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14.2  The O, o Motation

The essence of asymptotic methods is approximation. We approximate functions

r?ndom variables, probability distributions, means, variances, and covariances
llarcful_use of approximations requires attention to their accuracy or ard'cr.
.HI; notation lh_al is especially useflul for keeping track of the order of an approxima-l
tion is the “big O, little o™ notation. In this section, we introduce and review this
notation for the reader who may be unfamiliar with it. More advanced readers
may wish to skim the material here.

There are really two big O, little o notations: one for nonstochastic variahles
denf:-tc,d @ and o, and one for stochastic variables, denoted O and o, In this~
section we define and exemplify the @ and o notation for nonstochastic :rari.ablcs
In the next section we generalize this to 0, and o, for stochastic variables. I

If {a,} and {b,} are two sequences of real numbers, then the following two
rcrr:?:al definitions define the expressions a, = Ob,) and a, = o{b,), which are
basic for understanding the ¢ and o notation. : il

bo:::l;l?ot: 14.2-1 :_ = Olb,) (Read: a, is big O of b,) if the ratio ja /b is
lor large n, in detail, if there exists a number K and an int 1
el e and an integer ni K ) such that
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pEANMITION 14.2-2  a, = olb,) (Read: a, is little & of b,) if the ratio la /b, con-
perges to zero; in detail, if for any € = 0, there exisis an integer n(g) such that i n

exceeds nlg) then |a,) < £lb].

The idea behind these two definitions is the comparison of the approximate size
or order of magnitude of {a,} to that of {b,}. In most applications, {a,} is the
sequence of interest while {b,} is a comparison sequence. Some important examples
of {b)are: b, = n ' b, =n""2 b, =nb, =nlogn

The interpretation of a, = O(b,) is that the sequence of interest {a,} is of roughly
the same size or order of magnitude as the comparison sequence {b.}. The
interpretation of a, = o{b,) is that {a,} is of a smaller order of magnitude than
is {b,}. Of course, both of these comparisons refer to “large n" properties of the
sequences and are unaffected by their initial behavior.

142.1 Conventions in the use of the O, o natation
A number of conventions are observed in the use of the 0, 0 notation. We list
here some of the more important ones.

{i} Definitions 14.2-1 and 14.2-2 above are unaffected if we allow a, to be
infinite or even undefined for a finite number of values of n. In a number ol
statistical applications this is a convenience, and so we will always assume
this slight extension of the definitions.

{ii} Definitions 14.2-1 and 14.2-2 above may easily be extended to apply to a
sequence la,} of vectors. If ||a,| denotes the length of the vector a,, i.e.

fa,| = Jiui-_.

then a, = O(b,) means |a,] = O(b,), and a, = olf ) means fla, | = ofb,).

{iii) The expressions a, = Oth,) and a, = Olch,) arc equivalent if ¢ is a nonzerc
constant. The same is true for o. Hence multiplicative constants are 1gnorec
in the argument of @ and o. For example, o{2n” 'y is written a{n”'). The
sign, positive or negative, of an O or o term is always ignored.

{ivi The cxpression a, = (1) is used 10 signily that e, = 0. whi_lu: a, = O
means that |a,| = K for some constant K if nis large enough, i.¢., that {a,
is eventually bounded.

(v] We always have a, = Ola,).
ivi) Products of @ and o factors obey these easily proved rules:
(P1)  Ofa,)0ib,) = Olab,).

(P2)  Olaolb,) = olab,).
(P3)  olaolb,) = ola,b,).

{vii} It is often necessary to add together several O and o expressions 1o o!:ntai
a single order-of-magnitude term. The rule is that the order of magnitud
of a sum is the largest order of magnitude of the summands. For example

o{l) + O(n~ "3 + O(n™ ") = o(1).
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This rule is not necessarily correct if the number of terms in the summation
depends also on . For example, if we have the n terms

i
+ore 4 = ]

| e |
= 4 =
non n

then the largest order of magnitude of the summands is n= ', but this is not
the order of magnitude of the summation.

