser
but undaunted, we turned to the task of collecting the data from
the craps tables.

3. THE PLOT THICKENS

A moment later, however, we received another text message
from Persi:

“I bet you’ve already anticipated the next question:

Question 2. Will the efficiency change if face 2 or face 3 is
altered (shaved or elongated) instead of face 1?”

“No,” we replied, “why would that make any difference?
Since we’re starting with a symmetric cube, why would it mat-
ter which face is altered?”

“It doesn’t matter if you observe the outcomes of each indi-
vidual die,” Persi texted back, “but it matters a great deal if you
observe only the sum of each pair. The statistical model and its
properties change significantly.

“Suppose that face 2 is altered. As before, your data will con-
sist of n pairs (X1, Y1), . . . , (Xn,Yn) comprising 2n iid rolls of
a single die and you will again only observe Z1, . . . ,Zn with
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(a) Pr(X = x,Y = y) for case (2,5).

(b) Pr(X = x,Y = y) for case (1,2).

Figure 2. The probabilities of the 36 outcomes of (X,Y ) where X

and Y are iid rolls of a standard die whose face k has been altered
(= shaved or elongated) and face l is its opposite. Here, a represents
the probability of the altered face and of its opposite. (a) (k, l) = (2,5).
(b) (k, l) = (1,2) (see Section 4) while b represents the probability of
the four remaining FACES.

each Zi := Xi + Yi having range {2, . . . ,12}. Because face 2 is
altered, however, (1.1) is changed. The probabilities rk of the
six faces are now of the form

r2 = r5 = a, r1 = r3 = r4 = r6 = b,

where again 2a + 4b = 1 and a ≥ b > 0. Also, as before, we
drop the latter constraint, allowing a possible elongation of
face 2, so that simply 0 < a < 1/2. (Note that the same prob-
abilities would be obtained if face 5 were altered instead.) The
probability distribution (p2(a), . . . , p12(a)) of Zi can be found
from Figure 2(a):

p2(a) = p12(a) = b2, p3(a) = p11(a) = 2ab,

p4(a) = p10(a) = a2 + 2b2,
(3.1)

p5(a) = p9(a) = 2ab + 2b2,

p6(a) = p8(a) = 4ab + b2, p7(a) = 2a2 + 4b2.

“With Z and N ≡ (N2, . . . ,N12), as defined above, again

N ∼ Multinomial(n;p2(a), . . . , p12(a)),

but with pj (a) given by (3.1) rather than (2.1). This is again a
one-parameter model, denoted by M2,5, with probability mass
function given by

f2,5(a) = c · aT1bT2(a + b)T3(4a + b)T4(a2 + 2b2)T5

= c̃ · aT1(1 − 2a)T2(2a + 1)T3(14a + 1)T4

× (12a2 − 4a + 1)T5 ,

where the Ti are defined differently than in the case (1,6):

T1 = N3 + N11,

T2 = 2N2 + N3 + N5 + N6 + N8 + N9 + N11 + 2N12,

T3 = N5 + N9,

T4 = N6 + N8,

T5 = N4 + N7 + N10.

The subscript (2,5) on M2,5 and f2,5(a) indicates that face 2 is
altered and 5 is its opposite face.

“By the Factorization Theorem,

T2,5 := (T1, T2, T3, T4, T5)

is a sufficient statistic for M2,5 and, in fact, minimally suffi-
cient (recall Exercise 1), and is actually four-dimensional be-
cause T2,5 satisfies the linear relation

T1 + T2 + T3 + T4 + 2T5 = 2n.

This is a nontrivial change from model M1,6 where the minimal
sufficient statistic T1,6 was five-dimensional.

“The Fisher information per trial, I2,5(a), for the multino-
mial model M2,5 is found as before:

I2,5(a) = 1

a
+ 8

1 − 2a
+ 2

2a + 1
+ 28

14a + 1
− 16

12a2 − 4a + 1
.

