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Stein’s Method and The Bootstrap
in Low and High Dimensions:

A Tutorial
Larry Wasserman
February 8 2014

These notes give a brief tutorial on Stein’s method and the bootstrap. The notes are divided
into two parts. Part I is a review of Stein’s method in the low dimensional case. Part II
is a review of the results due to Victor Chernozhukov, Denis Chetverikov, Kengo Kato who
deal with the high dimensional case. Our ultimate goal, which we consider in Part II, is to
discuss the high dimensional bootstrap. The two parts are self-contained and can be read
independently of each other.

Part I: Stein’s Method in Low Dimensions

The main reference for this part, which I follow very closely, is:
Chen, Goldstein and Shao. (2011). Normal Approximation by Stein’s Method. Springer.
Other references are given at the end of Part I.

Thanks for Martin Azizyan, Roy Allen and the CMU Statistical Machine Learning Reading
Group for helpful comments and for finding typos.

1 Introduction

Let X1, . . . , Xn ∈R be iid with mean 0 and variance 1 and let

X = 1p
n

∑
i

X i

and Y ∼ N(0,1). We want to bound

∆n = sup
z

∣∣∣P(X ≤ z)−P(Y ≤ z)
∣∣∣= sup

z

∣∣∣P(X ≤ z)−Φ(z)
∣∣∣ (1)

where Φ is the cdf of a standard Normal. “Stein’s method” is really a collection of methods
for bounding ∆n (or quantities similar to ∆n). The key idea is based on the following fact:

E[Y f (Y )]= E[ f ′(Y )] for all smooth f if and only if Y ∼ N(0,1). (2)
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This suggests that Y should be almost Normal if E[Y f (Y )− f ′(Y )] is close to 0, More precisely,
let h be any function such that E|h(Y )| <∞. The Stein function fh associated with h is a
function satisfying the differential equation

f ′h(x)− xfh(x)= h(x)−E[h(Y )]. (3)

It follows that
E[h(X )]−E[h(Y )]= E[ f ′h(X )− X fh(X )]

and showing that X is close to Normal amounts to showing that E[ f ′h(X )−X fh(X )] is small.
Is there such an f ? In fact, the Stein function is

f (x)≡ fh(x)= ex2/2
∫ x

−∞
[h(y)−µ]e−y2/2d y. (4)

where µ= E[h(Y )].1

Properties of the Stein Function. If h is absolutely continuous, then

|| fh||∞ ≤ 2||h′||∞, || f ′h||∞ ≤
√

2
π
||h′||∞, || f ′′h ||∞ ≤ 2||h′||∞. (5)

If h is bounded then,

|| fh||∞ ≤
√
π

2
||h−µ(h)||∞, || f ′h||∞ ≤ 2||h−µ(h)||∞. (6)

Example 1 Choose any z ∈ R and let h(x) = I(x ≤ z)−Φ(z). Let fz denote the Stein function
for h; thus fz satisfies

f ′z(x)− xfz(x)= I(x ≤ z)−Φ(z). (7)

The unique bounded solution to this equation is

fz(x)=
{p

2πex2/2Φ(x)[1−Φ(z)] x ≤ zp
2πex2/2Φ(z)[1−Φ(x)] x > z.

fz is the Stein function associated with h(x)= I(x ≤ z)−Φ(z). The function fz has the following
properties: ∣∣∣(x+a) fz(x+a)− (x+b) fz(x+b)

∣∣∣≤ (|x|+ c)(|a|+ |b|) (8)

where c =p
2π/4. Also,

|| fz||∞ ≤
√
π

2
, || f ′z||∞ ≤ 2.

1More precisely, fh is the unique solution to (3) subject to the side condition limx→±∞ e−x2/2 f (x)= 0.
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Let F = { fz : z ∈R}. From (7) it follows that

P(X ≤ z)−P(Y ≤ z)= E[ f ′(X )− X f (X )]

and so
∆n = sup

z

∣∣∣P(X ≤ z)−P(Y ≤ z)
∣∣∣≤ sup

f ∈F

∣∣∣E[ f ′(X )− X f (X )]
∣∣∣. (9)

We have reduced the problem of bounding supz

∣∣∣P(X ≤ z)−P(Y ≤ z)
∣∣∣ to the problem of bound-

ing sup f ∈F

∣∣∣E[ f ′(X )− X f (X )]
∣∣∣.

Notation. Let X1, . . . , Xn be iid, mean 0, variance 1. We use the following notation through-
out:

X = 1p
n

n∑
i=1

X i µ3 = E[|X i|3]

ξi = 1p
n

X i X i = X −ξi.

Hence, X =∑
i ξi and also, X i is independent of ξi. Let Y1, . . . ,Yn ∼ N(0,1) and

Y = 1p
n

n∑
i=1

Yi ∼ N(0,1).

We also make use of the following simple anti-concentration fact: for any y and a, |Φ(y+a)−
Φ(y)| ≤ a/

p
2π since the density of the Normal is bounded above by 1/

p
2π.

2 A Simple Bound: The Basic Stein Result

Before we bound ∆n, we first bound a different quantity which is easier to control. We follow
Section 1.3 of Chen, Goldstein and Shao (2011).

Let
H =

{
h :R→R : |h(y)−h(x)| ≤ |y− x|

}
be the class of Lipschitz functions. We will bound

δn ≡ sup
h∈H

∣∣∣E[h(X )]−E[h(Y )]
∣∣∣.

Note that δn is the Wassertstein distance W1(X ,Y ).
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Theorem 2 Suppose that µ3 <∞. Then

δn ≡ sup
h∈H

∣∣∣E[h(X )]−E[h(Y )]
∣∣∣≤ Cµ3p

n

Proof. Let fh be the Stein function associated with h. Hence, f ′h(x)− xfh(x)= h(x)−E[h(Y )].
Therefore,

E[h(X )]−E[h(Y )]= E[ f ′h(X )− X fh(X )].

It follows that
δn = sup

f ∈F

∣∣∣E[ f ′(X )− X f (X )]
∣∣∣

where F = { fh : h ∈ H }. It can be shown that each f ∈ F is twice differentiable and that
c = sup f ∈F supx | f ′′(x)| <∞.

If we can show that f ′(X ) is close to X f (X ) then we are done. Since X i is independent of ξi,
E[ξi f (X i)]= E[ξi]E[ f (X i)]= 0. So,

E[X f (X )]= E[∑
i
ξi f (X )

]= E[∑
i
ξi f (X i +ξi)

]
= E

[∑
i
ξi

(
f (X i)+ξi

∫ 1

0
f ′(X i +uξi)du

)]

= E
[∑

i
ξ2

i

∫ 1

0
f ′(X i +uξi)du

]
.

Now
E
[
ξ2

i f ′(X i)
]
= E

[
ξ2

i

]
E
[

f ′(X i)
]
= 1

n
E
[

f ′(X i)
]
.

Hence,

E[ f ′(X )]= E
[∑

i

1
n

f ′(X )
]
= E

[∑
i

1
n

f ′(X i)
]
+E

[∑
i

1
n

( f ′(X )− f ′(X i))
]

= E
[∑

i
ξ2

i f ′(X i)
]
+E

[∑
i

1
n

( f ′(X )− f ′(X i))
]

= E
[∑

i
ξ2

i

∫ 1

0
f ′(X i)du

]
+E

[∑
i

1
n

( f ′(X )− f ′(X i))
]
.

Therefore,

E[ f ′(X )− X f (X )]= E
[∑

i
ξ2

i

∫ 1

0
( f ′(X i)− f ′(X i +uξi))du

]
+E

[∑
i

1
n

( f ′(X )− f ′(X i))
]
.
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Now, for all 0≤ u ≤ 1,

| f ′(X i)− f ′(X i +uξi)| ≤ c|ξi| = c|X i|p
n

where c = supF∈F supx | f ′′(x)|. Similarly,

| f ′(X )− f ′(X i)| = | f ′(X i +ξi)− f ′(X i)| ≤ c|ξi| = c|X i|p
n

.

Therefore,

|E[ f ′(X )− X f (X )]| ≤ cnE[|ξ1|3]+ cE[|ξ1|]≤ Cµ3p
n

.

�

So much for the Wasserstein distance. The rest of the notes focus on the Kolmogorov-
Smirnov distance which is more useful statistically, but also harder to bound.

3 Zero Bias Coupling

Recall that X ∼ N(0,σ2) if and only if

σ2E[ f ′(X )]= E[X f (X )] (10)

for all absolutely continuous functions f (for which the expectations exist). Inspired by this,
Goldstein and Reinert (1997) introduced the following definition. Let X be any mean 0
random variable with variance σ2. Say that X∗ has the X -zero bias distribution if

σ2E[ f ′(X∗)]= E[X f (X )]. (11)

for all absolutely continuous functions f for which E|X f (X )| <∞. Zero-biasing is a transform
that maps one random variable X into another random variable X∗. (More precisely, it maps
the distribution of X into the distribution of X∗.) The Normal is the fixed point of this map.
The following result shows that X∗ exists and is unique.

Theorem 3 Let X be any mean 0 random variable with variance σ2. There exists a unique
distribution corresponding to a random variable X∗ such that

σ2E[ f ′(X∗)]= E[X f (X )]. (12)

for all absolutely continuous functions f for which E|X f (X )| <∞. The distribution of X∗ has
density

p∗(x)= E[X I(X > x)]
σ2 =−E[X I(X ≤ x)]

σ2 . (13)
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Proof. It may be verified that p∗(x) ≥ 0 and integrates to 1. Let us verify that (12) holds.
For simplicity, assume that σ2 = 1. Given an absolutely continuous f there is a g such that
f (x)= ∫ x

0 g. Then∫ ∞

0
f ′(u) p∗(u)du =

∫ ∞

0
f ′(u) E[X I(X > u)]du =

∫ ∞

0
g(u) E[X I(X > u)]du

= E
[

X
∫ ∞

0
g(u)I(X > u)du

]
= E

[
X

∫ X∨0

0
g(u)du

]
= E[X f (X )I(X ≥ 0)].

Similarly,
∫ 0
−∞ f ′(u) p∗(u)du = E[X f (X )I(X ≥ 0)]. �

Here is a way to construct X∗ explicitly when dealing with a sum.

Lemma 4 Let ξ1, . . . ,ξn be independent, mean 0 random variables and let σ2
i = Var(ξi). Let

W =∑
i ξi. Let ξ∗1 , . . . ,ξ∗n be independent and zero-bias. Define

W∗ =W −ξJ +ξ∗J
where P(J = i) = σ2

i . Then W∗ has the W-zero bias distribution. In particular, suppose that
X1, . . . , Xn have mean 0 common variance and let W = 1p

n
∑

i X i. Let J be a random integer

from 1 to n. Then W∗ =W − 1p
n XJ + 1p

n X∗
J has the W-zero bias distribution.

