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1 Introduction

The primary question regarding the choice of an empirical approach to analyzing economic data

should be What economic question does the analyst seek to answer? Explicit economic models

make it easier to formulate and answer economic questions. Advocates of atheoretical approaches

to analyzing economic data appeal to randomization as an ideal and invoke IV (or matching or

regression discontinuity designs) as a surrogate for randomization. However, even perfectly executed

randomizations do not answer all questions of economic interest. There are important examples

where structural models produce more information about preferences than experiments.1

A valid instrument is not guaranteed to identify parameters of economic interest when responses

to choices vary among individuals, and these variations influence choices taken.2 Different valid

instruments answer different questions.3 The sign of the IV estimator can be different from that of

the true causal effect.4

No one trained in economics can doubt the value of credible, explicit economic models in

interpreting economic data. They are designed to answer a variety of well-posed economic questions

and to be invariant to classes of policy interventions.5 The problem with this approach is that

after 60 years of experience with fitting structural models on a variety of data sources, empirical

economists have come to appreciate the practical difficulty in identifying, and precisely estimating,

the full array of structural parameters that answer the large variety of policy questions contemplated

by the Cowles Commission economists — the fathers of structural estimation.6

Proponents of IV are less ambitious in the range of questions they seek to answer. The method

often gains precision by asking narrower questions. The problem that plagues the IV approach is

that the questions it answers are usually defined as probability limits of estimators and not by well-

formulated economic problems. Unspecified “effects” replace clearly defined economic parameters
1See Heckman (1992, 2008) and Heckman and Vytlacil (2007a,b).
2See Heckman and Vytlacil (2007b) for a comparison of what different approaches identify. Matching rules out

selection on unobservables. Regression discontinuity estimators identify, at best, local effects.
3Building on this point, Heckman, Schmierer, and Urzua (2008) develop and apply nonparametric tests for the

presence of heterogenous responses to treatment on which agents make choices.
4Heckman, Urzua, and Vytlacil (2008). This is true even under the “monotonicity” conditions of Imbens and

Angrist (1994).
5See the essays in Koopmans (1950). See also Heckman and Vytlacil (2007a).
6Pencavel (1986) summarizes structural estimates of taxes on labor supply and reports absurd estimates, including

one due to Jerry Hausman, which implied a negative marginal propensity to consume goods out of income. These
and other estimates, reported in the literature some 20 years ago, fueled the flight of many empirical economists from
structural models.
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as the objects of empirical interest.

As noted by Marschak (1953), there is a middle ground. Marschak’s Maxim emphasizes that

one should solve well-posed economic problems with minimal assumptions. Marschak noted that

for many problems of policy analysis, it is not necessary to identify fully specified structural models

with parameters that are invariant to classes of policy modifications — the goal of structural analysis

as conceived by the Cowles pioneers and successor generations of structural economists.7 All that

is required to conduct many policy analyses or to answer many well-posed economic questions are

combinations of the structural parameters that are often much easier to identify than the individual

parameters themselves.8

Heckman and Vytlacil (1999, 2005) bridge the structural and IV literatures. They develop

an economically interpretable parameter — the marginal treatment effect (MTE) — which is a

marginal willingness to pay for the benefit of treatment for persons at well-defined margins of

choice. It is invariant to a class of policy modifications. They show how different instrumental

variables weight the MTE differently. These weights need not be positive for all values of the

argument of the MTE.9 For classes of well-posed economic questions, it is possible, under the

conditions given in Heckman and Vytlacil (2005), to fashion functions of instruments that answer

well-posed economic questions. This approach is unusual in the standard IV literature, which

traditionally defines the parameter of interest to be an “effect” identified by an instrument.

Many economists follow Imbens and Angrist (1994) and interpret IV as identifying a weighted

average of the gains to persons induced to change their choice (or state) by a change in the instru-

ment. Imbens and Angrist work with a two choice model. Heckman, Urzua, and Vytlacil (2006,

2008) and Heckman and Vytlacil (2007b) extend this analysis to an ordered choice model and to

general unordered choice models.10 This paper develops the unordered case further and gives a
7Heckman and Vytlacil (2007a) define structural models precisely following the seminal definition of Hurwicz

(1962). These discussions formalize ideas in Marschak (1953).
8See the discussion in Heckman (2008) and Heckman and Vytlacil (2007b).
9MTE was introduced into the literature in the context of a selection model by Björklund and Moffitt (1987). The

Local Average Treatment Effect (LATE) (Imbens and Angrist, 1994) is a discretized version of the MTE. The weights
for special cases were derived by Yitzhaki (1989) and applied by Imbens and Angrist (1994). Those weights are always
non-negative. Heckman and Vytlacil (1999, 2005, 2007b) and Heckman, Urzua, and Vytlacil (2006) generalize the
Imbens-Angrist-Yitzhaki analysis to the case of multiple instruments without restrictions and show how IV weights
can be non-positive over certain intervals, but that they must integrate to one.

10Angrist and Imbens (1995) propose an ordered choice version of their 1994 paper. As shown by Heckman,
Urzua, and Vytlacil (2006), their proposed extension has unsatisfactory features which can be removed by a careful
reformulation of the IV method applied to the ordered choice model. See also Heckman and Vytlacil (2007b).
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precise characterization of the generalization of the MTE that is appropriate for this case.

The original Imbens-Angrist intuition applies, but in general unordered choice models, agents

attracted into a state by a change in an instrument come from many origin states, so there are many

margins of choice. Structural models can identify the gains arising from these separate margins.

This is a difficult task for IV without invoking structural assumptions. Structural models can also

identify the fraction of persons induced into a state coming from each origin state. IV alone cannot.

For some economic questions, these are unimportant distinctions. For others, they are crucial.

For specificity, consider an analysis of the GED program. The GED is a test by which high school

dropouts can exam certify to be the equivalents of ordinary high school graduates. Heckman,

LaFontaine, and Rodŕıguez (2008) show that the presence of a GED program induces some persons

to drop out of high school. It also induces some persons who would remain dropouts to exam

certify. Within this context we ask: What are the wage benefits for those induced to take the GED

from the dropout state? For those induced to drop out of high school? What proportion of persons

induced to take a GED come from each of the other states?