The O and o notation also appears with a continuous variable in the argument
rather than a sequence, especially in expansions of functions. For example, the
first-order Taylor expansion of a function J1-)about the value g is stated as:

Jx) = Jle) + 5= )ik + ollx — of) 25 x—c. (14.2-1)

In this example, the little ¢ means that if x, is any sequence such that x, — ¢
and il a, and b, are defined by

4. = f{x) — f{c) = (x, = €)f(c). (14.2-2)

b, = x, — ¢, {14.2-3)
then

a, = olb ). (14.24)

In arder for (14.2-1) to be true, {14.2-4) must be true for any choice of x, such that
¥o = ¢. The following two definitions formalize the use of the o, O notation with a
continuous argument in terms of definitions 14.2-1 and 14.2.2.

DEFINITION 14.2-3 a(x) = O(b(x)) as x — L if for any sequence 'x.' such that
Yo = L, we have a(x,) = OB{x,)) in the sense of definition 14.2-1.

DEFINITION 14.2-4  g(x) = ob(x)) as x — L if for any sequence Tx ! such thar
Xy — L, owe hape alx,) = obx,)) in the sense aof definition 14.2.2.

In the applications ol definitions 14.2-3 and 14.7-4, we observe that when there is
no ambiguity the condition “as x — J= is not alwiys explicitly stated. The value
of L may be any real number, + oo, or — o

In the following section we go through an illustrative example that allows the
reader to see the use of the 0, o notation in a natural setting.

1222 An example of the use of the O, o notation

Example [4.2-] Approximating ¢
We begin by considering the sequence {e.l given by

.=l +n""py i [14.2-5)
Let logix) denote the natural logarithm of x (to the base ¢ = 27182818, . ).

We may find the limit of {e, ! by first finding the limit of log(e,) — nlog(l 4+ n™")
and then taking antilogs. We let

) = logil + 1. i14.2-6)
From elementary calculus, we recall that
=0, fin=q1+n", St =1 (14.2-7)
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Hence the Taylor expansion of § about ¢ = ) may be expressed as
fle) = [0} + 1f(0) + o)

=+ oft) ast—0. (14.2-8)
MNow we apply definition 14.2-3 to (14.2-8) with x, = n~ !, and we obtain
logll + i 'y =n"" 4+ o{n™"), (14.2-9)
so that
logie ) = nlog(l + n” ") =1 + noln~ ") =1 + o) (14.2-10)
and hence
logfe,) - 1. (14.2-11)
From (14.2-11) it follows that the limit we seek is
lim(l + 07" = lim & = g! = ¢, (14.2-12)

The convergence of [e,} 1o eis often too slow for a|::|:ul'u:a!i~:m_s~ but by mns::ilcrmﬁ
higher-order Taylor series expansions of f{r), we may find ‘I.ilmple : cE?rrﬁc 1:::5.]‘!
to e, that markedly improve the convergence to e. The r;mamdc_r ol t IJ;.I:-,xa pﬂr
is devoted to finding some of these corrections as further illustrations of the use
the @, o notation.

Define the sequence x, by

x, = logll + n~ ") (14.2-13)

MNow we look at the sequence [{n + ¢)x, |, where ¢ is a consta nt t::-_h& d;tn:rmincd.
The second-order Taylor serics expansion of f{r) = logl{l + 1) is given by

fih =1 = 3% + olr®) ast—0. (14.2-14)
Hence
X, = fin " f=a"t = In~2 4 oin~3), (14.2-15)
50 that
n+ ox, =(n+e)in™ — 07?4 ofn?))
=1 4+{c—1m " —den * + moin™3) + coln™?)

L +fc— $n~ " + ofn™ ') (14.2-16)

By choosing ¢ = 1/2. the order of the convergence of (n + c)x, to | improves
from of1) 1o oln ™ '). Thus we define a new sequence ¢* by

1
PO et (14.2-17)
The distinction belween e, and ¥ is that
(14.2-18)

- | +ofa~ 1)
g, =2t while o* = g!*emT!