Proof. Let W∗ be the zero-bias random variable for W . Let W i = W −ξi and note that W i

and ξi are independent. Then

E[ f ′(W∗)]= E[W f (W)]=∑
i
E[ξi f (W)]=∑

i
E[ξi f (W i +ξi)]

=∑
i
E[E[ξi f (W i +ξi)|W i]]= check

∑
i
E[σ2

i f ′(W −ξi +ξ∗i )]

=∑
i
σ2

i E[ f ′(W −ξi +ξ∗i )]=∑
i
E[I(J = i)] E[ f ′(W −ξi +ξ∗i )]

= E
[∑

i
I(J = i) f ′(W −ξi +ξ∗i )

]
= E[ f ′(W −ξJ +ξ∗J)].

So E[ f ′(W∗)]= E[ f ′(W −ξJ +ξ∗J)] for all absolutely continuous f which implies that

W −ξJ +ξ∗J
d=W∗. �

Now we can prove the following theorem using zero-biasing. We focus on the bounded case
for simplicity.

Theorem 5 Suppose that |X i| ≤ B. Then

sup
z

∣∣∣P(X ≤ z)−P(Y ≤ z)
∣∣∣≤ 6Bp

n
.
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Proof. Let X∗
1 , . . . , X∗

n be zero-bias independent random variables. Let J be chosen ran-
domly from {1, . . . ,n} and let

X∗ = X − 1p
n

(XJ − X∗
J).

Then, by the last lemma, X∗ is zero-bias for X and hence

E[X f (X )]= E[ f ′(X∗)] (14)

for all absolutely continuous f . Also note that

|X∗− X | ≤ 2Bp
n
≡ δ. (15)

So,

P(X ≤ z)−P(Y ≤ z)≤P(X ≤ z)−P(Y ≤ z+δ)+P(Y ≤ z+δ)−P(Y ≤ z)

≤P(X ≤ z)−P(Y ≤ z+δ)+ δp
2π

≤P(X∗ ≤ z+δ)−P(Y ≤ z+δ)+ δp
2π

≤ sup
z

|P(X∗ ≤ z+δ)−P(Y ≤ z+δ)|+ δp
2π

= sup
z

|P(X∗ ≤ z)−P(Y ≤ z)|+ δp
2π

.

By a symmetric argument, we deduce that

sup
z

|P(X ≤ z)−P(Y ≤ z)| ≤ sup
z

|P(X∗ ≤ z)−P(Y ≤ z)|+ δp
2π

.

Let f = fz. From (8), (9) and (14),

sup
z

|P(X∗ ≤ z)−P(Y ≤ z)| ≤ sup
f ∈F

∣∣∣E[ f ′(X∗)− X∗ f (X∗)]
∣∣∣

= sup
f ∈F

∣∣∣E[X f (X )− X∗ f (X∗)]
∣∣∣

≤ E
[(
|X |+ 2π

4

)
|X∗− X |

]
≤ δ

(
1+ 2π

4

)
.

7



DRAFT

Combining these inequalities we have

sup
z

|P(X ≤ z)−P(Y ≤ z)| ≤ δ
(
1+ 1p

2π
+ 2π

4

)
≤ 3δ= 6Bp

n
.

�

4 The K-function

When X has mean 0, define the K-function

K(t)= E
(
X

[
I(0≤ t ≤ X )− I(X ≤ t < 0)

])
= E[X I(X ≥ t)]. (16)

In particular, let K i be the K-function for ξi:

K i(t)= E
(
ξi

[
I(0≤ t ≤ ξi)− I(ξi ≤ t < 0)

])
= E[ξi I(ξi ≥ t)]. (17)

K i has the following properties:

K i(t)≥ 0,
∫ ∞

−∞
K i(t)dt = E(ξ2

i ),
∑

i

∫ ∞

−∞
K i(t)dt = 1,

∫ ∞

−∞
|t| K i(t)dt = 1

2
E|ξi|3.

Note that the K-function is just the density for the zero-bias distribution.

Theorem 6 Suppose that |X i| ≤ B. Then

sup
z

∣∣∣P(X ≤ z)−P(Y ≤ z)
∣∣∣≤ 3.3Bp

n
.

Proof. Before plunging into the details, I’ll outline the main idea of the proof which has
three steps. Let f ≡ fz. Step one is to establish that

∑
i

∫ ∞

−∞
P(X i + t ≤ z)K i(t)dt−Φ(z)=∑

i

∫ ∞

−∞
E[X f (X )− (X i + t) f (X i + t)]K i(t)dt. (18)
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Step two is to use (8) to show that the right hand side is bounded by C/
p

n. Step three is
to show that ∑

i

∫ ∞

−∞
P(X i + t ≤ z)K i(t)dt−Φ(z)≈∑

i

∫ ∞

−∞
P(X ≤ z)K i(t)dt−Φ(z)

=P(X ≤ z)
∑

i

∫ ∞

−∞
K i(t)dt−Φ(z)

=P(X ≤ z)−Φ(z)

since
∑

i
∫ ∞
−∞ K i(t)dt = 1. Thus, |P(X ≤ z)−Φ(z)| ≤ C/

p
n as required. Keep in mind, through-

out, that X i is independent of ξi.

Step 1. Recall that f ′(x)− xf (x)= I(x ≤ z)−Φ(z), so that f ′(x)= xf (x)+ I(x ≤ z)−Φ(z). Since
X =∑

i ξi, we have

E[X f (X )]=∑
i
E[ξi f (X )]=∑

i
E[ξi( f (X )− f (X i)+ f (X i))]

=∑
i
E[ξi( f (X )− f (X i))]+∑

i
E[ξi f (X i)]

=∑
i
E[ξi( f (X )− f (X i))]+∑

i
E[ξi] E[ f (X i)]

=∑
i
E[ξi( f (X )− f (X i))]=∑

i
E[ξi( f (X i +ξi)− f (X i))]

=∑
i
E

[
ξi

∫ ξi

0
f ′(X i + t)dt

]
=∑

i
E

[∫ ∞

−∞
f ′(X i + t)ξi[I(0≤ t ≤ ξi)− I(ξi ≤ t < 0)

]
dt

=∑
i
E

[∫ ∞

−∞
f ′(X i + t)

]
E
[
ξi[I(0≤ t ≤ ξi)− I(ξi ≤ t < 0)

]
dt

=∑
i

∫ ∞

−∞
E[ f ′(X i + t)]K i(t)dt

=∑
i

∫ ∞

−∞
E[(X i + t) f (X i + t)+ I(X i + t ≤ z)−Φ(z)]K i(t)dt

=∑
i

∫ ∞

−∞
E[(X i + t) f (X i + t)]K i(t)dt+∑

i

∫ ∞

−∞
E[I(X i + t ≤ z)−Φ(z)]K i(t)dt

=∑
i

∫ ∞

−∞
E[(X i + t) f (X i + t)]K i(t)dt+∑

i

∫ ∞

−∞
P(X i + t ≤ z)K i(t)dt−Φ(z)
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Thus we have the key equation:

∑
i

∫ ∞

−∞
P(X i + t ≤ z)K i(t)dt−Φ(z)=∑

i

∫ ∞

−∞
E[X f (X )− (X i + t) f (X i + t)]K i(t)dt. (19)

To complete the proof we need to show that the right hand side is small and that then left
had side is close to P(X ≤ z)−Φ(z).

Step 2. Let RHS denote the right hand side of (19). From (8) and the fact that X = X i +ξi,
we have

|RHS| ≤∑
i
E

∫ ∞

−∞

∣∣∣(X i +ξi) f (X i +ξi)− (X i + t) f (X i + t)
∣∣∣K i(t)dt

≤∑
i

∫ ∞

−∞
E(|W i|+ c) E(|ξi|+ |t|)K i(t)dt

≤ (1+ c)
∑

i

∫ ∞

−∞
E(|ξi|+ |t|)K i(t)dt

= (1+ c)
∑

i
[E|ξi| E(ξ2

i )+ 1
2
E|ξi|3]

≤ (1+ c)
∑

i
[E|ξi|3 + 1

2
E|ξi|3]

= 3(1+ c)
2

∑
i
E|ξi|3 ≤ 2.44

∑
i
E|ξi|3 ≤ 2.44Bn

∑
i
E|ξi|2 = 2.44Bn.

We have now shown that, for each z,∣∣∣∣∣∑i

∫ ∞

−∞
P(X i + t ≤ z)K i(t)dt−Φ(z)

∣∣∣∣∣≤ 2.44Bn. (20)

Step 3. Since |X i| ≤ B, |ξi| ≤ B/
p

n ≡ Bn. Note that K i(t) = 0 when |t| > Bn. When |ξi| ≤ Bn
and |t| ≤ Bn we have

P(X ≤ z)≤P(X −ξi + t ≤ z+2Bn)=P(X i + t ≤ z+2Bn).

Using (20)

P(X ≤ z)−Φ(z)=∑
i

∫
P(X ≤ z)K i(t)dt−Φ(z)

≤∑
i

∫
P(X i + t ≤ z+2Bn)K i(t)dt−Φ(z+2Bn)+Φ(z+2Bn)−Φ(z)

≤ 2.44Bn + 2Bnp
2π

≤ 3.3Bp
n

.
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By a similar argument Φ(z)−P(X ≤ z)≤ 3.3Bp
n . �

Connection to Zero-Biasing. As I mentioned earlier, K(t) is the zero-bias density. In the
K-function proof, we showed that

E[X f (X )]=∑
i

∫
E[ f ′(X i + t)]K i(t)dt.

So, with J randomly chosen from {1, . . . ,n}, we have

E[X f (X )]=∑
i

∫
E[ f ′(X i + t)]K i(t)dt = E[ f ′(XJ + X∗

J)]= E[ f ′(X∗)].

5 Concentration

We can adapt the K-function approach to deal with the unbounded case, using a trick that
Chen, Goldstein and Shao call “concentration.” This is different from “concentration of mea-
sure” as in things like Bernstein’s inequality.

Previously, we used boundedness of X i in the K-function proof to show that P(X i + t ≤ z)
was close to P(X ≤ z) = P(X i +ξi ≤ z). It turns out that we can show the two quantities are
close, without assuming boundedness, if we can show that P(a ≤ X i ≤ b)¹ (b−a)+ something
small. The same trick will be useful for dealing with nonlinear functions later.

Lemma 7 For all a ≤ b,

P(a ≤ X i ≤ b)≤
p

2(b−a)+ 2(
p

2+1)µ3p
n

. (21)

The proof is a bit long so I won’t reproduce it here; see Chapter 3 of Chen, Goldstein and
Shao (2011).

