
Metrika (2002) 55: 17–26

> Springer-Verlag 2002

Quantile models and estimators for data analysis

Gilbert W. Bassett Jr.1, Mo-Yin S. Tam1, Keith Knight2

1University of Illinois at Chicago, 601 South Morgan Chicago, IL 60607, USA
2University of Toronto, Department of Statistics, 100 St. George St., Toronto, Ont. M5S3G3,
Canada

Abstract. Quantile regression is used to estimate the cross sectional relation-
ship between high school characteristics and student achievement as measured
by ACT scores. The importance of school characteristics on student achieve-
ment has been traditionally framed in terms of the e¤ect on the expected
value. With quantile regression the impact of school characteristics is allowed
to be di¤erent at the mean and quantiles of the conditional distribution. Like
robust estimation, the quantile approach detects relationships missed by tra-
ditional data analysis. Robust estimates detect the influence of the bulk of the
data, whereas quantile estimates detect the influence of co-variates on alter-
nate parts of the conditional distribution. Since our design consists of multi-
ple responses (individual student ACT scores) at fixed explanatory variables
(school characteristics) the quantile model can be estimated by the usual re-
gression quantiles, but additionally by a regression on the empirical quantile
at each school. This is similar to least squares where the estimate based on the
entire data is identical to weighted least squares on the school averages. Un-
like least squares however, the regression through the quantiles produces a dif-
ferent estimate than the regression quantiles.
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1 Introduction

Quantile regression represents an extension of traditional estimation methods
that allows for distinct quantile e¤ects; see Koenker and Hallock (2001). The
quantile model posits the y th quantile of y conditional on x to be, QðyjxÞ ¼
aðyÞ þ xbðyÞ, 0 < y < 1. If bðyÞ is a constant b, the model reduces to the
standard conditional expectation model, EðyjxÞ ¼ aþ xb, with constant vari-



ance errors. When bðyÞ depends on y, the model allows the distribution of y to
depend on x in di¤erent ways at di¤erent parts of the distribution.
The traditional linear model can be viewed as a summary of all the quan-

tile e¤ects; that is,
Ð
QðyjxÞ dy ¼ EðyjxÞ. Under this interpretation, traditional

analysis loses information due to its aggregation of possibly disparate quantile
e¤ects. Many di¤erent quantile paths, for example, can lead to bk ¼ 0. On the
one hand, bk ¼ 0 can mean xk does not matter – does not a¤ect the distribu-
tion of y. But it can also mean there are important but compensating quantile
e¤ects relating y and x. In the latter case the single b statistic obscures infor-
mation about quantile e¤ects. This is especially important when scientific in-
terest concerns di¤erences in the way regressors a¤ect di¤erent parts of the
distribution. The details provided by the quantiles discriminate between what
would be otherwise identical situations.
While quantile regression and robust estimation are concerned with dif-

ferent aspects of data analysis, they have the shared objective of uncovering
relationships missed by traditional data analysis. The robustness criterion
translates into estimates that are una¤ected by a small fraction of the data,
and sampling distributions that stay good when hypothesized models are only
approximately valid. Robustness is important because (i) approximate validity
is most realistic, and (ii) classical methods, optimal at the hypothesized model,
tend to be far from optimal under slight departures from the given model.
Robust estimation is designed to deal with mistakes due to discrepant data.
Quantile regression is concerned with mistakes due to summarizing potentially
disparate quantile e¤ects into a single, potentially misleading, representation
of the way y and x are related.
In this paper quantile regression is used to estimate the relationship be-

tween student achievement and high school characteristics. (For a financial
application of quantile analysis see Bassett and Chen (2000); see, too, refer-
ences in Koenker and Hallock (2001)). The importance of school character-
istics on student achievement has been traditionally framed in terms of the
e¤ect on the expected value. With quantile regression the impact of school
characteristics is allowed to di¤er at the mean and various quantiles of the
conditional distribution. The quantile estimation allows detection of school
e¤ects that would be missed by standard analysis. Recently, quantile regres-
sion has been used by Eide and Showalter (1998) to consider how student
scores changed over time as a function of school quality, and Levin (2001)
considered peer e¤ects and class size.
Past research on school inputs and outputs as measured by ACT scores has