IV cannot answer these questions except under structural assumptions. It can identify the mean

gross gain to the GED for those induced to take it, compared to the next best alternative. This is

a weighted average of the effects from each possible origin state that the structural approach can

separately identify. In the IV approach, when there are multiple origin states, the weights on the

individual effects cannot be estimated without using structural methods. As shown in Heckman

and Vytlacil (2007b), IV needs to be supplemented with explicit choice theory to answer many

interesting questions, including questions of economic welfare regarding introduction of policies as

well as distributional questions such as the percentage of persons harmed by a policy.

This paper demonstrates these points. We first establish a precise framework for discussing IV,

and relating it to economic models.

2 The Choice Model and Assumptions

Following Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil (2007b), consider

the following model with multiple choices and associated multiple outcome states. Let J denote

the agent’s choice set, where J contains a finite number of elements. For example, J enumerates
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possible schooling states (e.g., GED, high school dropout, high school graduate). The value to the

agent of choosing j ∈ J is

Rj(Zj) = ϑj(Zj)− Vj , (2.1)

where Zj are the agent’s observed characteristics that affect the utility from choosing j, and Vj is

the unobserved shock to the agent’s utility from choice j. We sometimes write Rj for Rj(Zj) to

simplify notation. Let Z denote the random vector containing all unique elements of {Zj}j∈J . We

write Rj(Z) for Rj(Zj), leaving implicit the condition that Rj(·) only depends on the elements of

Z that are contained in Zj . Let Dj be a variable indicating whether the agent would choose j if

confronted with choice set J :11

Dj =


1 if Rj ≥ Rk ∀ k ∈ J

0 otherwise.

Array the Dj into a vector D. Let Y be the outcome that would be observed if the agent faced

choice set J , defined as

Y =
∑
j∈J

DjYj ,

where Yj is a potential outcome observed only if option j is chosen. Yj is determined by

Yj = µj(Xj , Uj),

where Xj is a vector of the agent’s observed characteristics and Uj is an unobserved random vector.

Let X denote the random vector containing all unique elements of {Xj}j∈J . (Z,X,D, Y ) is assumed

to be observed by the analyst.12

11Below, we invoke conditions so that ties, Rj = Rk for j 6= k, occur with probability zero.
12Depending on the choice model, Z may or may not include the X. For example, in a Roy model of schooling under

perfect certainty (e.g. Willis and Rosen, 1979), X would be among the Z. In models of schooling under uncertainty
(e.g. Cunha, Heckman, and Navarro, 2005, Cunha and Heckman, 2007 and Urzua, 2008) innovations in X unknown
at the time schooling decisions are made would not be in Z. The key condition on Z is given in Assumption (A-2)
below.
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Define RJ as the maximum obtainable value given choice set J :

RJ = maxj∈J {Rj}

=
∑

j∈JDjRj .
(2.2)

This is the traditional representation of the decision process that if choice j is optimal, choice j is

better than the “next best” option:

Dj = 1⇐⇒ Rj ≥ RJ\j .

Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil (2007b) show that this

simple, well-known, representation is the key intuition for understanding how instrumental variables

estimate the effect of a given choice versus the “next best” alternative. IV is a weighted average

of the effects for people induced into a choice from different margins. Analogous to the definition

of RJ , we define RJ (z) to be the maximum obtainable value given choice set J when instruments

are fixed at Z = z,

RJ (z) = max
j∈J
{Rj(z)}.

Following the analysis in Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil

(2007b), we assume:

(A-1) The distribution of ({Vj}j∈J ) is continuous.13

(A-2) {(Vj , Uj)}j∈J is independent of Z conditional on X.

(A-3) E | Yj | <∞ for all j ∈ J .

(A-4) Pr(Dj = 1 | X) > 0 for all j ∈ J .

In addition, we assume an exclusion restriction that requires some additional notation.14 Let

Z [−l] denote all elements of Z except for the lth component. We assume
13Absolutely continuous with respect to Lebesgue measure on

∏
j∈J<.

14We work here with exclusion restrictions in part for ease of exposition. By adapting the analysis of Cameron
and Heckman (1998) and Heckman and Navarro (2007), one can modify our analysis for the case of no exclusion
restrictions if Z contains a sufficient number of continuous variables and there is sufficient variation in the ϑk function
across k.
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(A-5) For each j ∈ J , their exists at least one element of Z, say Z [l], such that the distribution of

ϑj(Zj) conditional on (X,Z [−l]) is continuous.

With these assumptions, one can generalize the analysis of Heckman and Vytlacil (1999, 2001,

2005) to the unordered case. Assumptions (A-1) and (A-2) imply that Rj 6= Rk (with probability

1) for j 6= k, so that argmaxj∈J {Rj} is unique (with probability 1). Assumption (A-2) assures the

existence of an instrument. Assumption (A-3) is required for mean treatment parameters to be well

defined. It also allows one to integrate to the limit and to produce well-defined means. Assumption

(A-4) requires that at least some individuals participate in each choice for all X. Assumption

(A-5) imposes the requirement that one be able to independently vary the index for the given value

function. It imposes a type of exclusion restriction, that for any j ∈ J , Z contains an element

such that (i) it is contained in Zj ; (ii) it is not contained in any Zk for k 6= j, and (iii) ϑj(·) is a

nontrivial function of that element conditional on all other regressors.15

In a series of papers, Heckman and Vytlacil (1999, 2001, 2005, 2007b), develop the method of

local instrumental variables (LIV) to estimate the marginal treatment effect (MTE) for the case of

binary choices. We now define and interpret the MTE and LIV in the case of general unordered

choices.

3 Interpreting Local Instrumental Variables in the Unordered Case

We define local instrumental variables (LIV) using a variable that shifts people toward (or against)

choice j by operating only on Rj(Zj). LIV identifies an average marginal return to j vs. the next

best alternative across persons.16 However, without further assumptions, LIV will not decompose

the average marginal return into its component parts corresponding to the effects for persons

induced into j from each of the possible origin states.

To see this, consider a three outcome case, J = {1, 2, 3}. For concreteness, we pursue the

education example previously stated and let 1 be GED, 2 be high school dropout, and 3 be high

school graduate. Our results are more general but the three outcome case is easy to exposit.

In this section, we assume that Z1, Z2, Z3 are disjoint sets of regressors so Z = (Z1, Z2, Z3)
15See Heckman and Vytlacil (2007b) for additional discussion.
16See Heckman, Urzua, and Vytlacil (2006) and Heckman and Vytlacil (2007b).
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but they are not necessarily statistically independent. We can easily relax this assumption but it

simplifies the notation. We condition on X and keep it implicit throughout the analysis of this

paper.17 In this notation,

E (Y | Z) = E

 3∑
j=1

YjDj

∣∣∣∣∣∣Z
 (3.1)

= E (Y1D1 | Z) + E (Y2D2 | Z) + E (Y3D3 | Z) .