Theorem 8 Assuming µ3 <∞ we have ∆n ≤ 9.4µ3p
n .

Proof. We have already shown in (20) that∣∣∣∣ n∑
i=1

∫
P(X i + t ≤ z)K i(t)dt−Φ(z)

∣∣∣∣≤ 2.44µ3p
n

. (22)
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We use concentration to bound P(X i + t ≤ z)−P(X ≤ z). We have∣∣∣∣ n∑
i=1

∫
P(X i + t ≤ z)K i(t)dt−P(X ≤ z)

∣∣∣∣≤ n∑
i=1

∫
|P(X i + t ≤ z)K i(t)dt−P(X ≤ z)|K i(t)dt

=
n∑

i=1

∫
|P(X i + t ≤ z)K i(t)dt−P(X i +ξi ≤ z)|K i(t)dt

=
n∑

i=1

∫
P(z− (t∨ξi)≤ X i ≤ z− (t∧ξi))K i(t)dt

=
n∑

i=1

∫
E[P(z− (t∨ξi)≤ X i ≤ z− (t∧ξi)|ξi)K i(t)dt

≤
n∑

i=1

∫
E[
p

2(|t|+ |ξi|)+2(
p

2+1)
µ3p

n
]K i(t)dt

=
p

2
n∑

i=1

(µ3

2
+E|ξi| E[ξ2

i ]
)
+ 2(

p
2+1)µ3p

n

≤ 6.95µ3p
n

.

The result follows from (22). �

6 Exchangeable Pairs

Another approach to Stein’s method is based on finding pairs of variables with a special
property. Specifically, we say that (X , X ′) is an exchangeable pair if (X , X ′) is equal in dis-
tribution to (X ′, X ), written (X , X ′) d= (X ′, X ). We say that (X , X ′) is a Stein pair if they are
exchangeable and if there exists λ ∈ (0,1) such that

E[X ′|X ]= (1−λ)X . (23)

For example, let ξ′1, . . . ,ξ′n be independent of ξ1, . . . ,ξn. Define X ′ = X − ξJ + ξ′J where J is
chosen uniformly from {1, . . . ,n}. Then (X , X ′) is a Stein pair with λ= 1/n, so that

E[X ′|X ]=
(
1− 1

n

)
X . (24)

Theorem 9 Let (X , X ′) be a Stein pair where W has mean 0 and variance 1. Suppose that
|X ′− X | ≤ δ. Let

B =
√

Var(E((X ′− X )2|X ))
2λ

.

12
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Then

sup
z

|P(X ≤ z)−Φ(z)| ≤ 1.1δ+ δ3

2λ
+2.7B.

We will omit the proof but we note that it is similar to the K-function proof.

7 Smoothing + Induction

This approach, following section 3.7 of Nourdin and Peccati (2012), combines two ideas:
smoothing and induction.

The smoothing idea is based on approximating the indicator function I(x ≤ z) with a smooth
function h and then applying Stein’s method directly to h. Specifically, define

hz,ε(x)=


1 if x ≤ z−ε
z+ε−x

2ε if z−ε< x < z+ε
0 if x ≥ z+ε.

The induction idea is as follows. Assume that E[|X i|3] < ∞. Let Cn be the smallest real
number such that

sup
z

∣∣∣P(X ≤ z)−P(Z ≤ z)
∣∣∣≤ CnE[|X i|3]p

n
. (25)

Such a Cn always exists. But if Cn grows with n then this is a useless bound. The goal is to
use an inductive argument to show that there is some fixed C > 0 such that limsupn→∞Cn ≤
C.

Theorem 10 Suppose that µ3 ≡ E[|X i|3]<∞. Then

sup
z

∣∣∣P(X ≤ z)−P(Y ≤ z)
∣∣∣≤ 33µ3p

n
.

Before proving the theorem, we need the following lemma.

Lemma 11 For all a ≤ b,

P(a ≤ X i ≤ b)≤ b−a
p

2π
√

1− 1
n

+ 2Cn−1µ3p
n−1

≡ Hn(a,b). (26)

13
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Proof. We can write X i =
√

1− 1
n Q i where Q i = 1p

n−1

∑
j 6=i X j. Let Z ∼ N(0,1). Then

P(a ≤ X i ≤ b)=P

 a√
1− 1

n

≤Q i ≤ b√
1− 1

n


=P

 a√
1− 1

n

≤Q i ≤ b√
1− 1

n

−P

 a√
1− 1

n

≤ Z ≤ b√
1− 1

n


+P

 a√
1− 1

n

≤ Z ≤ b√
1− 1

n


≤ 2Cn−1µ3p

n−1
+ b−a
p

2π
√

1− 1
n

.

�

Now we prove the theorem.

Proof. We break the proof into two steps.

Part 1. Smoothing. From the definition of hz,ε it follows that

E[hz−ε,ε(X )]≤P(X ≤ z)≤ E[hz+ε,ε(X )].

Also, if Z ∼ N(0,1) then

E[hz+ε,ε(Z)]− 4εp
2π

≤ E[hz−ε,ε(Z)]≤P(Z ≤ z)

≤ E[hz+ε,ε(Z)]≤ E[hz−ε,ε(Z)]+ 4εp
2π

.

Therefore,

sup
z

∣∣∣P(X ≤ z)−P(Z ≤ z)
∣∣∣≤ sup

z

∣∣∣E[hz,ε(X )]−E[hz,ε(Z)]
∣∣∣+ 4εp

2π
. (27)

Let f = fz,ε be the Stein function for hz,ε. It may be verified that

|| f ||∞ ≤
√
π

2
, || f ′||∞ ≤ 2

and that

|xf (x)− yf (y)| = | f (x)(x− y)+ ( f (x)− f (y)) y| ≤
(√

π

2
+2|y|

)
|x− y|. (28)
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Now we again use the leave-one-out trick. Let X i = X − n−1/2X i. Note that E[ f (X i)X i] =
E[ f (X i)]E[X i]= 0. Hence,

E[h(X )]−E[h(Z)]= E[ f ′(X )− X f (X )]=∑
i
E

[
1
n

f ′(X )− X ip
n

f (X )
]

=∑
i
E

[
1
n

f ′(X )− X ip
n

( f (X )− f (X i))
]

.

Now,

f (X )− f (X i)= f (X i + X i/
p

n)− f (X i)

=
∫ X i /

p
n

0
f ′(X i + t)dt = X ip

n

∫ 1

0
f ′(X i +uX i/

p
n)du

= X ip
n
E
[

f ′(X i +U X i/
p

n)
]

where U is an independent Unif(0,1) random variable and the expectation is over U . Thus,

E[h(X )]−E[h(Z)]=∑
i
E

[
1
n

f ′(X )− X2
i

n
f ′(X i +U X i/

p
n)

]
.

The Stein equation f ′(x)− xf (x)= h(x)−µ implies that

f ′(x)= xf (x)+h(x)−µ

and so

1
n

f ′(X )− X2
i

n
f ′(X i +U X i/

p
n)= 1

n
X f (X )− X2

i

n

(
X i +U X i/

p
n
)

f (X i +U X i/
p

n)

+ 1
n

h(X )− X2
i

n
h(X i +U X i/

p
n)

and so
E[h(X )]−E[h(Z)]= I− II+ III− IV

15
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where

I=∑
i

1
n
E[X f (X )− X i f (X i)]

II=∑
i
E

[
X2

i

n

((
X i +U X i/

p
n
)

f (X i +U X i/
p

n)− X i f (X i)
)]

III=∑
i

1
n
E[h(X )−h(X i)]

IV=∑
i
E

[
X2

i

n

(
h(X i +U X i/

p
n)−h(X i)

)]

Now we bound these four terms. We repeatedly use (28) and the fact that X i is independent
of X i.

Bounding I. We have

I≤∑
i

1
n
p

n

(√
π

2
+2E|X i|

)
E|X i| ≤ 1p

n

(√
π

2
+2

)

since E[|X i|]≤ 1 and E[|X i|]≤ 1.

Bounding II. We have

II≤∑
i

1
n
p

n

(
E[U]E[|X1|3]

√
π

2
+2E[U]E[|X1|3]E[|X i|]

)
≤ E[|X1|3]p

n

(
1
2

√
π

2
+1

)
.

Bounding III. To bound this term we Taylor expand the function h. Note that h′(x) =
−J(x)/(2ε) where J(x) is the indicator function for [z−ε< x < z+ε]. Hence,

h(y)−h(x)= (y− x)
∫ 1

0
h′(x+ s(y− x))ds =− y− x

2ε
E[J(x+V (y− x))]

where V ∼U(0,1). Hence,

III≤∑
i

1
2εn

p
n
E

[
|X i| J

(
X i +V

X ip
n

)]
= 1

2ε
p

n
E

[
|X i| P

(
z− V X ip

n
−ε≤ X i ≤ z− V X ip

n
+ε

)]
≤ 1

2ε
p

n
sup

0≤t≤1
sup
y∈R

P

(
z− typ

n
−ε≤ X i ≤ z− typ

n
+ε

)
≤ 1p

2π
p

n−1
+ Cn−1µ3p

n
p

n−1ε

16
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where we used (26).

Bounding IV. This is bounded using the same argument as III. Let U ,V ∼ Unif(0,1) be
independent. Then

IV≤ 1
2n

p
nε

∑
i

∣∣∣∣E[
X3

i U J
(
X i +UV

X ip
n

)]∣∣∣∣
≤ µ3

4
p

nε
sup

0≤t≤1
sup
y∈R

P

(
z− typ

n
−ε≤ X i ≤ z− typ

n
+ε

)

≤ µ3

2
p

2π
p

n−1
+ Cn−1µ

2
3

2
p

n
p

n−1ε
.

Combining these bounds, we get

sup
z

|E[hz,ε(X )]−E[hz,ε(Y )]| ≤ 6µ3p
n
+ 3Cn−1µ

2
3

nε
. (29)

From (29) and (27) we have

sup
z

|P(X ≤ z)−P(Z ≤ z)| ≤ 6µ3p
n
+ 3Cn−1µ

2
3

nε
+ 4εp

2π
.

Setting

ε=µ3

√
Cn−1

n

we get

∆n ≤ µ3p
n

(
6+

(
3+ 4p

2π

)√
Cn−1

)
. (30)

Part 2. Induction. First we get a crude bound on Cn. Since ∆n ≤ 1 we must have that
Cn ≤p

n/µ3. But µ3 = E[|Y1|3] ≥ E[Y 2
1 ]3/2 = 1 and so Cn ≤p

n. Therefore, C1 ≤ 33. Equation
(30) gives a bound on ∆n. But, by the definition of Cn, the tightest bound on ∆n is given by
(25). This implies that

Cn ≤
(
6+

(
3+ 4p

2π

)√
Cn−1

)
.