We need not stop here. We can find higher-order appmxi[nlali:::ns by the f:m;:
device. For example. consider the sequence {(n + ¢ + dn™')x, !, for cons
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c and d 1o be determined, As an exercise the reader is invited to use the third-order
Taylor expansion of f{r) = log(l + ¢} about ¢ = 0 10 show that if ¢ = 1/2 and
d = — 1112 then

(m+c+dn)x, =1+ ofn2), (14.2-19)
This leads us to define e¥* by
et =(l+an 'J'“:-_'_}';, (14.2-20)

which converges to e at a faster rate than either e, or 22,

Accuracy of the approximations to ¢
The careful reader will have one question that gnaws at him through the above
manipulation of little o terms. He remembers that

105812 = g(n~"}

and realizes that the multiplicative constant 10°, while not affecting the order of
magnitude of the convergence, can have a tremendous effect on the actual degree
of the approximation for the values of » that concern him. In other waords, alter
ey and eX* have been invented it is still important to find out if the actual values
of these quantities are really nearer e than e, is, for small values of n, To answer
this question, table 14.2-] gives values of n, ,, *, and e form=11t020 liijs
evident that for inany purposes ¢, is a totally inadequate approximation to e for
these values of n. On the ather hand, two- and three-decimal accuracy is quickly
attained by e* and ¢**. BN

Table 14.2-1
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e
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e

| 2 28284 26697

2 225 L7557 L5

3 237 27 27153

4 244 27296 27169

5 249 2.7258 27175

[ 152 27237 27178

T 255 27223 271 TG

] 257 27214 27180886

& 258 X307 2TIH144]
1 150 27203 27181803
I 260 1719907 2. T1EM045
12 261 2719733 27182220
13 163 2719526 2.T182345
14 2627 2719360 2TI82437
15 1631 2719225 2. T182507
16 2638 2719114 27182560
17 1642 2719022 2. T182602
18 2648 LTIEGA 271826346
19 2650 218878 LT1EDo0]
20 L2653 2718821 282684

2718281 .. 27182818, ..

8

e
i
o
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t4.2.3  Exercises

- Show that (20" + 3n + d)sinn = Qn?).

Show that log n = of«”) for any power & = 0.

. Show that log x = o{x""Jas x — 0.

. Show that sin x = §x) as x — 0.

. Show that if ¢ = 12 and d = —1/12, then (14.2-19) is valid.

. Prove the multiplicative rules for o and @ given in (P1), (P2), and {P3!_ 3

- Expand{x + yn™'? 4 zn” ") to order n™ ' by applying the rule for multiplying

and adding o and O terms.

- Show that we could have defined Ob,) and alb,) by first defining a, = O(1) and

a, = o{l} appropriately, and then defining O(b,) = b,0(1) and o{b,) = b,o{1).

. Show that (1 + (2/a))" — &* for all 4.
10.
1.

Show that (I + ifn + o{l/m))" — &* for all A
Docs f (1) = ./t have a first-order Taylor expansion at ¢ = 07
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Suppose that we are lesling
Hy:p=mn
with the test statistic X * of (14.3-49), but instead of H, being true, suppose that
p is given by
p=m+n ",
as in example 14.3-4. The reader can show that
#X?] — #UD; v, (14.3-52)

where U has the multivariate normal distribution A 7(p, D, — n'm) If ¥ = UD_ ' U7,
then it can be shown that ¥ has a noncentral chi square distribution with T — |
degrees of freedom and noncentrality parameter

Wt = pD 'y (14.3-33)
Il we write p as
=/ np — n),
then this result is sometimes stated with the noncentrality parameter given as
i = np — oD Yp - xy. AN (14.3-54)

The effect of a small remainder term on convergence in distribution

The_te!::hniqu: discussed in this section is actually a special case of theorem 14.3-6,
but it is so important that we discuss it separately. The technique is based on the
following theorem.

THEOREM [4.3-9 If #[X | — #[X] and if ¥, 3 0, then #[X, + Y] = FX]L
For a proof see Rao [1965], p. 104,

Tt_le _iq::a behind theorem 14.3-9 is as follows. Suppose we are interested in
the limiting distribution of Z, and we are able to express Z, as L =X + ¥,
where {X,} is a stochastic sequence with an asymptotic distribution we can find
_by some method and ¥, is a small remainder term that converges to 0 in probability,
Le.. ¥, 7 0. Then the limiting distribution of Z, is the same as that of X,.. We
delay examples of this approach until Section 14.4, 14.6, 14.8, and 14.9, where it
1z applied extensively,

1434 Exercises

. Shu::w that il X, » ¢, then #[X,] - #[C], where C is a degenerate random
variable concentrated at ¢,

2. Show that if X =(X,,..., X7} has the multinomial distribution #(n, p).
wherep = (p,,..., py), then

M?{[ﬂ = [E Pl_eh) :
i
3. Use the result of problem 2 to show that E(X{) = np;, Var(X) =
. d = npy, Var(X;) = np(l — p)),
and Cov(X;, X ) = —np;p,, 5o that J
E{X} = np,

Cov(X) = n(D, — pp),
where D, = diag(p).
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. Fill in the details of example 14.3-6.
. Use theorem 14.3-6 to prove theorem 14.3-9.
. Let X have the negative binomial distribution given by

(=R T

o =]
e | ]pr{l—p}" el

{i) Find the moment-generating function of X.