In this case, the likelihood equation (LEQ) is

d logf2,5(a)

da
= T1

a
− 2T2

1 − 2a
+ 2T3

2a + 1

+ 14T4

14a + 1
+ 4T5(6a − 1)

12a2 − 4a + 1
= 0,

which is equivalent to a fifth-degree polynomial equation in a,
one degree less than the LEQ for model M1,6—another non-
trivial change. The MLE, â2,5, satisfies

√
n(â2,5 − a)

d→ N
(

0,
1

I2,5(a)

)
, as n → ∞.

It is easy to see that ã2,5 has the same distribution as ã1,6.
Hence, it follows from (2.7) that the relative asymptotic effi-
ciency of â2,5 compared to ã2,5 (the MLE of a based on the
complete data (X1, Y1), . . . , (Xn,Yn)) is

e2,5(a) = 1

4
a(1 − 2a)I2,5(a)

= 167

84
− 1

2(2a + 1)

− 4

7(14a + 1)
− 2(2a + 1)

3(12a2 − 4a + 1)
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for 0 < a < 1/2. Again, we evaluate this efficiency at a = 1/6
to find that

e2,5(1/6) = 13/120 = 0.1083 . . . .

“Thus, when we observe only the sum of each pair of al-
tered dice but alter face 2 instead of face 1 for each die, the
efficiency is reduced by another factor of 3. So, you see, plan-
ning the design of a statistical experiment in advance can make
a significant difference in efficiency.

“Here are the results if face 3 is altered—you can check
the details yourselves. (Also see Figure 3 and Table 1 in Sec-
tion 4.) The minimal sufficient statistic is four-dimensional and
the LEQ is equivalent to a sixth-degree polynomial equation
in a. The Fisher information per trial, I3,4(a), and relative as-
ymptotic efficiency e3,4(a) of the MLE â3,4 compared to ã3,4
are

I3,4(a) = 2

a
+ 6

1 − 2a
+ 6

6a + 1
− 4

4a2 + 1
− 8

12a2 − 4a + 1

and

e3,4(a) = 5

3
− 1

3(6a + 1)
− 1 + 2a

2(4a2 + 1)
− 1 + 2a

3(12a2 − 4a + 1)

for 0 < a < 1/2. The relative efficiency of â3,4 versus ã3,4,
when a = 1/6, is

e3,4(1/6) = 7/30 = 0.2333 . . . .

Thus, e3,4(1/6) falls between e2,5(1/6) = 0.1083 and
e1,6(1/6) = 0.3083.”

4. TRUTH IN RELABELING

“Wow, this is a lot more complicated than we imagined,” we
thought, “but a lot more interesting too. Well, at least we can
proceed to collect the data knowing that altering face 1 provides
the most efficient design for estimating the face probabilities of
a shaved or elongated die based on observing only the sums of
pairs.” But just then we received another message from Persi:

“Ok, guys, you must have realized by now that there is an
even more efficient design, one that is two-and-a-half times
as efficient as altering face 1, in fact 75% as efficient as the
complete-data case where each individual die is observed. Can
you tell me what it is?”

“Um, well, actually, . . . , ok, we have no clue.”
“All right, let’s think out of the box, or, you might say, out of

the cube. Suppose we start with an unlabeled shaved or elon-
gated die. However, instead of the standard labeling of the six
faces of the die where each opposing pair of faces sums to
7, suppose we allow a nonstandard labeling where any of the(6

2

) = 15 ordered pairs from {1,2,3,4,5,6} can appear as the
labels k and l of the altered face and its opposite face.

Question 3. Can the efficiency be improved if nonstandard
labelings are allowed?

“We’ve already considered the ordered pairs (k, l) = (1,6),
(2,5), and (3,4), which correspond to the standard labeling,
so twelve nonstandard-labeled pairs remain. However, these
twelve pairs occur in six isomorphic couples, since the prob-
ability mass function of the model Mk,l is identical to that of

M7−l,7−k under the inversion (N2, . . . ,N12) → (N12, . . . ,N2),
so each member of the couple attains the same efficiency. For
example, (1,2) and (5,6) yield isomorphic models with the
same efficiency. Thus, we need only consider the six cases
(k, l) = (1,2), (1,3), (1,4), (1,5), (2,3), and (2,4).

Case (1,2). Face 1 is altered and its opposite face is la-
beled ‘2.’