It follows from induction that Cn ≤ 33 for all n. �
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8 Slepian Interpolation + Smoothing

The approach in this section is due to Chernozhukov, Chetverikov and Kato (2012) and is
closely related to the approach in Chatterjee (2008) and Rollin (2013). For one-dimensional
problems it leads to sub-optimal rates (due to the smoothing of the indicator functions). In
Part II we show how Chernozhukov, Chetverikov and Kato used it successfully for high-
dimensional problems. Here, I will focus on one dimension.

The key idea is to define the Slepian Smart Path Interpolation

Z(t)=p
t X +

p
1− tY =∑

i

1p
n

(
p

tX i +
p

1− tYi)≡
∑

i
Zi(t). (31)

Theorem 12 We have
sup

t
|P(X ≤ t)−P(Y ≤ t)| ≤ C

n1/8 .

Proof. We have

Z′(t)≡ dZ(t)
dt

=
(

Xp
t
− Yp

1− t

)
=∑

i

1p
n

(
X ip

t
− Yip

1− t

)
≡∑

i
Z′

i(t).

Define the leave-one-out quantity Z i(t)= Z(t)−Zi(t). Let g ∈ C3. Then

E[g(X )]−E[g(Y )]= E(g(Z(0)))−E(g(Z(1)))=
∫ 1

0
E

[
dg(Z(t))

dt

]
dt =

∫ 1

0
E[g′(Z(t))] Z′(t)dt

= 1
2

∑
i

∫ 1

0
E[g′(Z(t))] Z′

i(t).

In general, Taylor’s theorem with integral remainder gives

f (x)= f (a)+ (x−a) f ′(a)+
∫ x

a
(x− t) f ′′(t)dt

= f (a)+ (x−a) f ′(a)+ (x−a)2
∫ 1

0
(1−u) f ′′(a+u(x−a))du

where we used the transformation u = t−a
x−a . Apply this to g′ with x = Z(t) and a = Z i(t) to get

g′(Z(t))= g′(Z i(t))+Zi(t)g′′(Z i(t))+Z2
i (t)

∫ 1

0
(1−τ)g′′′(Z i(t)+τZi(t)) dτ.

Therefore,

E(g(X ))−E(g(Y ))= 1
2

(I+ II+ III)

18
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where

I=∑
i

∫ 1

0
E[g′(Z i(t)) Z′

i(t)]dt

II=∑
i

∫ 1

0
E[g′′(Z i(t)) Z′

i(t) Zi(t)]dt

III=∑
i

∫ 1

0

∫ 1

0
(1−τ)E[g′′′(Z i(t)+τZi(t)) Z′

i(t) Z2
i (t)]dτdt.

Note that g′(Z i(t)) and Z′
i(t) are independent and E[Z′

i(t)]= 0. So

I=∑
i

∫ 1

0
E[g′(Z i(t)) Z′

i(t)]dt =∑
i

∫ 1

0
E[g′(Z i(t))] E[Z′

i(t)]dt = 0.

To bound II, note that Z i(t) is independent of Z′
i(t)Zi(t). Let C = sup |g′′(t)|. Then,

|II| ≤∑
i

∫ 1

0
E
∣∣∣g′′(Z i(t))

∣∣∣ ∣∣∣E[Z′
i(t) Zi(t)]

∣∣∣dt

≤ C
∫ 1

0

∑
i

∣∣∣E[Z′
i(t) Zi(t)]

∣∣∣dt.

Recall that
Zi(t)= 1p

n

(p
tX i +

p
1− tYi

)
, Z′

i(t)=
1p
n

(
X ip

t
− Yip

1− t

)
and so

Z′
i(t) Zi(t)= 1p

n

(
X ip

t
− Yip

1− t

)
1p
n

(p
tX i +

p
1− tYi

)
= 1

n

X2
i −

√
t

1− t
X iYi +

√
1− t

t
X iYi −Y 2

i


and hence E[Z′

i(t) Zi(t)]= 0 and so II= 0.

Next, consider III. The smoothness of g′′′ implies that

g′′′(z)¹ g′′′(z+τw)¹ g′′′(z).
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So,

|III| ≤∑
i

∫ 1

0

∫ 1

0
E[|g′′′(Z i(t)+τZi(t))| |Z′

i(t) Z2
i (t)|]dτdt

¹∑
i

∫ 1

0
E[|g′′′(Z i(t))| |Z′

i(t) Z2
i (t)|]dt

=∑
i

∫ 1

0
E[|g′′′(Z i(t))|] E[|Z′

i(t) Z2
i (t)|]dt

¹∑
i

∫ 1

0
E[|g′′′(Z(t))|] E[|Z′

i(t) Z2
i (t)|]dt

=
∫ 1

0
E[|g′′′(Z(t))|] nE[|Z′

i(t) Z2
i (t)|]dt

≤ C′n
∫ 1

0
E[|Z′

i(t) Z2
i (t)|]dt.

Let ω(t)= 1p
t∧p1−t

. Then, using Holder’s inequality,

∫ 1

0
E[|Z′

i(t) Z2
i (t)|]dt =

∫ 1

0
ω(t)E

[∣∣∣∣∣Z′
i(t)
ω(t)

Z2
i (t)

∣∣∣∣∣
]

dt

≤
∫ 1

0
ω(t)

(
E

[∣∣∣∣∣Z′
i(t)
ω(t)

∣∣∣∣∣
3]
E|Zi(t)|3E|Zi(t)|3

)1/3

dt

Now ∣∣∣∣∣Z′
i(t)
ω(t)

∣∣∣∣∣≤ |X i|+ |Yi|p
n

, |Zi(t)| ≤ |X i|+ |Yi|p
n

,
∫ 1

0
ω(t)dt ¹ 1.

Also,
E|Yi|3 ¹ (E|Yi|2)3/2 = (E|X i|2)3/2 ≤ E|X i|3.

Hence,

n
∫
E|Zi(t)|3E|Zi(t)|3dt ≤ 1p

n
E(|X i|+ |Yi|)3

∫ 1

0
ω(t)dt ¹ 1p

n
E|Yi|3.

We have shown that
E|g(X )− g(Y )| ¹ 1p

n
E|Yi|3.

We want to bound
P(X ≤ t)−P(Y ≤ t)= E(h(X ))−E(h(Y ))

where h(z)= I(z ≤ t). Let g0 :R→ [0,1] be in C3 be such that g0(s)= 1 for s ≤ 0 and g0(s)= 0
for s ≥ 1. Define g(s)= g0(ψ(s− t)). Then

sup
s

|g(s)| = 1, sup
s

|g′(s)| ¹ψ, sup
s

|g′′(s)| ¹ψ2, sup
s

|g′′′(s)| ¹ψ3.
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Now

P(X ≤ t)= E(h(X ))≤ E(g(X ))¹ E(g(Y ))+ ψ+ψ2 +ψ3
p

n

≤P(Y ≤ t+ψ−1)+ ψ+ψ2 +ψ3
p

n

¹P(Y ≤ t)+ 1
ψ

+ ψ+ψ2 +ψ3
p

n

Take ψ= n1/8. Then

P(X ≤ t)¹P(Y ≤ t)+ 1
n1/8 .

A similar proof gives

P(Y ≤ t)¹P(X ≤ t)+ 1
n1/8 .

�

Again this is a suboptimal rate for dimension d = 1 but leads to the rate logd/n1/8 in the
multivariate d-dimensional case as I explain in Part II.

9 Nonlinear Functions

Chapter 10 of Chen, Goldstein and Shao (2011) explains how to get bounds for non-linear
functions. In fact, there are two approaches: the direct method and the concentration
method. In general, the latter is sharper. However, when the distribution is bounded or
sub-Gaussian, they lead to similar results.

Suppose that T = X +∆ where X = ∑n
i=1 ξi where ξ1, . . . ,ξn are iid, mean 0 and variance 1.

Let Z ∼ N(0,1). We know how to bound P(X ≤ z)−P(Z ≤ z). But how do we deal with ∆?

Direct Approach. Let E = {|∆| ≤ ε}. Suppose that E|∆|p <∞. Then

P(X +∆≤ z)−Φ(z)=P(X +∆≤ z,E )+P(X +∆≤ z,E c)−Φ(z)
≤P(X ≤ z+ε)+P(E c)−Φ(z)
=P(X ≤ z+ε)−Φ(z+ε)+ [Φ(z+ε)−Φ(z)]+P(|∆| > ε)
≤P(X ≤ z+ε)−Φ(z+ε)+Cε+ E[|∆|p]

εp
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for some C > 0. Optimizing over ε we get

P(X +∆≤ z)−Φ(z)≤P(X ≤ z+ε)−Φ(z+ε)+C(E[|∆|p])
1

p+1

and so
sup

z
(P(X +∆≤ z)−Φ(z))≤ sup

z
(P(X ≤ z)−Φ(z))+C(E[|∆|p])

1
p+1 .

We get a lower bound similarly and so

sup
z

|P(X +∆≤ z)−Φ(z)| ≤ sup
z

|P(X ≤ z)−Φ(z)|+C(E[|∆|p])
1

p+1 .

If ∆ is bounded, or sub-Gaussian, we can get a tighter bound by using an exponential in-
equality instead of Markov’s inequality. This can give an optimal or near optimal rate.
Otherwise, we one should use the following approach.

Concentration Approach. Note that

−P(z−|∆| ≤ X ≤ z)≤P(T ≤ z)−P(X ≤ z)≤P(z ≤ X ≤ z+|∆|).

We discussed bounding quantities of the form P(a ≤ X ≤ b) in Section 5. But in this case,
we need to allow a and b to be random. Fortunately, the concentration approach can be
extended to this case.

Consider bounding P(A ≤ X ≤ B) where now A and B are random. Assume we can cre-
ate leave-one-out versions of A and B, denoted A i and Bi, so that ξi is independent of
(X i, A i,Bi). Then Chen, Goldstein and Shao (2011) prove the following:

Theorem 13 Let δ= C/
p

n where C > 0 is a sufficiently large, positive constant. Then,

P(A ≤ X ≤ B)≤ 4δ+E|X (B− A)|+∑
i

(E|ξi(A− A i)|+E|ξi(B−Bi)|) .

In the iid case that we have been focusing on, δ=O(1/
p

n). This leads to

sup
z

|P(X +∆≤ z)−P(X ≤ z)| ¹ 1p
n
+ E[|∆−∆i|]p

n
.

We omit the proof.