{ii) Find the mean and variance of X. (Sece Section 13.7.1.)

{iii) M p= p, = i/mandrremains fixed, find the limiting distribution of 0~ L

144 The I‘JP,, i Motation for Stochastic Sequences
We now develop the 0. 0, notation for stochastic sequences, which generalizes
the 0, o notation for nonstochastic sequences. In the first four sections we describe

the notation and its elementary properties. In the fifth section, we deal with a
more general version of this theory due to Chernoff and Pratt.

144.1 Definition of X, = olb,)
We follow up the idea expressed in exercise 8 of Section 14.2.3, by defining {1}
first and then setting o (h,) = bo 1) The notation X, = o,{1) means exactly the
same thing as X, 0. More formally, we have:

DEFINITION 14.4-1 X = o 1) if for every & = 1),
lim P{|X | =&} = 1. (14.4-1)

If X, is a vector, we say that X, = o 1) if |X,| = o,(1). Then we define the
general o, notation by:

DEFINITION 14.4-2 X = o fb,) if X /b, = o,{1), or equivalently, X, = bo1).
Again, if X, is a vector, we say that X, = o (b il [ X,]| = oyb,).

1442 Definition of X, = QJb,)
We continue the approach of Section 14.4.1 and define X, = 0 (1) first and then
set O fb) = b,0,i1). However, to motivate the definition of O{1), it is uscl‘ul_ tor
begin by amplifying definition 14.4-1 somewhat. Since this amplification is nothing
more than a restatement of definition 14.4-1 with more technical detail, we call it
definition 14.4-1a.

DEFINITION 14.4-1a X, = o1} if jor every & = 0 and every y = 0 there exists
an integer nig, g) such that if n = nle, n), then

Pllxl<elzl-n (14.4-2)

Informally, this definition means that with arbitrarily high ]_:lrvl::ll'r.'lh'Llit;..r fie.,
=1 — ) |X,] = ofl). Taking our cue from this informal description, we want
X, = 0,(1) to mean that with arbitrarily high probability, | X,| = O(1). In terms
of a formal definition this becomes:
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DEFINITION 14.4-3 X, = O(1) if for every n = O there exist a constant K(n)
and an integer nin) such that i v = niy). then

PIX S K}z 1 - 1. (14.4-3)

IF X, isa vector, we say X, = O (1)if | X, = O,(1). Finally, we define the general
0, notation by:
; DEFINITION 1444 X, = Oub) if X /b, = O} or equivalently, X, = b0 [1).
As before, if X, is a vector, we say X, = Qb if |X,§ = O b,

If we compare definitions 14.4-1a and 14.4-3 with their counterparts in the
0, o notation (definitions 14.2-1 and 14.2-2, with b, = 1} we sec a number of
parallels. In both @, and o, events are required to hold with a probability that
exceeds a preassigned limit 1 — n, replacing the “certainty™ of the 0, o definitions.
In both o(1) and o, (1), the sequences are required Lo be less than any prescribed
small positive ¢ if n is sufficiently large. In both O(1) and O(1), the sequences
are required to be bounded by some constant K if n is sufficiently large.

It is sometimes useful to refer to X, = @ (1) by saying that X, is "bounded in
probability,” and to X, = o1} by saying that X “converges to zero in prob-
ability.” The information in the . o, notation is often referred to as the “stochastic
order™ of X,

14.4.3  Methads jor determining the stochastic order of a sequence

In this section we discuss two easily applied methods for determining the stochastic
order of a sequence of random variables | X}

You are only as big as your standard deviation

The standard deviation of a random variable is often used as an index of the size
or order of magnitude of the typical departure of the random variable from its
expected value. This use of the standard deviation to measure typical deviations
is usually motivated by the fact that for the normal distribution, the probability
that an observation will lic within one standard deviation from the mean is
approximately 0.66. However, even for nonnormal distributions, the standard
deviation gives the order of magnitude of typical deviations. For example,
Techebychev's inequality asserts that if X is a random variable with mean p and
variance o < oo and h is any positive number, then

PIX —plSha) 21 —h™ 2 (14.4-4)

We use Tchebychev's inequality to cannect the 0, o, notion of stochastic order
of magnitude with the standard deviation as an index of the order of magnitude
of deviations from the expected value.