E(Y |Z) and its components can be estimated from data on (Y,Z). IV is based on (3.1). From

(2.2), choices are generated by the following inequalities:

D1 = 1 (R1 ≥ R2, R1 ≥ R3)

D2 = 1 (R2 ≥ R1, R2 ≥ R3)

D3 = 1 (R3 ≥ R1, R3 ≥ R2) .

We define the marginal change in Y with respect to Z1. IV methods are based on such types

of variation. The local instrumental variable estimator using Z1 as an instrument is the sample

analogue of
∂E(Y |Z)

∂Z1

∂ Pr(D1=1|Z)
∂Z1

∣∣∣∣∣
Z=z

= LIV(z),

where LIV is a function of z. In the case of three choices, there are two margins from which persons

can be attracted into or out of choice 1 by Z1.18

From local variations in Z1, one can recover the following combinations of parameters from the
17See Heckman and Vytlacil (2007b) for a more general analysis.
18Recall that Z1 only affects the utility associated with choice 1.

8



data on Y1D1:

∂E (Y1D1 | Z = z)
∂Z1

=
∂

∂Z1

∫ ∫ ϑ1(Z1)−ϑ2(Z2)

−∞

∫ ϑ1(Z1)−ϑ3(Z3)

−∞
y1fY1,V1−V2,V1−V3 (y1, v1 − v2, v1 − v3) d (v1 − v3) d (v1 − v2) dy1

∣∣∣∣∣
Z=z

=
∂ϑ1 (Z1)
∂Z1

∣∣∣∣
Z1=z1

 ∫
y1

∫ ϑ1(z1)−ϑ3(z3)
−∞ fY1,V1−V2,V1−V3 (y1, ϑ1 (z1)− ϑ2 (z2) , v1 − v3) d (v1 − v3) dy1

+
∫
y1

∫ ϑ1(z1)−ϑ2(z2)
−∞ fY1,V1−V2,V1−V3 (y1, v1 − v2, ϑ1 (z1)− ϑ3 (z3)) d (v1 − v2) dy1

 .
(3.2)

By similar reasoning, we can recover the following combination of parameters from the data on

Y2D2:

∂E (Y2D2 | Z = z)
∂Z1

=
∂

∂Z1

∫
y2

∫ ϑ2(Z2)−ϑ1(Z1)

−∞

∫ ϑ2(Z2)−ϑ3(Z3)

−∞
fY2,V2−V1,V2−V3(y2, v2 − v1, v2 − v3) d (v2 − v3) d (v2 − v1) dy2

∣∣∣∣∣
Z=z

=
−∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1

[∫
y2

∫ ϑ2(z2)−ϑ3(z3)

−∞
fY2,V2−V1,V2−V3(y2, ϑ2(z2)− ϑ3(z1), v2 − v3)d (v2 − v3) dy2

]
.

(3.3)

From data on Y3D3, we obtain the following combination of parameters:

∂E (Y3D3 | Z1 = z)
∂Z1

=
−∂ϑ1 (Z1)

∂Z1

∣∣∣∣
Z1=z1

∫
y3

∫ ϑ3(z3)−ϑ2(z2)

−∞
fY3,V3−V1,V3−V2 (y3, ϑ3 (z3)− ϑ1 (z1) , v3 − v2) d (v3 − v2) dy3 .

(3.4)

Agents induced into 1 come from 2 and 3. There are two margins:

(R1 = R2) and (R1 ≥ R3) (margin of indifference between 1 and 2),

and

(R1 = R3) and (R1 ≥ R2) (margin of indifference between 1 and 3).

9



Unaided, IV does not enable analysts to identify the returns at each of the different margins.

Instead, it identifies a weighted average of returns. It does not identify the density of persons at

the various margins, i.e., the proportion of people induced into (or out of) 1 from each possible

alternative state by a change in the instrument.

Collecting terms and rewriting in more easily interpretable components, which generalize the

MTE developed for a two choice model to a multiple choice unordered model:19

(
∂E(Y |Z)

∂Z1

)
(

∂ϑ1
∂Z1

)
∣∣∣∣∣∣
Z=z

=



Generalization of MTE for persons indifferent
between 1 and 2, where choice 3 is dominated︷ ︸︸ ︷

[E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))] Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ [E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))]︸ ︷︷ ︸
Generalization of MTE for persons indifferent
between 1 and 3, where choice 2 is dominated

Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))


.

This is a weighted return to alternative 1 for persons coming from two separate margins: alternative

1 versus alternative 2, and alternative 1 versus alternative 3, i.e., the return to people induced into

1 from their next best choice. The weights are the proportion of people induced into 1 from each

margin. This combination of parameters can be identified from IV. The components of the sum

cannot be identified by IV without further assumptions. Note that it is possible that a group at one

margin gains while a group at another margin loses. IV only estimates a net effect, which might

be zero.

Notice that from representation (2.1) and the assumption that the Zj (jεJ ) are distinct, pairwise

monotonicity, an extension of the monotonicity assumption invoked by Imbens and Angrist (1994)

for the binary choice case, is satisfied.20 In the context of a model with multiple choices, pairwise

monotonicity means the same pattern of flow between any two states is experienced by everyone.

Thus, as Zj increases, there is a flow from i to j but not from j to i (or vice versa). From (2.1),

changing Z1 induces all persons to move in the same direction (i.e. from 1 to 2 or 2 to 1 but

not both, and from 1 to 3 or 3 to 1 but not both). Pairwise monotonicity does not rule out the
19Heckman, Urzua, and Vytlacil (2006) generalize the MTE to an ordered choice model. See also Heckman and

Vytlacil (2007b).
20This is defined as “uniformity” in Heckman, Urzua, and Vytlacil (2006).
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possibility that a change in an instrument causes people to move in the direction from j to i but

to move away from the direction from k to i for j 6= k, and j, k 6= i.

By the chain rule, the derivative of Pr (D1 = 1 | Z) is:

∂ Pr (D1 = 1 | Z = z)
∂Z1

=
∂ϑ1

∂Z1

∣∣∣∣
Z1=z1

 Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))

 .
We can define LIV in terms of the preceding ingredients as

LIV(z) =

(
∂E(Y |Z)

∂Z1

)
(

∂ Pr(D1=1|Z)
∂Z1

)
∣∣∣∣∣∣
Z=z

=

 E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))ω12

+E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))ω13

 .
(3.5)

The combination of terms can be identified by LIV from the data on (Y,D,Z).