often shown negligible e¤ects. (The ACT is a general achievement test taken by
US high school students. Either the ACT or the related SAT exam is required
by almost all US colleges and universities). Class size, expenditures per student,
and other policy variables have been found unimportant after controlling for
social and economic di¤erences. Hanushek (1998) and more recently, Hoxby
(2000), for example, find little evidence that reduction in class size leads to im-
provement in student achievement. Hanuschek, Rivkin, and Taylor (1996) and
Hanushek and Somers (1999) show that school expenditures do not make a
significant di¤erence on student performance. Hanushek, Kain, Rivkin (1999)
also find little evidence that higher teacher salaries result in higher quality
teachers and conclude that higher expenditures on teachers do not matter. Since
these analyses were based on estimates of mean e¤ects, they do not rule out
that the school inputs matter in selected parts of the achievement distribution.
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We consider ACT scores for all Illinois students in 1996 along with asso-
ciated school and demographic characteristics. Regression quantiles on the
entire data set provides one set of estimates. Since the design consists of mul-
tiple responses (individual student ACT scores) at fixed explanatory variables
(school characteristics) the quantile model can be also estimated by a regres-
sion on the empirical quantile at each school. This is similar to least squares
where the estimate based on the entire data is identical to the weighted esti-
mate based on just the school average ACT. This identity for least squares
does not however extend to quantile estimates.
The next section presents the quantile model and describes quantile esti-

mation methods. Data and variables are described in Section 3. Comparison
of estimates in Section 4 focuses on school characteristics where the quantile
and mean results di¤er.

2 Quantile regression

2.1 Model

Let yij denote the j th student’s ACT score at school i where j ¼ 1; . . . ; ni,
i ¼ 1; . . . ; n, and let xi denote a vector of characteristics at the i

th school. The
proportion of observations at each school is li ¼ ni=N, where N ¼

Pn
i¼1 ni.

The yij are assumed to be independent with distribution, F ðzjxiÞ.
With the standard linear expectation model, student scores are assumed to

have an expected value that is a linear function of school characteristics,

EðyijjxiÞ ¼ aþ xib: ð1Þ

Conditional on xi, the b coe‰cient describes the way school characteristics
a¤ect average ACT scores.
For the linear quantile model it is the y th quantile of yij that depends on

school characteristics. That is, let the quantile function or ‘‘inverse’’ of FðzjxiÞ
be denoted by QiðyÞ ¼ QðyjxiÞ, 0 < y < 1. The linear quantile model specifi-
cation entails, QðyjxiÞ ¼ aðyÞ þ xibðyÞ.
When bðyÞ does not depend on y, the quantile model reduces to the stan-

dard expectation model with constant variance errors. When bðyÞ depends on
y, the model specifies a form of variation such that the quantiles of yij vary
with xi. This includes heteroscedastic models in which the variance depends
on independent variables. But the quantile model is distinct from hetero-
scedastic specifications. It is more general in not restricting distributions to
di¤er only in their second moment. Indeed, the quantile model allows for the
possibility of homoscedasticity even though bðyÞ depends on y (so error dis-
tributions are not identical). With the quantile model ACT scores can be in-
fluenced by school characteristics in di¤erent ways at di¤erent parts of the
distribution.

2.2 Estimation

Given ðyij ; xiÞ, the quantile model can be estimated by regression quantiles,
which are defined by the minimization problem,
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b �ðyÞ ¼ arg min
b

XN
i¼1

Xni
j¼1

wi½yjyij � xibjþ þ ð1� yÞjyij � xibj�	 ð2Þ

where the weights wi are introduced to account for di¤erent school variability
and the di¤erent number of observations at each school.
Since yij , j ¼ 1; . . . ni depends only on xi, the school design is of interest

because it admits other quantile estimators. By analogy with least squares,
estimates can be computed using all the data, or alternatively, they can be
computed by collapsing scores at each school into a single statistic (the mean,
median, or .9 quantile). With least squares the estimate based on all the data is
the same as the weighted least squares estimate through the school means. The
linearity of the expectation and least squares means the b for the school aver-
age, yi, is the same as the b for individual students: Eðyij jxiÞ ¼ EðyijxiÞ. In
contrast, the quantile Q̂QiðyÞ has a quantile function whose y th quantile is not
the same as QiðyÞ. Hence, for the quantiles, di¤erent estimates are produced
by the two methods.1
To compare the di¤erent quantile estimates it is useful to express the data

in terms of the empirical distribution at each school,

F̂FiðnÞ ¼ n�1i
Xni
j¼1

I ½ yij < n	 ð3Þ

and let Q̂QiðyÞ be the associated empirical quantile function. Notice that Q̂Qi is
an ordinary empirical quantile and hence is asymptotically normal with mean,
aðyÞ þ xibðyÞ and variance, n�1i s2i ðyÞ, where s2i ðyÞ ¼ yð1� yÞ=ð f ðQiðyÞÞ2Þ.
Hence the data can be written in familiar linear model form as,