THEOREM 14.4-1 If [X .} is a stochastic sequence with yu, = E(X,) and o =
Var(X,) < a0, then
Xn =My = ﬂp{ﬂ-u}'

Proof Ifin{l44-4) weset h =5 " for any 0 < 5 < | and apply (14.4-4) 10
X, pt,, and a,, then we have

P{'X:.: o

F,

q-.,z} S fie (14.4-5)

M a0 [

w
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Thus (14.4-5) holds for m = 1,2,.... Setting K(y) = n~ "%, we apply definition
14.4-3 and conclude that

xn = My

= 0l

from which the desired result immediately follows, 0

i iable
Example 144-1 The order of a binomial varia A 3
If X has the binomial distribution #(n, p). then E(X,) = np, Var(X,) = npl(l ;E
Hen.n: g, = /npll = pl= {Jl_w.f’_n}. from which we conclude that X, — np =

GJJ i), or, as it is usually written,
X, =np+ O//n (14.4-6)
i i [ 1 result that if X, is
Actually, this example is a special case of the more general .
a sum ul': independent and identically distributed random variables with mean
and variance a7, then

X, = nu + 0,0/ (14.4-T)
{see exercise 2 in Section 14.4.6). B0

A sequence that converges in distribution is also bounded in probability s
i ion i i tool u
bicct of this short section is a theorem that is the most commaon
-I!;T:Irnfi‘:lg that X, = Q) This theorem also illustrates onc :)I_‘ the many
connections between convergence in distribution and the 0,, o, notation.

THEOREM 14.4-2 I #(X,] = Z[X], then X, =0/l

s left for exercise 3 in Section 14.4.6. The reader may

The proof of this result i gives a further

wish to apply this result to example 14.4-1. The next example
application of this theorem.

B the minimum of exponential variables .
f::’":{’:‘? .Iil:‘:hc]i‘:;:;j;it random variables, all identically distributed with
the exponential distribution
Py, 2t} =Fi)=1 — e
., ,}, then the distribution function of X, is

Ar

for t = 0. Mow if X, = min} ¥, .
Gx) = P{X, S x} = 1= P{X,>xi

1 - PlY, = x A TR -

1 - P{T, }x}F{V;}x}...P{Y,}x}

BV T R

We conclude that X, has the :xpmen}ia!l diatlribution
this it follows that n X has the same distribution as Y,

that

with parameter nd. From
from which we conclude

#[nX.] - ZLIY]. (14.4-8)
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Applying theorem 14.4-2 (o (14.4-8), we obtain

X =
o = yl1), (14.4-9)

rr=op{ﬂ_l}. in {[4_4_”}}

R 1444 Convergence in distribution and o (1)
15 sechion extends the discussion in Section 14.3.3 on the effect of 2 small

r'Emaj“dE lerm on Conver ] i ] i
g nce in dlstrlbu i 0 i
: ' : (= tion Iﬂ the Fr {}‘1 nl}lahgn} lhEUrEm

THEOREM [4.4-3 If X1 - FX), then X, + o 1)] = #[X].

This th i i : . .
thlmasfir;Tf in I.J'.:Onjunctlun with the various toals we have for determining the
eatal ; ;; :fn} ; zeqy':l‘;r:o:, $Io:t;s us to find the limiting distributions of fairly
i ariables. We llustrate this point with twe eye : :
the binomial distributiog, pointwith two examples nvolving

Example j4.4.3 Asymptatic confidence intervals for p

W& Contg 10 Lﬁ-i] Ig ﬂl [ c b i
(1] el I rom e
& notation f ¢xamp] -+ 4 1 4] xampf& I4 ,3 3 1t [U‘"UWS

LIn(p — ) ~ 2w, (14.4-11)
where W has the normal distribution A0, p(1 — p)). Define 7 by
z.= ¥~ p)
o (14.4-12)