“The probabilities rk of the six faces are

r1 = r2 = a, r3 = r4 = r5 = r6 = b, 0 < a < 1/2.

The probability distribution (p2(a), . . . , p12(a)) of Xi + Yi is
now asymmetric [see Figure 2(b)]:

p2(a) = a2, p3(a) = 2a2, p4(a) = a2 + 2ab,

p5(a) = 4ab, p6(a) = 4ab + b2,

p7(a) = 4ab + 2b2, p8(a) = 2ab + 3b2, (4.1)

p9(a) = 4b2, p10(a) = 3b2,

p11(a) = 2b2, p12(a) = b2.

“The random vector N follows a one-parameter multinomial
model M1,2 with probability mass function given by

f1,2(a) = c · aT1bT2(a + 2b)T3(4a + b)T4

× (2a + b)T5(2a + 3b)T6

= c̃ · aT1(1 − 2a)T2(14a + 1)T4

× (6a + 1)T5(2a + 3)T6 (4.2)

and

T1 = 2N2 + 2N3 + N4 + N5,

T2 = N5 + N6 + N7 + N8 + 2N9

+ 2N10 + 2N11 + 2N12,

T3 = N4,

T4 = N6,

T5 = N7,

T6 = N8,

2n = T1 + T2 + T3 + T4 + T5 + T6,

so T1,2 := (T1, T2, T3, T4, T5, T6) is a five-dimensional minimal
sufficient statistic for M1,2. Note that T3 does not appear in (4.2)
because a + 2b = 1/2.

“The Fisher information per trial, I1,2(a), for M1,2 is given
by

I1,2(a) = 3

2a
+ 7

1 − 2a
+ 14

14a + 1

6

6a + 1
+ 1

2a + 3
. (4.3)

The LEQ is now equivalent to a fourth-degree polynomial in a:

d logf1,2(a)

da
= T1

a
− 2T2

1 − 2a
+ 14T4

14a + 1

+ 6T5

6a + 1
+ 2T6

2a + 3
= 0 (4.4)
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and the MLE â1,2 has relative asymptotic efficiency, compared
to ã1,2, given by

e1,2(a) = 1

4
a(1 − 2a)I1,2(a)

= 251

168
− a

4
− 2

7(14a + 1)
− 1

3(6a + 1)
− 3

2(2a + 3)

for 0 < a < 1/2. When a = 1/6 this efficiency becomes

e1,2(1/6) = 3/4 = 0.75 > 0.3083 = e1,6(1/6). (4.5)

“A surprising fact emerges: re-labeling the faces of the al-
tered die in this way increases the efficiency by a factor of al-
most 2.5, and is now 75% as efficient as the complete-data case.
Now, that is a nice example of statistical design in action!

“I’ll let you work out the Fisher information and relative
efficiencies for the five remaining cases (1,3), (1,4), (1,5),
(2,3), and (2,4). The relative efficiencies ek,l(a) for all nine
distinct cases (labelings) are shown in Figure 3. Because the
nonstandard-labeled case (1,2) [equivalently, the isomorphic
case (5,6)] clearly dominates all others over most of the range
0 < a < 1/2, it is worth noting two distinguishing features of
its probability mass (likelihood) function f1,2(a).

“First, the LEQ (4.4) is equivalent to a fourth-degree polyno-
mial equation, the lowest degree among all nine distinct cases
(see Table 1). Second, and more significantly, each factor in
f1,2(a) [see (4.2)] has the linear-based form (δa + ε)Tj . Thus,
f1,2(a) is log-concave so can have at most one relative ex-
tremum in (0,1/2), necessarily a relative maximum, and the
LEQ can have at most one root in (0,1/2). Furthermore, when
T1 > 0 and T2 > 0, logf1,2(a) → −∞ as a → 0 and a → 1/2

Table 1. For each of the nine distinct cases (k, l) of an altered (shaved
or elongated) six-sided die, the relative efficiency ek,l(1/6), the di-
mension dimk,l of the minimal sufficient statistic Tk,l , and the poly-
nomial degree degk,l of the likelihood equation for the one-parameter
multinomial model Mk,l , are shown. The three cases marked * occur
for the standard labeling where each pair of opposing sides of the die
sum to 7.