Q̂QiðyÞ ¼ aðyÞ þ xibðyÞ þ ei i ¼ 1; . . . ; n ð4Þ

where the error terms are independent and asymptotically normal with mean
zero and variance l�1i s2i ðyÞ. The model is thus seen to be amenable to
weighted least squares estimation. Instead of implementing regression quantile
estimation on all the ðyij; xiÞ data, we can do weighted least squares on the
smaller data set, ½Q̂QiðyÞ; xi	, i ¼ 1; . . . ; n.
How does this ‘‘regression-through-the-empirical quantiles’’ estimate com-

pare to regular regression quantiles? What does the usual regression quantile
problem look like when expressed in terms of the empirical school distribu-
tions? The answer turns out to be given by,

b �ðyÞ ¼ arg min
b

Xn

i¼1
wiriðxib : yÞ: ð5Þ

where

riðnÞ ¼
ð n

�y
F̂FiðtÞ dt� ny: ð6Þ

1 These quantile estimates are, in turn, di¤erent from those in Bassett and Tam (2000), which
were based on available information on the mean and standard deviation of ACT scores at each
school.
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It can be verified that these ri result in the regression quantiles. This can be
most easily verified by taking the (sub)derivative of (2) and noting that the

summands reduce to qriðn:yÞ
qn

¼ F̂FiðnÞ � y.
In the next section we present quantile estimates based on regression quan-

tiles using all the individual data. These are compared to the quantile estimate
as in (2) above. The second-order properties of these alternative quantile esti-
mates turn out to be di¤erent from one another and provide insights into the
workings of quantile estimates; for details see Knight (2001).

3 Data and model

Fifteen variables are included in the model. They are grouped into three
categories: (i) resource characteristics, (ii) socioeconomic variables, and (iii)
school characteristic variables. Resource characteristics are policy variables.
They include percentage of teachers with MA or higher degree, number of
students per teacher, school expenditures per student, and school enrollment.
Impacts of these variables on student performance have received considerable
interest in the literature since they indicate where public policy initiatives might
improve student performance. For example, class size that may have little af-
fect on the conditional mean, can be investigated with regression quantiles for
its impact on the conditional lower tail of the achievement distribution. So-
cioeconomic and school characteristics variables are included to control for
other factors influencing student performance.
Our analysis uses ACT data of Illinois public high school students in 1996.

They were matched to school characteristics data taken from the Illinois Goal
Assessment Program (IGAP). Most of the IGAP data contains school-level
information for each public school in Illinois. Several variables however are
available only at the district level. In most cases there is only one or two
schools in a district so that the district values are likely a good proxy for in-
dividual schools in the district. An important exception is Chicago where all
62 schools are in the same district. This means that the values of district-level
variables are constant across Chicago schools. The data on school charac-
teristics is supplemented with 1990 census data on socioeconomic variables
matched to school zip codes. The census data includes information on the
percentage of single parent families with children, and the educational
achievement of families in the local zip code. Variables and descriptive sta-
tistics are listed in Table 1. A dummy variable for Chicago is included in the
regressions because Chicago is a single district; there is no variation in its
district measured variables. Another reason is that it is likely that Chicago is
subject to selection e¤ects. Better students in Chicago are more likely to at-
tend non public schools than better students outside of Chicago.

4 Results

4.1 Least squares compared to regression quantiles

Previous analysis of the impact of policy variables on student performance has
examined mean e¤ects. Many past studies have shown negligible e¤ects after
controlling for socioeconomic factors and school characteristics. Our least
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squares analysis shows similar results. Table 2 lists the least squares esti-
mates for policy variables. Except for the enrollment variable, none of the
least square estimates of the coe‰cients of the policy variables is statistically
significant.
Figure 1 and Table 3 show that quantile regression tells a di¤erent story.

Table 1. Descriptive statistics

Variables Data Source Unit Mean2 St. dev.

DEPENDENT VARIABLE
ACT (a) ACT STUDENT 21.2 4.25
INDEPENDENT VARIABLES
Resource Characteristics
Teacher MA Degree % IGAP DISTRICT 52.64 19.10
Pupil Teacher Ratio (a) IGAP DISTRICT 18.25 2.62
Per Pupil Expenditures ($) IGAP DISTRICT 6963 2523
Enrollment (a) IGAP SCHOOL 1581 863
Economic Social Characteristics
Low Income % IGAP SCHOOL 19.29 22.74
Single Parent Family CENSUS ZIPCODE 0.1847 0.1248
Bachelor and Above CENSUS ZIPCODE 0.2353 0.1530
School Characteristics
White % IGAP SCHOOL 74.11 29.28
Black % IGAP SCHOOL 13.55 24.20
Asian % IGAP SCHOOL 4.18 5.92
Attendance Rate (%) IGAP SCHOOL 91.92 4.82
Mobility Rate (%) IGAP SCHOOL 14.44 10.03
Dropout Rate (%) IGAP SCHOOL 5.05 5.01
ACT of Class % IGAP SCHOOL 66.83 14.20
Chicago IGAP SCHOOL 0.13 0.34