By theorem 14.3-6, %07 1 - 52171 i
H0.1) [£.] ~+ #(Z), where Z has the unit normal distribution

From (14.4-11) and theorem 14.4-2, we deduce that
P=p+ 0113, >
But if ¥, = Qn™ "), then o= o1} (see exercise 6 ip Section 14.4 Gj.l :i]:::
fi = P+ofl) asn— o,
Applying theorems 14.3-1 and 14.3-6, we deduce that if p &0, and P # 1, the
pil — p)| 2 o
(ﬁ_l ?ﬂ_}J =1+ o4l). (14.4-14)
Now define k. by

pavii—p z,,(p” - p}) Lz

=ZAL + o (1))

: x_“T.ﬂ ﬁf—_ﬁ'
=L+ Zofl)=2Z, 4 o, (1)
=7 + a1}

Ve conclude from theorem 14.3-9 thay

V] - #12). (14.4-15)
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The result (14.4-15) is often used to set asymptotic confidence intervals for i
as follows. If n is large enough, (14.4-15) says that

Pl-a<V¥ <al=Pl-a<Z<a)

If a 15 chosen 50 that

Pl-a<Z<gl=1-a,

then inverting the inequality —a < ¥, < a, we obtain

ia e
—_:\.-"ﬁ! — !J':I% =]l —u
W h

i e X a

P{ﬁ —- SV =P<p<p+
Wi

and so obtain an asymptotic 1 — x level confidence interval for p. Bl

Example 144-4  The square of a binomial proportion
We continue using the notation of the example 14.4-3. Our aim now is to find
the asymptotic distribution of §°. We begin by observing that

Po={p+(—p0=p*+ 20— p)+ (p— p),
ar
2p/nlp ~ p) + Sl — pP
2pW, + n VIR,

where we set W, = V-’r_a{,ﬁ — pl. We know that W, converges in distribution, so
from theorem 14.3-6 we know that W2 also converges in distribution. Then from
theorem 14.4-2 we know that W! = 0,(1), and hence n~ W2 = O (n=1) =

1) These facts give us

Vi — p)

VB = pt) = 2pW, + al).
Since #[W.] - #[W], where W has the normal distribution 1 0, p(l — phh
we now have

PSP — )] - £ [2pW].
But 2pW¥ has the 470, 4p*(1 — p)) distribution, from which we conclude that i

has an approximate normal distribution with mean p® and variance n~ Y4p3(1 — p).
] |

1445 Chernoff—Pratt theory of stochastic order

The similarity of the O, 0 and {1, o, notation suggests that they be used in tandem.
For instance, in example 14.4-1 we uncritically assumed that 000/ n) = O/ n).
Similarly, in using Taylor expansion arguments we often make use of the fact that
o(@,(n™12)) = g in~ ). (14.4-16)

Also, if f{x) = o{x)as x — 0, and if X, = O (n~"*), we would like to be sure that
JIX,) = an~12), {14.4-17)

Furthermore, in example 14.4-3 we made uncritical use of the fact that Qo) =

o1}
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Ch];:?:;%:;;rimc[l-; tz :},;ni (), discussed in this section is based on the work of
] - 4% cxlended by Pratt [1959], [t requires a litt) i [

. 5 ¢ attention to the formal

structure that underlies a stochastic -
; SLic sequence; however, once this machi

B _ L : he , 15 machinery

mn::::::;l :::j 1;u:l, it J;:rrqmi:,;. a simple and mathematically rigorous wa y of lumin;

E results imvolving o and 0 § z . i i
S 2 0 into parallel stochastic results involving

Formal structure of a stochastic segUence

P i i
;“-l:,;; c;c!_: n=1, 2 .- let{Q,, Fbea probability space, where €2 isa sample space
wbse{; zsniﬂpm[bd::ill_ty measure on the subsets of ), (The measurability of all
untercd is assumed but not explicitly stated.) L
random variable taking values in 0 sto gl el
i L, and distributed according to P
suppose H, is a (measurable) function mappi i i Pl
. H = pping £, into c-dimensional Euclidea
space. Finally, suppose that the sequence of random vectors of interest is given I::

| &, = Hfm,). (14.4-18)
We let w, denote the elements of 02, ie., possible values of o