10 Multivariate Case

There are a variety of approaches for the multivariate case. Let us first discuss bounding
smooth functions. Let X ,Y ∈Rd be random vectors where Y is Gaussian. Suppose we want
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to bound
∣∣E[h(X )]−E[h(Y )]

∣∣ for a smooth function h :Rd →R. Rollin (2013) uses the Slepian
path approach that we discussed earlier. As before, we create the interpolating path

Zt =
p

tX +
p

1− tY

for 0 ≤ t ≤ 1. Suppose that E[X ] = E[Y ] = (0, . . . ,0)T and that Cov(X ) = Cov(Y ). Note that
E[Zt]= (0, . . . ,0)T and that Cov(Zt)=Cov(X ).

We then have that

E[h(X )]−E[h(Y )]=
∫ 1

0

∂

∂t
E[h(Yt)]dt

= 1
2

∫ 1

0
E

[
1p
t

∑
i

X ihi(Yt)− 1p
1− t

∑
i

Yihi(Zt)
]
dt

where hi = ∂h(x)/∂xi.

In the case where X has independent coordinates, one gets

∣∣∣E[h(X )]−E[h(Y )]
∣∣∣≤ 5

6

d∑
j=1

E|X ( j)|3 ||h j j j||∞

where h j j j denotes the third derivative. Note that for a sum, E|X ( j)|3 will be of order
O(n−1/2). This suggest that the bound has order O(d/

p
n).

The proof is based on bounding ∂
∂tE[h(Zt)] using a Stein coupling. In this context, a triple

(X , X ′,G) is called a Stein coupling if, for all smooth f ,

E[
∑

i
X i f i(X )]= E[

∑
i

G i( f i(X ′)− f i(X ))].

It can be shown that

E[X i]= 0, E[G iD j +G jD i]= 2Cov(X i, X j)

where D = X ′− X . This allows one to bound the derivative. In the independent case, we
can construct the coupling as follows. Let I be drawn uniformly from {1, . . . ,n}. Then define
G i =−dδiI X i and X ′(k)= (1−δkI)X (k).

For statistical applications, we need to bound

sup
A∈A

∣∣∣P(X ∈ A)−E(Z ∈ A)
∣∣∣

for some class of sets A . Let A be the class of convex sets. The best bound I know of in this
case is due to Bentkus (2003). (The fact that this important paper is not in a leading journal
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suggests it was rejected by one of the main journals. Another example of th failure of our
refereeing system.) He uses a complicated induction argument. The result is as follows. Let
X = n−1/2 ∑

i X i be a sum of mean 0 random vectors in Rd with Cov(X i) = I. Let Z ∼ N(0, I).
Then

sup
A∈A

∣∣∣P(X ∈ A)−E(Z ∈ A)
∣∣∣≤ 400d1/4βp

n
(32)

where β= E||X ||3. We expect that β=O(d3/2). So the bound has size O(d7/4/
p

n)=O(
p

d7/2/n).

A key step in Bentkus’ proof is to smooth the indicator function for a set A with a function of
the form h(x) = g(d(x, A)/ψ) where g is a smooth function, ψ is a real number and d(x, A) =
infy∈A ||x− y||. In fact, smoothing can be combined with Stein’s method as in Chen and Fang
(2011). However, the result is not as tight as the Bentkus result.

A major breakthrough was obtained in Chernozhukov, Chetverikov and Kato (2012). The
showed that if we take A to be the class of rectangles, then we get a rate of the form
logd/n1/8. This result is very useful for statistics. Part II of these notes are devoted just to
this result.

11 Slepian Versus Stein Versus Lindeberg

There are connections between Stein’s method, Slepian’s method and Lindeberg’s original
telescoping sum interpolation. These connections appear, for example, in Chatterjee (2008),
Rollin (2013) and Chernozhukov, Chetverikov and Kato (2012). First we discuss the connec-
tion between Stein and Slepian, following Appendix E of Chernozhukov, Chetverikov and
Kato (2012).

The multivariate Stein equation is

4h(x)− x′∇h(x)= f (x)−µ (33)

where Y ∼ N(0, I), µ= E[ f (Y )], ∇ is the gradient and 4 is the Laplacian. A solution is

h(x)=−
∫ 1

0

1
2t

[
E[ f (

p
tx+

p
1− tY )]−µ

]
dt.

One then needs to bound

E[ f (X )]−E[ f (Y )]= E[4h(X )− X ′∇h(X )]. (34)

Recall that the Slepian path is Zt =
p

tX +p
1− tY and one needs to bound

E[ f (X )]−E[ f (Y )]= E
[∫ 1

0

1
2
∇ f (Zt)T

(
Xp

t
− Yp

1− t

)]
dt. (35)
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Using integration by parts, we have that

E

[∫ 1

0

1
2
∇ f (Zt)T

(
Xp

t

)
dt

]
=−E[X ′∇h(X )]

and

E

[∫ 1

0

1
2
∇ f (Zt)T

(
Yp
1− t

)
dt

]
=−E[4h(X )].

So the right hand side of (34) is the same as the right hand side of (35).

The Slepian path interpolates between X and Y . Lindeberg’s original proof also uses an
interpolation. Specifically, define

Zi = (X (1), . . . , X (i),Y (i+1), . . . ,Y (n))T .

Then, Lindeberg’s telescopic interpolation is

E[h(X )]−E[h(Y )]=
n∑

i=1
E[h(Yi)−h(Yi−1)].

The right hand side can be bounded by Taylor expanding h; see Chatterjee (2008). The
advantage of Slepian-Stein over Lindeberg is that it treats all the coordinates equally. This
is important for handling cases with dependence.

All the discussion above refers to smooth functions h. Dealing with indicator functions
requires extra work such as smoothing.
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Part II: The High-Dimensional Case and the Bootstrap

12 Introduction

Chernozhukov, Chetverikov and Kato (CCK) have a remarkable set of theorems about cen-
tral limit theorems and the bootstrap in high dimensions. Part II of these notes is a tutorial
on their results. There are two main results from CCK that we are interested in. Let
X1, . . . , Xn ∈ Rd be iid with µ and covariance Σ. The first result is a Berry-Esseen style
central limit theorem which says that

sup
z

∣∣∣P(p
n||X −µ||∞ ≤ z

)−P(||Y ||∞ ≤ z
)∣∣∣¹ logd

n1/8 (36)

where Y ∼ N(0,Σ). The second is a bootstrap theorem that says that

sup
z

∣∣∣P(p
n||X∗− X ||∞ ≤ z

∣∣ X1, . . . , Xn
)−P(p

n||X −µ||∞ ≤ z
)∣∣∣=OP

(
logd
n1/8

)
(37)

where X
∗ = 1

n
∑

i X∗
i and X∗

1 , . . . , X∗
n is a sample from the empirical distribution Pn. The

proofs make use a variety of tools including: Stein’s method, Slepian interpolation, smooth-
ing and a phenomenon called Gaussian anti-concentration.

Main Sources:

(CCK1) Victor Chernozhukov, Denis Chetverikov, Kengo Kato (2012). Central Limit Theo-
rems and Multiplier Bootstrap when p is much larger than n. http://arxiv.org/abs/1212.6906.

(CCK2) Victor Chernozhukov, Denis Chetverikov, Kengo Kato (2013). Comparison and anti-
concentration bounds for maxima of Gaussian random vectors. http://arxiv.org/abs/1301.4807.

Other references are given at the end of the document.
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13 The Bootstrap and Gaussian Approximations

The bootstrap is strongly tied to Normal approximations. Consider the following simple
case. Suppose that X1, . . . , Xn are random variables with mean µ and variance σ2. If we
knew the distribution of

p
n(X −µ) then we could construct a confidence interval for µ.

Let Pn be the empirical distribution that puts mass 1/n at each X i. Let X∗
1 , . . . , X∗

n ∼ Pn.
The idea is to approximate the distribution of

p
n(X −µ) with the distribution of

p
n(X

∗−X )
conditional on X1, . . . , Xn. The latter we can approximate by simulation. Let

F(z)=P(p
n(X −µ)≤ z

)
F̂(z)=P(p

n(X∗− X )≤ z
∣∣ X1, . . . , Xn

)
.

Let Φσ denote a Gaussian cdf with mean 0 and variance σ2 and let σ̂2 be the sample vari-
ance. Then,

sup
z

|F(z)− F̂(z)| ≤ sup
z

|F(z)−Φσ(z)|+sup
z

|Φσ(z)−Φσ̂(z)|+sup
z

|F̂(z)−Φσ̂(z)|.

If we can bound how far a distribution is form its Normal approximation, then we can bound
the first and third term. Since σ̂−σ = OP (1/

p
n), we can also bound the second term. This

leads to
sup

z
|F(z)− F̂(z)| =OP

(
1p
n

)
.

It follows that

P(µ ∈ Cn)≥ 1−α−O

√
1
n


where Cn =

[
X − Z1−α/2p

n , X − Zα/2p
n

]
and Zβ = F̂−1(β). So we see that bounding the distance to a

Normal approximation is a key step in verifying the validity of the bootstrap.

14 Preliminary Result: CCK Theorem in One Dimen-
sion

Here we will go through the CCK theorem in the one dimensional case. This proof does
not lead to the optimal rate when applied to d = 1 but it is a good warm-up for the high-
dimensional case. In particular, it allows us to introduce the Slepian interpolation and
smoothing. We note that the proof is related to the techniques in Chatterjee (2008) and
Rollin (2013) although Chatterjee uses a Lindeberg interpolation rather than a Slepian in-
terpolation.
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Let X1, . . . , Xn ∈R be iid with mean 0 and variance σ2 and let Y1, . . . ,Yn ∼ N(0,σ2). Let

X = 1p
n
=∑

i
X i, Y = 1p

n
=∑

i
Yi

and so Y ∼ N(0,σ2). We want to bound

∆n = sup
t

∣∣∣P(|X | ≤ t)−P(|Y | ≤ t)
∣∣∣. (38)

Anti-concentration. We will use the following fact: if Y ∼ N(0,σ2) then

P(Y ≤ t+ε)≤ P(Y ≤ t)+Cε

where C = (σ
p

2π)−1. This follows trivially from the fact that the Normal density is bounded
above by C. When we get to the d-dimensional case in Section 15, we will see that ε becomes
ε
√

logd/ε rather than dε as one might expect.

Step 1: Smooth Functions. Before bounding ∆n, we first bound E[g(X )− g(Y )] where g is
a smooth function. In particular, assume that g has three bounded, continuous derivatives
and let C3 = supz |g′′′(z)|.
Define the Slepian interpolation

Z(t)=p
t X +

p
1− tY . (39)

Also define
Zi(t)= 1p

n

(p
t X i +

p
1− tYi

)
and

Z i(t)= Z(t)−Zi(t).