The IV weights are:

ω12 =
Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3)) Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))


(3.6)

(3.7)

and

ω13 =
Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2)) Pr (R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

+ Pr (R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2))


. (3.8)

The weights can be identified from a structural discrete choice analysis.21 They cannot be identified

by an unaided instrumental variable analysis. Thus it is not possible to identify the component
21Conditions for nonparametric identification of the multinomial discrete choice model are presented in Matzkin

(1993, 1994). Conditions for nonparametric identification of the full choice model with outcomes are given in Heck-
man and Vytlacil (2007a, Appendix B). Conditions for identification of general dynamic discrete choice models are
presented in Abbring and Heckman (2007).
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parts of (3.3) by LIV alone, i.e., one cannot separately identify the generalized MTEs:

E (Y1 − Y2 | R1 (z1) = R2 (z2) , R1 (z1) ≥ R3 (z3))

and

E (Y1 − Y3 | R1 (z1) = R3 (z3) , R1 (z1) ≥ R2 (z2)) ,

unless one invokes “identification at infinity” arguments.22

Using a structural model, one can estimate the components of (3.5) and determine the flow into

(or out of) state 1 from all sources. We illustrate this point in Section 5. First we consider what

standard IV estimates.

4 What does standard IV estimate?

To see what standard IV estimates, consider the following linear-in-schooling model of earnings

that receives much attention in the literature in labor economics.23 Let Y denote log earnings and

write S as years of schooling. The model writes

Y = α+ βS + U (4.1)

where

S =
3∑

j=1

jDj , (4.2)

and Y is defined as in Section 2. It is interpreted in this section as an approximation to the general

model presented in Section 2. S is assumed to be correlated with U , and β is a random variable

that may be statistically dependent on S. The model of Section 2 does not, in general, imply (4.1).
22See Heckman and Vytlacil (2007b) who show how to vary Z3 or Z2 to effectively shut down one margin of

choice. Specifically, for any fixed Z1 = z1, if limZ2→Z̃2
R2(Z2)→ −∞ and limZ3→Z̃3

R3(Z3)→ −∞ where Z̃2 and Z̃3

represent limit sets, then we can identify, respectively, the gains at the 3→ 1 margin in the limit set, and the gains
in the 2 → 1 margin in the limit set. These assumptions require that one can vary Z2 and Z3 to shut down one or
the other margin of choice. Under these assumptions and some additional mild regularity assumptions, the structural
approach can identify distributions of (Y1 − Y2) and (Y2 − Y3) as we demonstrate in the example in Section 5 of this
paper.

23We keep conditioning on X implicit.
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Indeed, there is much empirical evidence against model (4.1).24 An analysis of what IV estimates

when linearity in S is imposed as an approximation, even though it may be inappropriate, is an

interesting exercise because linearity is so often invoked.

Suppose Z1 is a valid instrument. We now interpret what

∆IV
Z1

=
Cov(Z1, Y )
Cov(Z1, S)

(4.3)

estimates. We do this by decomposing ∆IV
Z1

into components analogous to the decomposition pro-

duced by Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil (2007b). The

Appendix presents the derivation of the following decomposition of IV into our pairwise general-

ization of MTE for the unordered case:

∆IV
Z1

=
Cov(Z1, Y )
Cov(Z1, S)

= (4.4)
∫∞
−∞

∫∞
−∞

Generalized MTE (2→ 1) not identified from LIV︷ ︸︸ ︷
E (Y1 − Y2 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1)︸ ︷︷ ︸

weight identified from discrete

choice analysis

d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))



+


∫∞
−∞

∫∞
−∞

Generalized MTE(3→ 1) not identified from LIV︷ ︸︸ ︷
E (Y1 − Y3 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1)︸ ︷︷ ︸

weight identified from discrete

choice analysis

d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))


∫∞
−∞

∫∞
−∞

[
−ηϑ2(Z2)−ϑ3(Z3),V2−V1

(ϑ2 (z2)− ϑ3 (z3) , v2 − v1)
]︸ ︷︷ ︸

weight identified from discrete

choice analysis

d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1)

+2
∫∞
−∞

∫∞
−∞

[
−ηϑ3(Z3)−ϑ2(Z2),V3−V1

(ϑ3 (z3)− ϑ2 (z2) , v3 − v1)
]︸ ︷︷ ︸

weight identified from discrete

choice analysis

d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2)) .

IV identifies a weighted average of gains to state 1 compared to the next best alternative which

may be 2 or 3. The two terms of the decomposition are defined as generalized MTEs and are

weighted averages of the gain of moving from state 2 to state 1 for persons on the margin of
24See Heckman, Lochner, and Todd (2006) for discussions of this model and various justifications for it. Heckman,

Layne-Farrar, and Todd (1996) present evidence against linearity of the earnings function in terms of years of
schooling.
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indifference between 1 and 2 and for whom 2 is a better choice than 3 (the first term) and the gain

of moving from 3 to 1 for persons on the margin of indifference between 1 and 3 and for whom 3

is a better choice than 2 (the second term).25

In the Appendix, we derive the weights on the generalized MTEs and show that they do not

sum to 1 even when normalized by the denominator. The mathematical reason for this result is

simple. The weights in the numerator do not sum to the weights in the denominator. The second

term in the denominator receives twice as much weight as the corresponding term in the numerator.

This is a consequence of the definition of S (4.2), which plays no role in the numerator term. Thus,

IV applied to the general model produces an arbitrarily weighted sum of generalized MTEs with

weights that do not sum to 1, and which, in general, places more weight on the first generalized

MTE term than on the second term, compared to the weights placed on the corresponding terms

in the denominator.26 Using IV alone, we cannot decompose (4.4) into its component parts, even

though the weights can be identified from discrete choice analysis.27,28

25Since Z1 only affects R(Z1), it has no direct effect on the margin 2→ 3.
26Thus “2” appears only in the denominator and not in the numerator.
27The structural model is nonparametrically identified under the conditions in Appendix B of Heckman and Vytlacil

(2007a).
28Decomposition (4.4) is not unique. It arises from decomposing Y into

Y = D1Y1 + D2Y2 + D3Y3

where we solve out D1 = 1−D2 −D3, to obtain

Y = Y1 + D2(Y2 − Y1) + D3(Y3 − Y1).