(k, l) ek,l (1/6) dimk,l degk,l

(1,2) 0.75 5 4
(1,3) 0.4375 6 8
(2,3) 0.3375 7 8
(1,6)∗ 0.3083 5 6
(1,4) 0.2708 6 8
(3,4)∗ 0.2333 4 6
(1,5) 0.2083 6 8
(2,4) 0.1708 6 9
(2,5)∗ 0.1083 4 5

so the LEQ has exactly one root, necessarily the unique con-
sistent root and the MLE (Lehmann and Casella 1998, corol-
lary 6.3.8; Perlman 1983, theorems 3.1 and 4.3).

“By contrast, in the eight other distinct cases, fk,l(a) has at
least one irreducible quadratic-based factor (γ a2 + δa + ε)Tj .
Thus, when Tj > 0, the likelihood function fk,l(a) may not be
log-concave, may be multimodal, and the LEQ may have mul-
tiple roots.”

“Gosh, Persi,” we wrote, “this is fascinating—you’ve sure
given us a lot to think about. We hope you won’t mind if we ask
more questions later, but we have one that we’re anxious to ask
now. How’d you get to be such a whiz at texting?”

Figure 3. The plot of the nine relative efficiencies ek,l(a), as functions of 0 < a < 0.5.
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“Well, boys,” Persi replied, “I suppose you could say it’s
magic!”

5. TOPICS FOR FURTHER INVESTIGATION

Instructors may find the following exercises of interest to
their students. These exercises range from straightforward to
challenging/unsolved. Some partial solutions can be found in
the report by Pavlides and Perlman (2009).

5.1 Two Identically Altered (Shaved or Elongated), “Three-
Sided Dice” With Identical Labelings Chosen From the
Integers {1, 2, 3}

Select any of the
(3

2

) = 3 ordered pairs (k, l) from {1,2,3}
and let m denote the nonselected integer. Let X and Y be iid
random variables, each with range {1,2,3} and probabilities

rk = rl = a, rm = b,

where 2a + b = 1 and 0 < a < 1/2. Let (X1, Y1), . . . , (Xn,Yn)

be n iid pairs with each (Xi, Yi) ∼ (X,Y ), and let Zi = Xi +
Yi . Find the relative asymptotic efficiency ek,l(a) of âk,l (the
MLE of a based on Z1, . . . ,Zn) compared to ãk,l (the MLE of
a based on (X1, Y1), . . . , (Xn,Yn)).

Comments: As in (2.2)–(2.5) define a five-cell multinomial
random vector

(N2, . . . ,N6) ∼ Multinomial(n;p2(a), . . . , p6(a)) =: Mk,l

based on Z1, . . . ,Zn. The models M1,2 and M2,3 are isomor-
phic under the inversion (N2, . . . ,N6) → (N6, . . . ,N2), hence
only cases (k, l) = (1,2) and (1,3) need be considered. When
a = 1/3, corresponding to a fair three-sided die, the rela-
tive efficiencies for these two cases are e1,2(1/3) = 5/6 and
e1,3(1/3) = 1/3. [Note that the distribution of ãk,l is unchanged
from the six-sided case, hence (2.7) remains valid.]

The case (1,2) for a three-sided die is similar to case (1,2)

for the six-sided die in that f1,2(a) again is log-concave. When
T1 := 2N2 + 2N3 + N4 + 2N5 > 0 and T2 := N5 + 2N6 > 0,
logf1,2(a) → −∞ as a → 0 and a → 1/2, so the LEQ has
exactly one root, necessarily the unique consistent root and the
MLE.

Kuindersma and Blais (2007) discussed this problem from
the viewpoint of model selection; they used the terminology
“three-sided coin” rather than our “three-sided die.”