Thus, Z(t)=∑
i Zi(t) and note that Z i(t) is independent of Zi(t).

Now

E[g(X )− g(Y )]= E[g(Z(1))− g(Z(0))]=
∫ 1

0

dg(Z(t)
dt

dt =
∫ 1

0
g′(Z(t)) Z′(t)dt (40)

where
Z′(t)= dZ(t)

dt
=∑

i

dZi(t)
dt

= 1
2

∑
i

1p
n

(
X ip

t
− Yip

1− t

)
≡∑

i
Z′

i(t).

To bound g′(Z(t)) we use an expansion. In general, Taylor’s theorem with integral remainder
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gives

f (x)= f (a)+ (x−a) f ′(a)+
∫ x

a
(x− t) f ′′(t)dt

= f (a)+ (x−a) f ′(a)+ (x−a)2
∫ 1

0
(1−u) f ′′

(
a+u(x−a)

)
du

where we used the transformation u = t−a
x−a . Apply this expansion to the function g(Z(t)) with

x = Z(t) and a = Z i(t), and noting that x−a = Zi(t), we get

g′(Z(t))= g′(Z i(t))+Zi(t)g′′(Z i(t))+Z2
i (t)

∫ 1

0
(1−u)g′′′(Z i(t)+uZi(t)

)
du. (41)

Inserting (41) into (40) we get

E[g(X )− g(Y )]= I+ II+ III

where

I=∑
i

∫ 1

0
E[g′(Z i(t)) Z′

i(t)]dt

II=∑
i

∫ 1

0
E[g′′(Z i(t)) Z′

i(t) Zi(t)]dt

III=∑
i

∫ 1

0

∫ 1

0
(1−u)E[g′′′(Z i(t)+uZi(t)) Z′

i(t) Z2
i (t)]dudt.

Note that g′(Z i(t)) and Z′
i(t) are independent and E[Z′

i(t)]= 0. So

I=∑
i

∫ 1

0
E[g′(Z i(t)) Z′

i(t)]dt =∑
i

∫ 1

0
E[g′(Z i(t))] E[Z′

i(t)]dt = 0.

To bound II, note that Z i(t) is independent of Z′
i(t)Zi(t). So

E[g′′(Z i(t)) Z′
i(t) Zi(t)]= E[g′′(Z i(t))] E[Z′

i(t) Zi(t)].

Recall that
Zi(t)= 1p

n

(p
tX i +

p
1− tYi

)
, Z′

i(t)=
1

2
p

n

(
X ip

t
− Yip

1− t

)
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and so

Z′
i(t) Zi(t)= 1

2
p

n

(
X ip

t
− Yip

1− t

)
1p
n

(p
tX i +

p
1− tYi

)
= 1

2n

X2
i −

√
t

1− t
X iYi +

√
1− t

t
X iYi −Y 2

i


and hence E[Z′

i(t) Zi(t)]= (1/2n)(σ2 −0+0−σ2)= 0 and so II= 0.

Next, consider III. Recall that supz |g′′′(z)| ≤ C3. So,

|III| ≤∑
i

∫ 1

0

∫ 1

0
E
[
|g′′′(Z i(t)+uZi(t))| |Z′

i(t) Z2
i (t)|

]
dudt ≤ C3n

∫ 1

0
E[|Z′

i(t) Z2
i (t)|]dt.

Let
ω(t)= 1p

t∧p
1− t

.

Then, using Holder’s inequality,∫ 1

0
E[|Z′

i(t) Z2
i (t)|]dt =

∫ 1

0
ω(t)E

[∣∣∣∣∣Z′
i(t)
ω(t)

Z2
i (t)

∣∣∣∣∣
]

dt

≤
∫ 1

0
ω(t)

(
E

[∣∣∣∣∣Z′
i(t)
ω(t)

∣∣∣∣∣
3]
E|Zi(t)|3E|Zi(t)|3

)1/3

dt

Now ∣∣∣∣∣Z′
i(t)
ω(t)

∣∣∣∣∣≤ |X i|+ |Yi|
2
p

n
, |Zi(t)| ≤ |X i|+ |Yi|p

n
,

∫ 1

0
ω(t)dt ¹ 1.

Also,
E|Yi|3 ¹ (E|Yi|2)3/2 = (E|X i|2)3/2 ¹ E|X i|3.

Hence,

n
∫
E|Zi(t)|3E|Zi(t)|3dt ≤ 1p

n
E(|X i|+ |Yi|)3

∫ 1

0
ω(t)dt ¹ µ3p

n

where µ3 = E(|X i|3). So we have shown that

E|g(X )− g(Y )| ¹ µ3C3p
n

. (42)

Step 2: Back to Indicator Functions. We want to bound

P[X ≤ t]−P[Y ≤ t]= E[h(X )]−E[h(Y )]
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where h(z)= I(z ≤ t). We will find a smooth function g to approximate the indicator function
h.

Let g0 : R→ [0,1] be in C3 be such that g0(s) = 1 for s ≤ 0 and g0(s) = 0 for s ≥ 1. Let ψ be a
real number and define g(s)= g0(ψ(s− t)). Then

sup
s

|g(s)| = 1, sup
s

|g′(s)| ¹ψ, sup
s

|g′′(s)| ¹ψ2, C3 = sup
s

|g′′′(s)| ¹ψ3and

I(z ≤ t)≤ g(t)≤ I
(
z ≤ t+ 1

ψ

)
. (43)

From (42) and (43),

P(X ≤ t)= E[h(X )]≤ E[g(X )]¹ E[g(Y )]+ ψ3µ3p
n

≤P(Y ≤ t+ψ−1)+ ψ3µ3p
n

¹P(Y ≤ t)+ 1
ψ

+ ψ3µ3p
n

.

In this last step, we used anti-concentration. To balance the last two terms take ψ = n1/8.
Then

P(X ≤ t)¹P(Y ≤ t)+ µ3

n1/8 .

A similar proof gives
P(Y ≤ t)¹P(X ≤ t)+ µ3

n1/8 .

We conclude that
sup

t
|P(|X | ≤ t)−P(|Y | ≤ t)| ¹ µ3

n1/8 . (44)

This completes the one-dimensional proof. Note that the smoothing step changed the n−1/2

rate to n−1/8. Clearly this is too slow for d = 1 but will give us the desired result in high
dimensions. In fact, the high-dimensional proof is almost the same except for two crucial
differences: we need to approximate the max function in addition to the indicator function
and we need to use Gaussian anti-concentration. These changes only add a term that is
logarithmic in dimension.

There are other smoothing techniques; see, for example Chapter 5 of Chen, Goldstein and
Shao (2011) and Section 3.7 of Nourdin and Peccati (2012). It is not clear, however, if they
could be used with the present proof to get a better rate.
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15 High Dimensional CLT

The main theorem is in Section 2 of CCK. The proof is quite involved because of some sub-
tle truncation arguments. Appendix F gives a much shorter simpler proof using stronger
moment conditions. We will focus on this simpler version.

A crucial part of the proof is the CCK anti-Gaussian concentration result that allows us to go
from smooth functions to indicator functions. We will use the Gaussian anti-concentration
result here but we defer an explanation of the result until Section 16.

Let X1, . . . , Xn ∈ Rd be iid with mean 0 and covariance Σ. Let X i j denote the jth element of
the vector X i. Hence, X i = (X i1, . . . , X id)T . Let

X = 1p
n

∑
i

X i, Y = 1p
n

∑
i

Yi

where Yi ∼ N(0,Σ). Of course, Y ∼ N(0,Σ). We want to bound

∆n = sup
t

∣∣∣P(||X ||∞ ≤ t)−P(||Y ||∞ ≤ t)
∣∣∣. (45)

Theorem 14 (Chernozhukov, Chetverikov and Kato 2012) Suppose that 0< c ≤ E[X2
i j]≤

C for all j where c and C and finite, positive constants. Then

∆n ≡ sup
t

∣∣∣P(||X ||∞ ≤ t)−P(||Z||∞ ≤ t)
∣∣∣¹ M1/4

d

(
(log(dn))7

n

)1/8

(46)

where Md = E
[(

max j
(|X i j|+ |Yi j|

))3
]

.

The main Theorem in CCK does not have the term Md. This is the price we pay for focusing
on the simpler version of the theorem. In fact, we will assume form now on that Md =
O(

√
logd). (This is true for sub-Gaussian distributions wit n ≤ d for example.) In this case,

the bound becomes
∆n ≡ sup

t

∣∣∣P(||X ||∞ ≤ t)−P(||Z||∞ ≤ t)
∣∣∣¹ logd

n1/8 . (47)

Proof. We divide the proof into two steps: the first uses smooth functions and the second
derives a bound for indicator functions.

Step I: Smooth Functions. Define the Slepian interpolation

Z(t)=p
t X +

p
1− tY =∑

i
Zi(t) (48)
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where
Zi(t)= 1p

n

(p
t X i +

p
1− tYi

)
.

Let
Z i(t)= Z(t)−Zi(t).

and note that Z i(t) is independent of Zi.

Now we define a smooth approximation g to the indicator function and another function Fβ

which is a smooth approximation to the max function. Specifically, let m = g ◦Fβ where

g(s)= g0

(
ψ

(
s− t− logd

β

))
and g0 ∈ C3 with g0(s)= 1 for s ≤ 0 and g0(s)= 0 for s ≥ 1. Also let

Fβ(z)= 1
β

log

(
d∑

j=1
eβz j

)
.

Let G j = supz |g( j)(z)|. Then

G0 = 1, G1 ¹ψ, G2 ¹ψ2, G3 ¹ψ3.

Define Ψ(t)= E[m(Z(t))]. Then

Ψ′(t)=
d∑

j=1

n∑
i=1

E
[
∂ jm(Z(t)) Z′

i j(t)
]

where

Z′
i j(t)=

d
dt

Zi j(t)= 1
2
p

n

( X i jp
t
− Yi jp

1− t

)
.

We will use the following version of Taylor’s theorem with integral remainder. Let f :Rd →R

and denote its first and second derivatives by fk = ∂ f /∂xk and fk` = ∂2 f /∂xk∂x`. Then

f (x)= f (a)+∑
k

(xk −ak) fk(a)+∑
k,`

(xk −ak)(x`−a`)
∫ 1

0
(1−u) fk`(a+u(x−a))du.