We could also solve out D2 = 1−D1 −D3 to obtain

Y = Y2 + D1(Y1 − Y2) + D3(Y3 − Y2)

or D3 = 1−D1 −D2 to obtain

Y = Y3 + D1(Y1 − Y3) + D2(Y2 − Y3).

Each decomposition can be used to represent ∆IV
Z1 . For each decomposition, the leading terms on the right-hand

side, (Y1, Y2, Y3), respectively, are uncorrelated with Z1 by virtue of (A-2). Corresponding generalized MTEs can be
defined for each decomposition. Z1 affects the lower boundary of the opportunity set in

E(Y2 − Y3|R(z2) ≥ R(z1), R(z3) ≥ R(z1)).

We choose the decomposition reported in the text for its greater interpretability.
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4.1 The Mincer Model

The Mincer (1974) model is a specialization of the general model discussed in Section 2 of this

paper that justifies the precise functional form of equation (4.1).29 For this case, the weights in

(4.4) in the numerator and denominator are the same. The Mincer model is formulated in terms

of log earnings for Y1, Y2, and Y3:

Y2 = ln (1 + g) + Y1,

Y3 = ln (1 + g) + Y2 = 2 ln(1 + g) + Y1,

where g is a growth factor for income that varies in the population. Earnings at each schooling

level depend on two parameters: (g, Y1). In this case, letting α = ln(1 + g),

∆IV
Z1

=
Cov(Z1, Y )
Cov(Z1, S)

(4.6)

=

 ∫∞
−∞

∫∞
−∞E (α | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×ηϑ2(Z2)−ϑ3(Z3),V2−V1 (ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))


+

 ∫∞
−∞

∫∞
−∞E (α | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×2ηϑ3(Z3)−ϑ2(Z2),V3−V1 (ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))



×

 ∫∞−∞ ∫∞−∞ ηϑ2(Z2)−ϑ3(Z3),V2−V1 (ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3))

+2
∫∞
−∞

∫∞
−∞ ηϑ3(Z3)−ϑ2(Z2),V3−V1 (ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2))

−1

.

In this case, the weights now sum to 1. The weights for the numerator term now are the same

as the weights for the denominator term. But again, unaided IV does not identify the component

parts of the term bundled in IV — the mean gains at each margin.30,31

29See Heckman, Lochner, and Todd (2006) for a discussion of the Mincer Model and the powerful body of evidence
against it. Card (2001) provides one justification for functional form 4.1.

30An anonymous referee has correctly expressed the concern that in the case of an income-maximizing Mincer
model under perfect certainty, the general unordered model would not apply. Indeed, the decision problem is not well
defined. If g > r, the opportunity cost of funds, agents would choose the maximum amount of schooling. If g < r,
the agent chooses no schooling. If g = r, the agent is indifferent to all levels of schooling. Thus, for our analysis to
apply to the Mincer earnings equation, we have to assume that choices involve some combination of psychic costs,
tuition, uncertainty or the like. The model of Keane and Wolpin (1997) is one of many frameworks that would justify
an unordered choice model but could be consistent with a Mincer earnings equation. See Heckman, Lochner, and
Todd (2006). We thank the referee for emphasizing this point to us.

31Decomposition (4.6) for an ordered choice model is presented in Heckman, Urzua, and Vytlacil (2006) and
Heckman and Vytlacil (2007b).
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5 An Example

It is instructive to summarize our analysis with an example. Consider a 3 choice model with as-

sociated outcomes. This corresponds to the GED, high school dropout and high school graduate

example that we have used throughout the paper. Under conditions presented in Heckman and Vyt-

lacil (2007a, Appendix B), the structural model is nonparametrically identified. A key assumption

in their proof is the “identification at infinity” assumption previously discussed.32 This assumes

the ability to vary (Z1, Z2, Z3) freely and the existence of limit sets such that fixing any two of

(Z1, Z2, Z3), one makes the Rj associated with Zj arbitrarily small.33

Heckman and Vytlacil (2007b) show that if one augments the IV assumptions with the same

identification at infinity assumptions used in structural models, one can use IV in the limit to

identify the components of (3.5). In the limit sets, one can identify

E(Y1 − Y2|R1(z1) = R2(z2)) (5.1)

and

E(Y1 − Y3|R1(z1) = R3(z3)) (5.2)

by setting Z3 and Z2 respectively to limit set values. Essentially one can use the limit sets to make

a three choice model into a two choice model, and the standard results for the two choice model

apply.34 Under these assumptions, and additional mild regularity assumptions, using structural

methods, one can identify the distributions of (Y1, Y2) and (Y1, Y3) so that one can identify distri-

butions of treatment effects, Y2 − Y1 and Y3 − Y1, in addition to the mean parameters identified

by IV.35 One can also identify the proportion of people induced into 1 from each alternative state

using variation in the instrument.

Consider the model with the parameters presented in Table 1. This is a discrete choice model

with associated outcome variables. The Zj , j = 1, . . . , 3, are assumed to be scalar and mutually

independent. They are normally distributed so they satisfy large support (“identification at infin-
32Alternatively, one can make functional form assumptions about the distribution of the error terms.
33See the conditions in footnote 22.
34See Heckman and Vytlacil (2007b)
35The literature on “quantile treatment effects” uses IV to identify the quantiles of Y1 and Y2 separately but not

the quantiles of Y1 − Y2. See Abbring and Heckman (2007).
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ity”) conditions. Table 2 shows how a change in Z1, which increases it by .75 standard deviations,

shifts people across categories. This corresponds to making GED attainment easier.36 The esti-

mates reported in Table 2 can be obtained from a structural discrete choice model. The percentage

initially in 1 (GED) increases from 33.17% to 38.8%. The percentage in 2 (dropout) decreases from

29.11% to 25.91%. The percentage in 3 (graduating high school) declines from 37.72% to 35.29%.

The IV estimate is -.032. (See the base of Table 3) This is the only number produced by an IV

analysis using Z1 as an instrument that changes within the specified range. The structural analysis

in Table 3 shows that the net effect produced by the change in Z1 is composed of 2 terms. It arises

from a gain of .199 for the switchers 2→ 1 (dropout to GED) and a loss of .336 (3→ 1) (graduate

to GED).