5.2 Two Identically Altered, “Three-Sided Dice” With Non-
identical Labelings Chosen From the Integers {1, 2, 3}

Select two ordered pairs (k, l) and (k′, l′) from {1,2,3} and
let m and m′ denote the corresponding nonselected integers. Let
X and X′ be independent random variables, each with range
{1,2,3} and probabilities

rk = rl = a, rm = b

and

r ′
k′ = r ′

l′ = a, r ′
m′ = b,

respectively, where 2a + b = 1 and 0 < a < 1/2. Let (X1,X
′
1),

. . . , (Xn,X
′
n) be n iid pairs with each (Xi,X

′
i ) ∼ (X,X′)

and let Zi = Xi + X′
i . Find the relative asymptotic effi-

ciency e(k,l),(k′,l′)(a) of â(k,l),(k′,l′) (the MLE of a based on
Z1, . . . ,Zn) compared to ã(k,l),(k′,l′) (the MLE of a based on
(X1,X

′
1), . . . , (Xn,X

′
n)).

Comments: There are 3 × 3 = 9 such pairs ((k, l), (k′, l′)) of
ordered pairs from {1,2,3}. Because the cases ((k, l), (k′, l′))
and ((k′, l′), (k, l)) are equivalent, only six of these nine cases
need be considered. Of these, the three cases where (k, l) =
(k′, l′) have already been treated in Section 5.1, leaving the
three cases ((1,2), (1,3)), ((1,2), (2,3)), and ((1,3), (2,3)).
However, the pairs ((1,2), (1,3)) and ((1,3), (2,3)) are iso-
morphic under the inversion (N2, . . . ,N6) → (N6, . . . ,N2), so
only the first two cases need be considered.

When a = 1/3, the relative efficiencies are

e(1,2),(1,3)(1/3) = 5/24 and e(1,2),(2,3)(1/3) = 3/4,

both less than e1,2(1/3) = 5/6 given in Section 5.1. (Again,
(2.7) remains valid for ã(k,l),(k′,l′).)

5.3 Two Identically Altered, Six-Sided Dice With Noniden-
tical Labelings Chosen From the Integers {1, 2, 3, 4, 5,
6}

Select two ordered pairs (k, l) and (k′, l′) from {1,2,3,4,5,

6}. Let X and X′ be independent random variables, each with
range {1,2,3,4,5,6} and with probabilities

rk = rl = a,

rm = b for m ∈ (1,2,3,4,5,6) \ (k, l),

r ′
k′ = r ′

l′ = a,

r ′
m′ = b for m′ ∈ (1,2,3,4,5,6) \ (k′, l′),

respectively, where 2a + 4b = 1 and 0 < a < 1/2. Let (X1,

X′
1), . . . , (Xn,X

′
n) be n iid pairs with each (Xi,X

′
i ) ∼ (X,X′)

and let Zi = Xi + X′
i . Find the relative asymptotic effi-

ciency e(k,l),(k′,l′)(a) of â(k,l),(k′,l′) (the MLE of a based on
Z1, . . . ,Zn) compared to ã(k,l),(k′,l′) (the MLE of a based on
(X1,X

′
1), . . . , (Xn,X

′
n)).

Comments: There are 15 × 15 = 225 such pairs ((k, l), (k′,
l′)) of ordered pairs from {1,2,3,4,5,6}. Because the cases
((k, l), (k′, l′)) and ((k′, l′), (k, l)) are equivalent, only 120 of
these 225 cases need be considered. Of these, the 15 cases
where (k, l) = (k′, l′) have already been treated in Sections 2,
3, and 4, leaving 105 cases. However, these 105 cases in-
clude 66 isomorphic pairs under the inversion (N2, . . . ,N12) →
(N12, . . . ,N2); for example, the pairs ((1,2), (1,6)) and ((1,6),

(5,6)) are isomorphic, as are the pairs ((1,2), (1,3)) and
((4,6), (5,6)). Thus, only 105 − 33 = 72 cases need be con-
sidered.

For a = 1/6, we do not expect that the relative efficiencies
of any of these 72 cases exceed that for ((1,2), (1,2)), namely
e1,2(1/6) = 3/4 as found in (4.5). (Again, (2.7) remains valid
for ã(k,l),(k′,l′).)
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5.4 Two Identically Altered, q-Sided Dice With Nonidenti-
cal Labelings Chosen From the Integers {1,2, . . .}

If arbitrary integer labelings of the faces are allowed, such
labelings can be chosen so that there is a 1–1 correspondence
between the range of X + Y and that of (X,Y ), so no infor-
mation will be lost if only the sums Xi + Yi are observed. The
labelings (1,2, . . . , q) and (1, q + 1,2q + 1, . . . , (q − 1)q + 1)

provide the simplest example.