Take x = Z(t), a = Z i(t) and f (x)= ∂ jm(Z(t)). Note that x−a = Zi(t). Hence,

∂ jm(Z(t))= ∂ jm(Z i(t))+Zi(t)
∑
k
∂k∂ jm(Z i(t))

+∑
k

∑
`

Zik(t)Zi`(t)
∫ 1

0
(1−u)∂ j∂k∂`m

(
Z i(t)+uZi(t)

)
du.
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Recalling that Ψ′(t)= E
[
∂ jm(Z(t)) Z′

i j(t)
]
, we therefore have,

E[m(X )−m(Y )]=Ψ(1)−Ψ(0)=
∫ 1

0
Ψ′(t)dt

=
d∑

j=1

n∑
i=1

∫ 1

0
E[∂ jm(Z(t)) Z′

i j(t)]dt

= I+ II+ III

where

I=∑
j

∑
i

∫ 1

0
E[∂ jm(Z i(t))Z′

i j(t)]dt

II=∑
j,k

∑
i

∫ 1

0
E[∂ j∂km(Z i(t))Z′

i j(t)Zik]dt

III= ∑
j,k,`

∑
i

∫ 1

0

∫ 1

0
E
[
∂ j∂k∂`m

(
Z i(t)+uZi(t)

)
Z′

i j(t)Zik(t)Zi`(t)
]
du dt.

Now Z i(t) is independent of (Z′
i j(t), Zi j(t)) and

E[Z′
i j(t)]=

1
2
p

n

(
E[X i j]p

t
− E[Yi j]p

1− t

)
= 0

and so I= 0.

For II we have

E
[
∂ j∂km(Z i(t)) Z′

i j(t)Zik(t))
]= E[∂ j∂km(Z i(t))] E[Z′

i j(t)Zik(t)].

But

Z′
i j(t)Zik(t)= 1

2n

( X i jp
t
− Yi jp

1− t

)(p
t X ik +

p
1− tYik

)
= 1

2n

X i j X ik +
√

1− t
t

X i jYi j −
√

t
1− t

Yi j X ik −Yi jYik

 .

Recall that X and Y are independent so the middle two terms have mean 0. Thus

E[Z′
i j(t)Zik(t)]= E[X i j X ik]−E[Yi jYik]=Σ jk −Σ jk = 0.

Thus II= 0.
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Now we bound III. Because m is smooth, it can be shown that∑
j,k,`

∣∣∣∂ j∂k∂`m
(
Z i(t)+uZi(t))Z′

i j(t)Zik(t)Zi`(t)
∣∣∣

is bounded above (up to a constant) by

(G1β
2 +G2β+G3)max

j,k,`

∣∣∣Z′
i j(t)Zik(t)Zi`(t)

∣∣∣ .

where we recall that G j = supz |g( j)(z)|. One might expect the triple sum above to introduce
a term of order O(d3). The reason this does not happen is because of the properties of the
function Fβ. For example, ∂ jFβ(z) = eβz j /

∑d
m=1 eβzm . The sum of this term over j is O(1)

rather than O(d).

Let
ω(t)= 1p

t∧p
1− t

.

Note that ∣∣∣∣∣Z′
i j(t)

ω(t)

∣∣∣∣∣≤ |X i j|+ |Yi j|
2
p

n
, |Zi j(t)| ≤

|X i j|+ |Yi j|p
n

.

Then, using Holder’s inequality,∫ 1

0
E[max

j,k,`
|Z′

i j(t) Zik(t) Zi`(t)|]dt =
∫ 1

0
ω(t)E

[
max
j,k,`

∣∣∣∣∣Z′
i j(t)

ω(t)
Zik(t)Zi`(t)

∣∣∣∣∣
]

dt

≤
∫ 1

0
ω(t)

E
max

j

∣∣∣∣∣Z′
i j(t)

ω(t)

∣∣∣∣∣
3
E|max

j
Zi j(t)|3 E|max

j
Zi j(t)|3

1/3

dt

≤ 1
n3/2

∫ 1

0
ω(t)dtMd ¹ Md

n3/2 .

Thus,

III¹ G1β
2 +G2β+G3p

n
Md.

To summarize, so far we have shown that:∣∣∣E[m(X )]−E[m(Y )]
∣∣∣¹ G1β

2 +G2β+G3p
n

Md. (49)

Now, the function Fβ satisfies

0≤ Fβ(z)−max
j

z j ≤ logd
β

.
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Thus
g(Fβ(z))≤ g

(
max

j
z j + logd

β

)
≤ g(max

j
z j)+ G1 logd

β

and we conclude that∣∣∣E[g(max
j

X j)− g(max
j

Y j)]
∣∣∣¹ G1β

2 +G2β+G3p
n

Md +
G1 logd

β
. (50)

Step 2: Back to Indicator Functions. The last step is to replace the smooth function g
with the indicator function. Recall that

0≤ Fβ(z)−max
j

z j ≤ eβ

where eβ = logd
β

. Also,

I(z ≤ t)≤ g(t)≤ I
(
z ≤ t+ 1

ψ

)
.

We have

P(max
j

X j ≤ t)≤P(Fβ(X )≤ t+ eβ)≤ E[g(Fβ(X ))]

≤ E[g(Fβ(Y ))]+ G1β
2 +G2β+G3p

n
Md +

G1 logd
β

≤P
(
Fβ(Y )≤ t+ 1

ψ

)
+ G1β

2 +G2β+G3p
n

Md +
G1 logd

β

≤P
(
max

j
Y j ≤ t+ eβ+ 1

ψ

)
+ G1β

2 +G2β+G3p
n

Md +
G1 logd

β
.

By the Gaussian Anti-concentration result in the next section,

P

(
max

j
Y j ≤ t+ eβ+ 1

ψ

)
¹P

(
max

j
Y j ≤ t

)
+

(
eβ+ 1

ψ

)√
log(dψ).

So

P(max
j

X j ≤ t)≤P
(
max

j
Y j ≤ t

)
+

(
eβ+ 1

ψ

)√
log(dψ)+ G1β

2 +G2β+G3p
n

Md +
G1 logd

β
.

To minimize the last three terms we take

β=ψ logd, ψ= n1/8

(logd)3/8M1/4
d

.
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Thus we get

P(max
j

X j ≤ t)¹P(max
j

Y j ≤ t)+ (log(nd))7/8M1/4
d

n1/8 .

A similar argument provides the bound in the other direction. �

16 Gaussian Anti-Concentration

Now we give the CCK Gaussian anti-concentration result. Let φ and Φ denote the density
and cdf of a standard Gaussian.

Theorem 15 Let X ∼ Nd(0,Σ). Let σ2
j =Σ j j and define σ=min jσ j and σ=max jσ j. Then

sup
x∈R

P(|max
j

X j − x| ≤ ε)≤ Cε
√

1∨ log(d/ε) (51)

where C depends only on σ and σ.

Proof Outline. We will fix some x ≥ 0. The proof for negative x is analogous. The first step
is to standardize the variables. Let

Wj =
X j − x
σ j

+ x
σ

.

Then
µ j ≡ E[Wj]= x

σ
− x
σ j

≥ 0

and Var(X j)= 1. Define Z =max j Wj. So

P(|max
j

X j − x| ≤ ε)≤P
(∣∣∣∣max

j

X j − x
σ j

∣∣∣∣≤ ε

σ

)
≤ sup

y
P

(∣∣∣∣max
j

X j − x
σ j

+ x
σ
− y

∣∣∣∣≤ ε

σ

)
= sup

y
P

(
|Z− y| ≤ ε

σ

)
.

So we can now assume that the variables have non-negative mean and variance 1.

The next step is to find the density f (z) for z. This part of the proof is long and technical;
I’ll just state the result, namely,

f (z)=φ(z)G(z) (52)
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where G is a non-decreasing function. Now we derive an upper bound on G as follows. Let

z = x
(

1
σ
− 1
σ

)
, Z =max

j
(Wj −µ j)

and let

a ≡ E[Z]= E
[
max

j

X j

σ j

]
≤

√
2logd.

Then, using the Gaussian tail inequality,

G(z)(1−Φ(z))=G(z)
∫ ∞

z
φ(u)du ≤

∫ ∞

z
φ(u)G(u)du

=P(Z > z)≤P(Z > z− z)≤ exp
(
− (z− z−a)2+

2

)
.

Hence,

G(z)≤ 1
1−Φ(z)

exp
(
− (z− z−a)2+

2

)
and so

f (z)=G(z)φ(z)≤ φ(z)
1−Φ(z)

exp
(
− (z− z−a)2+

2

)
≤ 2(z∨1)exp

(
− (z− z−a)2+

2

)
where we used the fact that

φ(z)
1−Φ(z)

≤ 2(z∨1).

For any y ∈R and t > 0, we thus have that

P(|Z− y| ≤ t)=
∫ y+t

y−t
f (z)dz ≤ 2t max

y−t≤z≤y+t
f (z)≤ 4t(z+a+1)

and hence,

P(|max
j

X j − x| ≤ ε)≤ 4ε
σ

(
|x|

(
1
σ
− 1
σ

)
+a+1

)
. (53)

We only need to show that the right hand side has the required logarithmic bound.

In what follows, recall that a ≤√
2logd. If σ=σ=σ then we have from (53) that

P(|max
j

X j − x| ≤ ε)≤ 4ε(a+1)
σ

and we are done.
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Now suppose that σ < σ. Fist suppose that 0 < ε < σ. We consider two sub-cases. First
suppose that

|x| ≤ ε+σ
(
a+

√
2log(σ/ε)

)
.

Inserting this into (53) and using ε≤σ we have

P(|max
j

X j − x| ≤ ε)≤ 4ε
σ

(
(σ/σ)a+

(
σ

σ
−1

)√
2log(σε)+2−σ/σ

)
which has the required form. The second sub-case is

|x| > ε+σ
(
a+

√
2log(σ/ε)

)
.

Now

E[max
j

X j]= E
[
max

j

X j

σ j
σ j

]
≤ aσ.

So,

P(|max
j

X j − x| ≤ ε)≤P(max
j

X j ≥ |x|−ε)≤P
(
max

j
X j ≥σa+σ

√
2log(σ/ε))

)
≤P

(
max

j
X j ≥ E[max

j
X j]+σ

√
2log(σ/ε)

)
≤ ε

σ

where we used the fact (concentration of measure for maxima of Gaussians) that

P

(
max

j
X j ≥ E[max

j
X j]+ r

)
≤ exp

(
− r2

2σ2

)
.

Similar bounds hold, with different constants, when ε>σ. Combining these cases completes
the proof. �.

An immediate consequence of the result is that the perimeter of a rectangle gets small
probability.

Corollary 16 Assume the conditions of Theorem 15. Then

sup
t

∣∣∣P(max
j

X j ≤ t+ε)−P(max
j

X j ≤ t)
∣∣∣≤ Cε

√
1∨ log(d/ε)

and
sup

t

∣∣∣P(max
j

|X j| ≤ t+ε)−P(max
j

|X j| ≤ t)
∣∣∣≤ Cε

√
1∨ log(d/ε).