Figure 1 shows what can be identified from the structural model. It plots the distributions of

gains for persons going from 2 to 1 and from 3 to 1 as well as the overall distribution of gains to

the switchers. Persons switching from 3 to 1 are harmed in gross terms by the policy that changes

Z1, while those who switch from 2 to 1 gain in gross terms. In utility terms, (Rj), people are

better off.37 In terms of gross gains, about 56.8% of the people who switch from 2 to 1 are better

off while 39.3% of the people who switch from 3 to 1 are better off. Overall, 49.2% are better off

in gross terms even though the IV estimate is slightly negative. If one seeks to understand the

distributional effects of the policy associated with a change Z1, the structural analysis is clearly

much more revealing. The IV estimate, which is a mean gross gain aggregating over origin states,

does not capture the rich information about choices afforded by a structural analysis. However, it

does identify the average gain to the program compared to the next-best alternatives. If that is

the object of interest, linear IV is the right tool to use.

6 Summary and Discussion

The choice between using IV or a more structural approach for a particular problem should be

made on the basis of Marschak’s Maxim: use minimal assumptions to answer well-posed economic

questions. Most IV studies do not clearly formulate the economic question being answered by the
36Heckman, LaFontaine, and Rodŕıguez (2008) show that easing GED requirements promotes dropping out of

school and causes some dropouts to become GEDs.
37This is imposed in a discrete choice model.
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IV analysis. The probability limit of the IV estimator is defined to be the object of interest. In

the binary outcome case, even if Z is a valid instrument, if Z is a vector, and analysts use only one

component of the vector as an instrument, and do not condition on the other components of Z,

the weights on the MTE can be negative over certain ranges. The practice of not conditioning on

the other instruments is common in the literature.38 IV can estimate the wrong sign for the true

causal effect.39 Recent analyses show how to improve on this practice and to design functions of

standard instrumental variables that answer classes of well-posed economic questions.40

We have discussed a model with three or more choices where there is no particular order among

the choices. Such examples arise routinely in applied economics. In this case, under conditions

specified in this paper, IV estimates a weighted average of the mean gross gain to persons induced

into a choice state by a change in the instrument (policy) compared to their next best alterna-

tive.41 It averages the returns to a destination state over all origin states. It does not produce the

distribution of gains overall or by each origin state. Again, as in the binary choice case, for vector

Z, using one component of Z as an instrument, and not conditioning on the other components can

produce negative weights so that the sign of an IV can be opposite to that of the true causal effect

which can be identified by a structural analysis.

Structural methods provide a more complete description of the effect of the instrument or the

policy associated with the instrument. They identify mean returns as well as distributions of returns

for agents coming to a destination state from each margin. They also identify the proportion of

people induced into a state from each origin state.

Structural methods come at a cost. Unless distributional assumptions for unobservables are

invoked, structural methods require some form of an “identification at infinity” assumption.42

However, in the general case in which responses to treatment are heterogeneous, IV requires the

same assumption if one seeks to identify average treatment effects.43 An identification at infinity

assumption can be checked in any sample so it does not require imposing a priori beliefs onto the

data. Heckman, Stixrud, and Urzua (2006) present an example of how to test an identification at
38See e.g. Card (2001).
39See Heckman, Urzua, and Vytlacil (2006).
40See Heckman and Vytlacil (2005, 2007b).
41See Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil (2007b).
42See Heckman and Vytlacil (2007a, Appendix B).
43See Heckman, Urzua, and Vytlacil (2006, 2008) and Heckman and Vytlacil (2007b).
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infinity assumption. See also the discussion in Abbring and Heckman (2007).44

Many proponents of IV point to the strong distributional and functional form assumptions

required to implement structural methods. They ignore recent progress in econometrics that iden-

tifies and empirically implements robust semiparametric and nonparametric approaches to struc-

tural analysis.45 Recent developments respond to arguments against the use of explicit econometric

models made by a generation of applied economists that emerged in the 1980s. Those arguments

are more properly directed against 1980s versions of structural models that were based on linearity

and normality. Structural econometricians in the 21st century have listened to the critics and have

perfected their tools to response to the criticism.

The appeal to standard IV as a preferred estimator is sometimes made on the basis of “sim-

plicity and robustness”. Standard IV is certainly simple to compute although problems with weak

instruments can make it empirically unstable.46 Since, in the general case, different instruments

identify different parameters, IV is not robust to the choice of instrument.47 Since the sign of an

IV can be different from the true causal effect, IV may even produce a misleading guide to policy

or inference, so it is not robust.

The meaning of “simplicity” is highly subjective. How simple is the economic interpretation

of IV? Certainly decomposition (4.4) is not simple. The fact that simple IV can estimate wrong

signs for true causal effects should give pause to those who claim that it is “robust”. The weak

instrument literature cautions us against uncritical claims about the sturdiness of IV estimators.

The ability of different statistical estimators to answer questions of economic interest, or to show

why they cannot be answered, should drive the choice of empirical techniques for analyzing data.

Consider a worst case for structural estimation. Suppose that application of recently developed

procedures for testing for structural identification reveal that a structural model is not identified

or is only partially identified. Does this conclusion suggest that IV is a better choice for an

estimator? That disguising identification problems by a statistical procedure is preferable to an

honest discussion of the limits of the data? For underidentified structural models, it is possible to
44However, this assumption is not yet routinely checked in many structural analyses.
45See e.g. Abbring and Heckman (2007), Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and Navarro

(2007), Cunha, Heckman, and Schennach (2006, revised 2008), and Matzkin (1992, 1993, 2007). These recent de-
velopments in robust structural modeling have not yet made their way into widespread use in empirical structural
analysis.

46See e.g. Stock and Staiger (1997) and the ensuing large literature on weak instruments.
47See Heckman, Urzua, and Vytlacil (2006).
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conduct sensitivity analyses guided by economic theory to explore the consequences of ignorance

about features of the model. With IV, unaided by structural analysis, this type of exercise is not

possible. Problems of identification and interpretation are swept under the rug and replaced by

“an effect” identified by IV that is often very difficult to interpret as an answer to an interesting

economic question.
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A Derivation of the Standard IV Estimator

We first study the numerator of ∆IV
Z1

in the text. Recall that we keep the conditioning on X implicit.

Using Z̃1 = Z1 − Z̄1,

Cov (Y,Z1) = E
(
Z̃1 (Y1D1 + Y2D2 + Y3D3)

)
.