Example 144-5  The multinomial distribution

The i i i " thi
¢ mmportant examples in later sections of Lhis chapter concern the multinomial

dihtfjhutii)n W\‘;‘ v
E glve I.he IUIITiELJ SLruc I L i 5 I ]
g lure er'E thd[ 15 bcd n lhe I"dll.'_‘l.' seclions,

- A s T
= {ll—[.ﬂ] ----- Prl:p =0 and Y o= f}.
(=1

Then 5 is the set of all T-dimensional probability vectars, First, we set
P S o {14.4-19)

In .. : Sl i 50
tm"; T:.::;e mlt:]!tmmimal distribution is the distribution of the vector of cell propor
et than the vector of cell counts Fao istributi !
. . ‘ r the .#(n, n) distribution. the ¢
Proportions are constrained to lie in the subset of H7 given hy e

| T.=1{pesr :npisan integer fori = 1, T (14.4-20)
Hence if @, has the <#(n, m) distribution, then F, 1s given by
P{B} = ) R

l peBnTn (r‘!Pl yaiey HPIJITF rERs b2t

where B is any subset of 5.,

“ £ severa =
nctions [he ) =5 L al 15 11 I 5
[h‘“ af eV ] w 10y of =, quei 1+ Eh arise i late eClions (lr

L If Hiw,) = aw_ for w e t
JA n ] Ta e §r| & ffn mn = is
5 ;:}rdmary sequence of multinomial djstributjn:ifnsiI AR el
Hijw,) = niw, — mD, Yw, — ), (14.4-22)

where D is the dia i i
, gonal matrix based on m, ther 1€} is the sequence of

Lh] iquale Sl'ﬂ.t]ﬁ[lc& uﬁﬁd Lo test thﬂ h}'[“)"l'ES: “]ﬂ.l m 15 the VeCLor frue ':E[I
I“Ubahl]lt!e:. ’ h ﬂr
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1IN H w5 any value of a parameter 8 which maximizes = (@) ., g @),
then £, = Hm,) is the maximum likelihood estimate of 9.

Chernofi—Prare definitions af o, and O

The lollowing two theorems form the basis of the Chernoff-Pratt approach
to the 0, o, notation. They can be viewed as providing alternative definitions
of o, and (1, to those given by definitions 14.4-2 and 14.4-4. These theorems make
use of the notation developed in the previous section.

THEOREM [4.4-4  We have £, = Hjw,) = odb,) if and only if for ecery i = 0,
{measurable) subsets 5, = 0 can be found such that
{1y Plw,es,) =1 —nforalln;
(i if i_l.rrr} is a nonstochastic sequence such that w5, for every n, then x, =
Hiw,) = olb,)
THEOREM 14.4-3  We have {, = HJm,} = Qb)) if and only if for every g = 1,
{measurable) subsers 5, = Q, can be found such that

(i) Ploes) =1 ~nforalln;

{ii) if w, is a nonstochastic sequence such that w, €8, for every n, then x, =
Hw,) = O(b,).

See Pratt [1959] for a proof of these results. Exercises 7, 8, and 9 in Section 14.4.6
constitule proofs of theorems 14.4-4 and 14.4-5.

We note two implications of these new definitions of o, and Q. First, the

" two definitions of O, and o, are completely parallel, Second, the definitions

separate out two distinet problems to be solved in assessing the stochastic order
or £,. One is stochastic, namely, finding events 8§, = €}, with arbitrarily large
P -probability {i.e. = 1 — 5). The other is analytic, namely, establishing the
order of magnitude of certain nonstochastic sequences {w,}. We illusirate the
power of these results in an initial application of the ¢ method which we discuss

more extensively in Section 14.6.

Example 144-6  Delta method for the binomial distribution
We continue using the notation of example 14.4-4, in which we found the asymp-
totic distribution of the square §* of a binomial proportion. We now consider
finding the asymptotic distribution of an arbitrary function g(#) of fi, where g has
a first-order Taylor cxpansion about p, ie.,

glw) = glp) + (w = pig’(p) + olw — p)
asw — p. From {14.4-23) it follows that i w, is any sequence of numbers such that

s = g e R L2, (14.4-24)

(14.4-23)

then
glw,) — glp) — (v, — plg’lp) = ofn™ "), Qs3]