Some Geometric Intuition. Figure 1 gives some geometric intuition about Gaussian anti-
concentration. The left plot shows a rectangle and a contour of a Gaussian with no correla-
tion. The rectangle is distorted to show that, in high dimensions, the corners are far from

39



DRAFT
Figure 1: A geometric view of Gaussian anti-concentration. Left: A rectangle and a contour
of a Gaussian with no correlation. The rectangle is distorted to show that, in high dimen-
sions, the corners are far from the origin. The Gaussian cuts through the rectangle in a very
small region. Right: Gaussian with high correlation. In this case, we are in the tail of the
Gaussian.

the origin. The Gaussian cuts through the rectangle in a very small region which is why we
get anti-concentration. The right plot shows a Gaussian with high correlation. In this case,
the Gaussian cuts through the rectangle in a more substantial way. However, in this case,
we are in the tail of the Gaussian so again the probability near the rectangle is small.

17 Gaussian Comparison

Before getting to the bootstrap, we need one more results from CCK. This result compares
the distribution of two different Gaussian distributions.

Theorem 17 Let X = (X1, . . . , Xd)T ∼ N(0,ΣX ) and Y = (Y1, . . . ,Yd)T ∼ N(0,ΣY ). Define

∆= max
1≤ j,k,≤d

|ΣX
jk −ΣY

jk|.

Suppose that min jΣ
Y
j j > 0. Then

sup
x

∣∣∣P(max
j

X j ≤ x)−P(max
j

Y j ≤ x)
∣∣∣≤ C∆1/3(1∨ log(d/∆))2/3 (54)

where C depends on min jΣ
Y
j j and max jΣ

Y
j j.

Proof Outline. The proof follows the same strategy as the proof of Theorem 14. First we
approximate the indicator function and the max function by a smooth function m. Then we
use the Slepian interpolation to bound E[m(X )]−E[m(Y )]. Bounding this difference is easier
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since both distributions are Gaussian. Thus m′ can be evaluated explicitly. Applying Stein’s
identity leads to a simple expression for m′ that can be bounded in terms of the variances.
The smoothing in this case only requires a function that has two continuous derivatives.
This is what gives rise to the power 1/3. The error introduced by the smoothing is bounded
by Gaussian anti-concentration. �

18 The Bootstrap

The validity of the bootstrap is proved in Section 3 of CCK1 and in Appendix H of the same
paper. I’ll present a simpler, albeit less rigorous, result here.

Let X1, . . . , Xn ∼ P. Let Pn be the empirical distribution and let X∗
1 , . . . , X∗

n ∼ Pn.

Theorem 18 Under appropriate conditions we have,

sup
z

∣∣∣P(p
n||X∗− X ||∞ ≤ z

∣∣ X1, . . . , Xn
)−P(p

n||X −µ||∞ ≤ z
)∣∣∣=OP

(
logd
n1/8

)
(55)

where X
∗ = 1

n
∑

i X∗
i .

Proof. Let Σ=Var(X i) and let Σ̂ denote the sample covariance. For simplicity, assume that
µ= (0, . . . ,0)T . Let

F(z)=P(p
n||X −µ||∞ ≤ z

)
F̂(z)=P(p

n||X∗− X ||∞ ≤ z
∣∣ X1, . . . , Xn

)
.

Let Y ∼ N(0,Σ) and Ỹ ∼ N(0, Σ̂) where we treat Σ̂ as fixed. Then

sup
z

|F(z)− F̂(z)| ≤ I+ II+ III

where

I= sup
z

|F(z)−P(||Y ||∞ ≤ z)|
II= sup

z
|P(||Y ||∞ ≤ z)−P(||Ỹ ||∞ ≤ z)|

III= sup
z

|F̂(z)−P(||Ỹ ||∞ ≤ z)|.

By Theorem 14,

I¹ M1/4
d

(
(log(dn))7

n

)1/8

.
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Another application of Theorem 14 yields

III¹ M̂1/4
d

(
(log(dn))7

n

)1/8

where M̂d refers to the empirical version of Md. Assuming suitable moments conditions, we
have M̂d ≤ Md(1+ oP (1)) and so

III=OP

(
M1/4

d

(
(log(dn))7

n

)1/8)
.

To bound II, apply Theorem 17. Then

II≤ C∆1/3(1∨ log(d/∆))2/3

where
∆= max

1≤ j,k,≤d
|Σ̂ jk −Σ jk|.

Again, assuming suitable moments conditions, we can apply concentration of measure and
the union bound to conclude that

∆=OP

√
logd

n

 .

Hence,

II≤ C
(
logd

n

)1/6
¹ logd

n1/8

and the result follows. �

Since the limiting distribution is continuous we get the follow corollary.

Corollary 19 Let

Zα = inf
{

z : P
(p

n||X∗− X ||∞ > z
∣∣ X1, . . . , Xn

)≤α}
.

Let
Rn =

{
µ : ||X −µ||∞ ≤ Zαp

n

}
.

Then
P(µ ∈ Rn)= 1−α−O

(
logd
n1/8

)
.
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19 Functional Version

CCK4 has an extension to empirical processes. Let

Gn f = 1
n

n∑
i=1

( f (X i)−E[ f (X i)]), f ∈Fn

be an empirical process over the class of functions Fn. Intuitively, we can get similar results
by approximating F with a finite cover and the adapting the previous results.

Let Zn = sup f ∈FnGn f and let Z = sup f ∈FnG f where G is a centered Gaussian process with
covariance Cov( f (X i), g(X i)). Let F be a measurable envelope for F and assume that
||F||P,q = ∫ |F(x)|qdP(x) < ∞. Let κ = (E[| f (X )|3])1/3, let N(F ,ε) be the covering number

under the metric
√∫ | f − g|2dP and let Hn(ε)= log(N(F ,ε||F||P,2)∨n).

Theorem 20 (CCK4) There are constants K and C such that, for all 0< ε≤ 1 and 0< γ< 1,
Then

P
(
|Zn −Z| > K∆n(ε,γ)

)
≤ γ(1+δn(ε,γ)+ C log

n
where

∆n(ε,γ)=φ(ε)+γ−1/qε||F||P,2 +n−1/2γ−1/q||M||q +n−1/2γ−2/q||M||2
+n−1/4γ−1/2

√
E[||Gn||F ·F ]Hn(ε)+n−1/6γ−1/3κH2/3

n (ε)

and
δn(ε,γ)= 1

4
E[(F/κ)3I(F/κ> cγ−1/3n1/3Hn(ε)−1/3)].

This is not easy to parse. Let us look at an example. Let p̂h be the kernel density estimator
with bandwidth h and let ph be the mean of p̂h. Let

Zn = sup
x

√
nhd(p̂h(x)− ph(x))

and let Z̃n be the corresponding supremum for the Gaussian approximation. The theorem
then gives

|Zn − Z̃n| =OP

(
logn

(nhd)1/6

)
.

More on density estimation in the next section.
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20 The Bootstrap For Density Estimators

Let Fn be a class of functions and consider the empirical process
{
Gn( f ) : f ∈Fn

}
where

Gn( f )= 1p
n

n∑
i=1

( f (X i)−E[ f (X i)]) .

The results can be extended to such an empirical process by forming a finite covering of Fn
and applying the previous results. The details are non-trivial; see CCK3 and CCK4. An
important application is for constructing confidence bands in density estimation.

Let X1, . . . , Xn ∼ P where P has density p. Consider the usual kernel estimator

p̂h(x)= 1
n

n∑
i=1

1
hd K

( ||x− X i||
h

)
.

Let ph(x)= E[p̂h(x)] and define

[`(x),u(x)]=
[

p̂n(x)− Zαp
nhd

, p̂n(x)+ Zαp
nhd

]
where Zα is the bootstrap quantile defined by

P
(√

nhd|| p̂∗
h(x)− p̂h||∞ > Zα

∣∣∣ X1, . . . , Xn

)
=α.

Theorem 21 We have

P
(
`(x)≤ ph(x)≤ (x) for all x

)
≥ 1−α−O

(
logn

(nhd)1/8

)
.

Actually, the result as I have stated it does not appear explicitly in CCK3. They use a
studentized version of the process and they use a multiplier bootstrap instead of the usual
bootstrap. Nonetheless, the version I have stated above appears to follow essentially from
Theorem 3.1 of CCK3.

Direct Coupling. There is another way to get a bound for the bootstrap for density estima-
tion: one creates a coupling between the data and the bootstrap sample. Neumann (1998)
does this as follows. First, he couples the data (X1, . . . , Xn) to the output (X̃1, . . . , X̃n) of a
smoothed bootstrap. Then he couples (X̃1, . . . , X̃n) to the bootstrap output (X∗

1 , . . . , X∗
n).

Draw X̃1, . . . , X̃n from a kernel density estimate p̂g with bandwidth g. Let π = ∫
(p(x)∧

p̂g(x))dx. Draw B ∼Bernoulli(π). If B = 1, draw X i from the density

p(x)∧ p̂g(x)
π
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and set X̃ i = X i. If B = 0, draw X i from the density

p(x)− (p(x)∧ p̂g(x))
1−π

and independently draw X̃ i from the density

p̂g(x)− (p(x)∧ p̂g(x))
1−π .

Then X1, . . . , Xn are iid from p and X̃1, . . . , X̃n are iid from p̂g. Furthermore, P(X i = X̃ i)= π.
Now construct p̂∗

h from (X̃1, . . . , X̃n). By dividing the space into small cubes and bounding
the difference over the cubes, Neumann proves that,

sup
x

∣∣∣(p̂h(x)−E[p̂h(x)])− (p̂∗
h(x)−E[p̂∗

h(x)])
∣∣∣=OP


√√√√ logn

nhd

(
g2 +

√
logn
ngd

) . (56)

For the regular bootstrap, we do not directly couple X∗
i to X i; this won’t work since the

distribution of X∗
i is discrete and has no density. Instead we couple X∗

i to X̃ i. Indeed, we
can think of X̃ i as X∗

i plus noise. Hence, we have the coupling ||X̃ i−X∗
i || ≤

p
dg. This yields,

with p̂∗
h now denoting the estimator based on the usual bootstrap,

sup
x

∣∣∣(p̂h(x)−E[p̂h(x)])− (p̂∗
h(x)−E[p̂∗

h(x)])
∣∣∣=OP


√√√√ logn

nhd

(
g
h
+

√
logn
ngd

) . (57)

Choosing g = (h2/n)1/(2+d), it appears that

sup
x

∣∣∣(p̂h(x)−E[p̂h(x)])− (p̂∗
h(x)−E[p̂∗

h(x)])
∣∣∣=OP

(
logn
nhd

) 4+d
2(2+d)

. (58)
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