Using D1 = 1−D2 −D3, we obtain

Cov (Y, Z1) = E
(
Z̃1 (Y1 + (Y2 − Y1)D2 + (Y3 − Y1)D3)

)
= E

(
Z̃1Y1

)
+ E

(
Z̃1 (Y2 − Y1)D2

)
+ E

(
Z̃1 (Y3 − Y1)D3

)
,

where E
(
Z̃1Y1

)
= 0. It is natural to decompose this expression using choice “1” as the base,

because Z1 only shifts R1(Z1). The final two terms can be written as

Cov (Y,Z1)

= E
(
Z̃1 (Y2 − Y1) 1 (R2(Z2) ≥ R1(Z1), R2(Z2) ≥ R3(Z3))

)
+ E

(
Z̃1 (Y3 − Y1) 1 (R3(Z3) ≥ R1(Z1), R3(Z3) ≥ R2(Z2))

)
= E

[
Z̃1 (Y2 − Y1) 1

(
(ϑ2 (Z2)− ϑ1 (Z1) ≥ V2 − V1) , (ϑ2 (Z2)− ϑ3 (Z3) ≥ V2 − V3)

)]
+ E

[
Z̃1 (Y3 − Y1) 1

(
(ϑ3 (Z3)− ϑ1 (Z1) ≥ V3 − V1) , (ϑ3 (Z3)− ϑ2 (Z2) ≥ V3 − V2)

)]
=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

z̃1 (y2 − y1)

×

(∫ ϑ2(z2)−ϑ1(z1)

−∞

∫ ϑ2(z2)−ϑ3(z3)

−∞
fY2−Y1,V2−V1,V2−V3(y2 − y1, v2 − v1, v2 − v3) d (v2 − v3) d (v2 − v1) d (y2 − y1)

)

× fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3)
(z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1)) dz̃1

+
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

z̃1 (y3 − y1)

×

(∫ ϑ3(z3)−ϑ1(z1)

−∞

∫ ϑ3(z3)−ϑ2(z2)

−∞
fY3−Y1,V3−V1,V3−V2 (y3 − y1, v3 − v1, v3 − v2) d (v3 − v2) d (v3 − v1) d (y3 − y1)

)

× fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2)
(z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1)) dz̃1.
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By Fubini’s Theorem, we can simplify the expressions and obtain for the first term:

∫ ∞
−∞

∫ ∞
−∞

E (Y2 − Y1 | V2 − V1 = v2 − v1, ϑ2 (z2)− ϑ3 (z3) ≥ V2 − V3)

×

{∫ ∞
−∞

z̃1

[(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×
(∫ ∞

v2−v1

fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))
)]

dz̃1

}
×d (ϑ2 (z2)− ϑ3 (z3)) d (v2 − v1) . (A.1)

hV2−V1,V2−V3(.) is the joint density of V2−V1, V2−V3. Define the weighting term in braces in (A.1) as

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)−ϑ3 (z3) , v2−v1). It is necessary to fix both ϑ2 (z2)−ϑ3 (z3) and v2−v1

in forming the weight. This weight can be estimated from a structural discrete choice analysis and

the joint distribution of (Z,D1, D2, D3). The terms multiplying the weight are marginal treatment

effects generalized to the unordered case. (A.1) cannot be decomposed using IV. An alternative

representation of the term in braces, ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) is

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) =

E (Z1 − E (Z1) | ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1)

× Pr (ϑ2 (Z2)− ϑ3 (Z3) = ϑ2 (z2)− ϑ3 (z3) , ϑ2 (Z2)− ϑ1 (Z1) ≥ v2 − v1) .

An analysis parallel to the preceding one shows that the second term can be written as

∫ ∞
−∞

∫ ∞
−∞

E (Y3 − Y1 | V3 − V1 = v3 − v1, ϑ3 (z3)− ϑ2 (z2) ≥ V3 − V2)

×

{∫ ∞
−∞

z̃1

[(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×

(∫ ∞
v3−v1

fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)]
dz̃1

}
×d (ϑ3 (z3)− ϑ2 (z2)) d (v3 − v1) . (A.2)

Define the term in braces in (A.2) as the weight ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1).
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To obtain the denominator for the IV, recall that S =
∑3

j=1 j Dj . Substitute D1 = 1−D2−D3,

3∑
j=1

j Dj = (1−D2 −D3) + 2D2 + 3D3

= 1 +D2 + 2D3.

Then

Cov(S, Z̃1) = E
(
Z̃1D2

)
+ 2E

(
Z̃1D3

)
= E

(
Z̃1 (1 (R2 ≥ R1, R2 ≥ R3))

)
(A.3)

+2E
(
Z̃1 (1 (R3 ≥ R1, R3 ≥ R2))

)
.

Using reasoning similar to that invoked for the analysis of the numerator terms, we obtain expres-

sions for the terms corresponding to the two terms of (A.1) and (A.2). We obtain for the first term

of (A.3)

∫ ∞
−∞

z̃1

[∫ ∞
−∞

∫ ∞
−∞

∫ ϑ2(z2)−ϑ1(z1)

−∞
fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×

(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)
d (v2 − v1)

×d (ϑ2 (z2)− ϑ3 (z3)) d (ϑ2 (z2)− ϑ1 (z1))

]
dz̃1. (A.4)

By Fubini’s Theorem, we obtain:

∫ ∞
−∞

∫ ∞
−∞

z̃1

[∫ ∞
−∞

(∫ ϑ2(z2)−ϑ3(z3)

−∞
hV2−V1,V2−V3 (v2 − v1, v2 − v3) d (v2 − v3)

)

×

(∫ ∞
v2−v1

fZ̃1,ϑ2(Z2)−ϑ1(Z1),ϑ2(Z2)−ϑ3(Z3) (z̃1, ϑ2 (z2)− ϑ1 (z1) , ϑ2 (z2)− ϑ3 (z3))

×d (ϑ2 (z2)− ϑ1 (z1))

)
d (ϑ2 (z2)− ϑ3 (z3))

]
d (v2 − v1) dz̃1 (A.5)

=
∫ ∞
−∞

∫ ∞
−∞

ηϑ2(Z2)−ϑ3(Z3),V2−V1
(ϑ2 (z2)− ϑ3 (z3) , v2 − v1) d (v2 − v1) d (ϑ2 (z2)− ϑ3 (z3)) .
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By parallel logic, we obtain for the second term in A.3:

2
∫ ∞
−∞

∫ ∞
−∞

z̃1

[∫ ∞
−∞

(∫ ϑ3(z3)−ϑ2(z2)

−∞
hV3−V1,V3−V2 (v3 − v1, v3 − v2) d (v3 − v2)

)

×

(∫ ∞
v3−v1

fZ̃1,ϑ3(Z3)−ϑ1(Z1),ϑ3(Z3)−ϑ2(Z2) (z̃1, ϑ3 (z3)− ϑ1 (z1) , ϑ3 (z3)− ϑ2 (z2)) d (ϑ3 (z3)− ϑ1 (z1))

)

× d (ϑ3 (z3)− ϑ2 (z2))

]
d (v3 − v1) dz̃1

= 2
∫ ∞
−∞

∫ ∞
−∞

ηϑ3(Z3)−ϑ2(Z2),V3−V1
(ϑ3 (z3)− ϑ2 (z2) , v3 − v1) d (v3 − v1) d (ϑ3 (z3)− ϑ2 (z2)) .