5.5 Three or More Identically Altered, q-Sided Dice With
Identical Labelings Chosen From the Integers {1,2,

. . . , q}
Returning to the framework of the original problem, suppose

that t ≥ 3 identically altered, q-sided dice are rolled but only
their sum is recorded. Now the data consist of tn iid random
variables {Xhi | h = 1, . . . , t, i = 1, . . . , n} where for some or-
dered pair (k, l) ⊂ (1, . . . , q),

P [Xhi = k] = P [Xhi = l] = a,

P [Xhi = m] = b for m ∈ (1, . . . , q) \ (k, l).

Here, 2a + (q − 2)b = 1 and 0 < a < 1/2. Let

Zi = Xh1 + · · · + Xht , i = 1, . . . , n.

Find the asymptotic relative efficiency ek,l(a) of âk,l (the MLE
of a based on Z1, . . . ,Zn) compared to ãk,l (the MLE of a

based on {Xhi | h = 1, . . . , t, i = 1, . . . , n}). Does ek,l(a) → 0
as t → ∞, and if so, at what rate?

5.6 Nonunique Ancillary Statistics for Two Identically Al-
tered, Six-Sided Dice With Identical Labelings Chosen
From the Integers {1, 2, 3, 4, 5, 6}

The one-parameter multinomial models Mk,l possess multi-
ple nontrivial ancillary statistics. Show, for example, that in the
optimal case (k, l) = (1,2), each of the following three statis-
tics is ancillary:

S1 := (N2 + N5 + N9,N3 + N6 + N7

+ N10 + N11,N4 + N8 + N12), (5.1)

S2 := (N2 + N6 + N10,N3 + N5 + N7

+ N9 + N11,N4 + N8 + N12), (5.2)

S3 := (N2 + N7 + N11,N3 + N5 + N6

+ N9 + N10N4 + N8 + N12). (5.3)

Comment: It is often suggested that if a nontrivial ancillary
statistic S exists, statistical inference about the model should be
carried out by conditioning on S (see, e.g., Fisher 1973). When
competing nontrivial ancillaries Si exist, Cox (1971) proposed
to select the Si that maximizes the variance of the conditional
information given Si ; also see the works by Becker and Gordon
(1983), Sundberg (2003, section 2.5), and references therein. It

is straightforward to show that, when a = 1/6, this variance is
maximized by S1, with S3 a close second.

5.7 Genetic Linkage Models

One-parameter multinomial models similar to our Mk,l , also
having polynomial likelihood equations, occur in genetic link-
age models. A well-known example appears in the book by Rao
(1973, pp. 368–369); see also Sundberg (2001).

5.8 Two Identically Altered Six-Sided Dice: Altering Two
Non-Opposing Faces

For the standard face numbering, the face probabilities in
(1.1) become

r1 = r6 = a, r2 = r5 = b, r3 = r4 = c,

and the entries in Figure 1(b) are changed accordingly. Since
c = (1/2) − a − b, there are now two parameters to be es-
timated, a and b, and the Fisher Information number I1,6(a)

is replaced by a Fisher Information matrix I (a, b), which de-
termines the asymptotic efficiency of the MLE (â, b̂). Does
this asymptotic efficiency change for non-standard face num-
berings, and if so, which numbering is optimal when a = b =
1/6?

5.9 Calculation of the Fisher Information for the One-
Parameter Multinomial Models Mk,l for Six-Sided Dice

Since (N2, . . . ,N12) ∼ Multinomial(n;p2(a), . . . , p12(a)) is
a sufficient statistic for a based on Z1, . . . ,Zn, show that the
Fisher information number per trial, Ik,l(a), is given by

Ik,l(a) =
12∑
i=2

{ [p′
i (a)]2

pi(a)

}
,

where the probabilities p2(a), . . . , p12(a) depend on the case
(k, l). Use this result and a computer algebra system (such as
Mathematica or Maple) to replicate the nine relative efficiencies
shown in Table 1.

[Received July 2009. Revised October 2009.]
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