Table 2. LSE of policy e¤ects (resource characteristics)

Variables LS Estimate t statistic

Teacher MA Degree % �0.002 �0.512
Pupil Teacher Ratio 0.02 1.564
Per Pupil Expenditures �0.000017 �0.58
Enrollment 0.00039 6.417

Table 3. Sign and significance of least squares and regression quantile estimates

Variables LS QR

0.1 0.3 0.5 0.7 0.9

(Policy Variables)
Teacher MA Degree % � þ * þ * � * � * � *
Pupil Teacher Ratio (a) þ � * þ * þ * þ * þ *
Per Pupil Expenditures ($) � � * � * � * � �
Enrollment (a) þ * þ * þ * þ * þ * þ *

* significant at 5%
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Each plot of Figure 1 depicts estimates of the coe‰cient for one variable in
the model. The solid line with filled squares shows the five point estimates for
the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles. The long-dashed line is the usual least-
squares regression estimate of the mean e¤ect. It is bracketed by two short-
dashed lines that represent the upper and lower limits of the 90% confidence
interval for the ordinary regression estimate.
For three of the policy variables at least one of the quantile estimates lies

outside the conditional mean interval. Also, in contrast to the least squares
estimates, all the quantile regression e¤ects are significant except for the lower
quantiles of the per pupil expenditures variable. Impacts of teacher qualifi-
cation and pupil-teacher ratio on student performance are significant at all
quantile levels though qualitatively di¤erent in the two tails of the distribu-

Fig. 1. Comparison of Regression Quantile and Least Squares Estimates.
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tion. Increasing the percentage of teachers with advanced degrees would help
low scorers’ performance but harm high achievers. So would a reduction in
the pupil-teacher ratio. The positive impact of a higher pupil-teacher ratio
on high achievers may incorporate the positive scale e¤ect of larger schools,
where a greater variety of higher-level courses are available. Similar reasoning
is consistent with the positive impact of total enrollment on student perfor-
mance at all quantile levels; for similar quantile results on the enrollment ef-
fect see; Eide and Showalter (1998).
Finally we note some of the striking di¤erences between quantile regres-

sion and least squares for other variables. The quantile estimates are very dif-
ferent than least squares for the Bachelor and the Chicago variables. Parents
with Bachelor or higher degree have a much greater positive impact on high
achieving students. The Chicago variable displays huge di¤erences across
quantiles. At the 0.1 quantile it is close to zero, but becomes very negative at
higher quantiles. These di¤erences probably are due to selection e¤ects as top
students opt for private schools. Whatever the reason, these di¤erent impacts
go undetected with least squares analysis.

4.2 Comparison of alternative regression quantile estimates

In the ‘‘full’’ model, quantile estimates are obtained using all 62,839 observa-
tions for ACT data. These are the usual regression quantiles. The ‘‘Q585’’ es-
timates are based on the regression through-the-quantiles at each of the 585
schools. Figure 2 presents a visual comparison of the two alternative ap-
proaches. Each plot depicts the quantile regression results of the two ap-
proaches for each of the fifteen variables in the model. The solid line with
filled squares represents the Full regression estimates. The dotted line with
triangles (diamonds) represents the upper (lower) 95% intervals for the
‘‘Q585’’ estimates. The solid line lies within the interval for all variables. This
indicates that the ‘‘regression through the quantiles’’ are similar to the usual
regression quantiles. Again, this is not too surprising given that the estimates
are first-order equivalent.

5 Summary

The relationship between school characteristics and student achievement has
traditionally meant the e¤ect on the expected value. This paper has considered
a generalization in which characteristics are allowed to di¤erentially a¤ect al-
ternative quantiles of the achievement distribution. Estimates for public high
schools in Illinois show instances where the quantile e¤ects di¤er from the
expected value. Thus, covariate influence is sensitive to where on the achieve-
ment distribution one is looking. Whereas robustness is concerned with mis-
takes due to a small fraction of the data, the quantiles deal with the problem
of summarizing disparate quantile e¤ects into a single summary measure of
influence. One dimensional ‘‘influence’’ is replaced by a multidimensional
quantile description of how covariates work, thereby allowing discovery of
relationships that would be otherwise missed.
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