These terms can be identified from a structural analysis using the joint distribution of (Z,D1, D2, D3).

Collecting results, we obtain decomposition (4.4) in the text if we multiply both the numerator and

denominator by -1.

Acknowledgements

We thank Donna Gilleskie, Daniel Schmierer, Greg Veramendi and an anonymous referee for helpful

comments. This project was supported by NSF grant SES-0241858, NIH grant R01-HD043411, a

grant from the Geary Institute, University College Dublin, and a grant from the American Bar

Foundation.

24



References

Abbring, J. H. and J. J. Heckman (2007). Econometric evaluation of social programs, part III:

Distributional treatment effects, dynamic treatment effects, dynamic discrete choice, and general

equilibrium policy evaluation. In J. Heckman and E. Leamer (Eds.), Handbook of Econometrics,

Volume 6B, pp. 5145–5303. Amsterdam: Elsevier.

Angrist, J. D. and G. W. Imbens (1995, June). Two-stage least squares estimation of average

causal effects in models with variable treatment intensity. Journal of the American Statistical

Association 90 (430), 431–442.

Björklund, A. and R. Moffitt (1987, February). The estimation of wage gains and welfare gains in

self-selection. Review of Economics and Statistics 69 (1), 42–49.

Cameron, S. V. and J. J. Heckman (1998, April). Life cycle schooling and dynamic selection bias:

Models and evidence for five cohorts of American males. Journal of Political Economy 106 (2),

262–333.

Card, D. (2001, September). Estimating the return to schooling: Progress on some persistent

econometric problems. Econometrica 69 (5), 1127–1160.

Carneiro, P., K. Hansen, and J. J. Heckman (2003, May). Estimating distributions of treatment ef-

fects with an application to the returns to schooling and measurement of the effects of uncertainty

on college choice. International Economic Review 44 (2), 361–422.

Cunha, F. and J. J. Heckman (2007, October). The evolution of inequality, heterogeneity and un-

certainty in labor earnings in the U.S. economy. National Bureau of Economic Research Working

Paper No. 13526.

Cunha, F., J. J. Heckman, and S. Navarro (2005, April). Separating uncertainty from heterogeneity

in life cycle earnings, The 2004 Hicks Lecture. Oxford Economic Papers 57 (2), 191–261.

Cunha, F., J. J. Heckman, and S. Navarro (2007, November). The identification and economic

content of ordered choice models with stochastic cutoffs. International Economic Review 48 (4),

1273–1309.

25



Cunha, F., J. J. Heckman, and S. M. Schennach (2006). Meaningful value added equations: Anchor-

ing test scores in adult outcomes. Unpublished manuscript, University of Chicago, Department

of Economics.

Heckman, J. J. (1992). Randomization and social policy evaluation. In C. Manski and I. Garfinkel

(Eds.), Evaluating Welfare and Training Programs, pp. 201–230. Cambridge, MA: Harvard Uni-

versity Press.

Heckman, J. J. (2008, April). Econometric causality. International Statistical Review 76 (1), 1–27.

Heckman, J. J., P. A. LaFontaine, and P. L. Rodŕıguez (2008). Taking the easy way out: How
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Table 1. Potential Outcomes, Choice Model and Parameterizations

Outcomes Choice Model

Yj = αj + Uj with j ∈ J = {1, 2, 3} Dj =

 1 if Rj ≥ Rk ∀ j ∈ J

0 otherwise

Y =
∑

j∈J YjDj Rj = γjZj − Vj with j ∈ J

Parameterization

(U1, U2, U3, V1, V2, V3) ∼ N (0,ΣUV ) , (Z1, Z2, Z3) ∼ N (µZ ,ΣZ)

ΣUV =



0.64 0.16 0.16 0.024 −0.32 0.016

0.16 1 0.20 0.020 −0.30 0.010

0.16 0.20 1 0.020 −0.40 0.040

0.024 0.020 0.020 1 0.6 0100

−0.32 −0.30 −0.40 0.6 1 0.2

0.016 0.01 0.040 0100 0.2 1


, µZ = (1.0, 0.5, 1.5) and ΣZ=


1 0 0

0 1 0

0 0 1



[
α1 α2 α3

]
= [ 0.3 0.1 0.7 ],

[
γ1 γ2 γ3

]
= [ 0.2 0.3 0.1 ]
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Table 2. Transition Matrix Obtained from the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation

New Value of Instrument

(Z̃ = Z1 + 0.75)

D1 = 1 D2 = 1 D3 = 1 Total

Original Value D1 = 1 33.17% 0% 0% 33.17%

of Instrument D2 = 1 3.20% 25.91% 0% 29.11%

(Z1) D3 = 1 2.43% 0% 35.29% 37.72%

Total 38.80% 25.91% 35.29% 100%
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Table 3. Marginal Gains Identified from the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation

Gains to Switchers Fraction of Population Switching

From 2 to 1 0.199 3.20%

From 3 to 1 -0.336 2.43%

Overall (IV estimate) -0.032 5.63%

IV Estimate:

E
[
Y |Z̃1

]
− E [Y |Z1] = 3.20

3.20+2.43 × 0.199− 2.43
3.20+2.43 × 0.336 = −0.032
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Figure 1. Distribution of Gains in Outcomes Induced by the Change in the Instrument Z1

The Instrument Increases by 0.75 Standard Deviation

˙  Average Gain for
Switchers From 2 to 1

 Average Gain for ˙
Switchers From 3 to 1

˙  IV Estimate
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