Mote that (14.4-24) and (14.4-25) are statements aboul nonstochastic sequences
and that (14.4-25) can be verified by referring to the definitions and properties
of the o, 0 notation,
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MNow sel w, = j, From (14.4-13) we know that

| @, — p=0,n" 13, (14.4-26)
Applying theorem 14.4-5 1o {14.4-26) with
&= HMNw,) = o, - p, (14.4-27)

we deduce the existence of imeasurable) subsets &, = £ such that
(1) Plw,e5)z1 - i for all n;

1’“] lr W, 15 4 nons Oﬁ-ha ¥ .
n stic & /,
I:- p t - Lqu'-':ﬂce huﬂh [ha: |-|-|.I = Sn .FU[ ever mn, liltil Ir 'I

From (14.4-24) and (14.4-25), b
¢ - OWEVET, We see that these ;
the property that if w238, for all n, then (14.4-25) ho]ds.sﬁ'!?v‘::?;?sem ot

& = HP @) = glo) — g0 ~ (@, — ')

then, applying the suffici sonditions i
S 2 ciency of the conditions in theorem 14.4-4 to the §, and &2,

22 _ = 1i2
& agln~ i) (14.4-28)

Expressing (14.4-28) in terms of fand g, we have the basic regult :
&P) — (P) = (5 ~ p)g'(p) + o,(n~ 1), (14.4-29)

Multiplyi i n
ultiplying both sides of (14.4-29) by /0 and setting U/, = V"':{;] — ph we have

v e — glp)) = g'(pU, + a1} {14.4-30)

M r
OW we can apply theorems 14.3-6 and 14.4-3 o (14.4-30), and we find that
LI niglp) — glph] — #1v), (14.4-31)

where V has the normal distributi
_ : : ution A, (g (p)2p(1 — p) i =p?
= 6 . ). Settin =
4|3E>!rc2t:aim%._ we see lhat_lhe variance of the asymptotic nomafd%ifjibuf’ an'd
pTh : PhLow ich agrees with the result of example 14.4.4 ] | e
thwr;::;p?:a‘iu:n of the stochastic and analytic problems of o, and O made in
4-4 and 14.4-5 allows us 1o use¢ more explicitly lhi 0,0 -.’.‘;nvcn[ion

f SCT ﬂd fl} ] S 10, - I ' -S'eq
de |h mn ection 4.2 tJta or i | INLL bE H, the uence
lf ﬂﬁ e m I'U.[ 'Ia]IlESU! n

Pratt’s theory of accurrence in probabilicy

In this secti i i
s Egujigznijlzifci"be a gbcr;:f_a! theory in which certain aspects of a
1 ! St probability.™ Occurrence in probabilie
Ec;u;;a]tzcd notion that arises from the form of theorems 14 4-4pand Jrlilfﬁ e
b © notation of the earlier parts of this section, I g
. 5 r;v:;!uld like to describe all sequences {w,} such that w 0 for eve
ote the set of such sequences, Then 0 can be Expr&ss"cd a:: i

Q=0 x 0, x...x 0 x \
e ﬂ.u
}(j (14.432)
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i.e.. the infinite Cartesian product of the £3,. Similarly, if 5, is any subset of 0,

then
)
5= SLXSJX"'XS":‘""” (14.4-33)

is a subset of €. There are subsets of £ thal cannot be described as in (14.4:313)
When we describe the convergence properties of a sequence {w,}, where w, e 1},
we are defining a subset of £, Pratt [1959] gives the following general definition

of gccurrence in probability.
DEFINITION 14.4-3  § < (2 oceurs in probability if for every n = 0, (measurable)
suhsets 5 (n) = 0, can be found such thar

(i) Plw,e8,) =1 =y for every n;

(i) X 5.=5

n=1

This definition is ¢learly motivated by the form of theorems 14.4-4 and 14.4-5,
We may easily show the relation between occurrence in probability and the 0, 0,
notation by constructing the proper subsets of {1 We define

SV =Twl: w,et, and x, = Hjiw,) = olb,)],

S =Nwl: w,efd, and x Hiw,) = O(b).
Theorem 14.4-4 is equivalent to saying that £, = o,(k,) if and only if " occurs in
probability. Theorem 14.4-5 is equivalent to saying that £, = O (b,) if and only if

52" pecurs in probability.
The use of the occurrence in probability device is enhanced by the following

two theorems.
THEOREM 14.4-6  If § gccurs in probability and T is another subset of O such that
§ = T, then T also accurs in probability,

THEOREM 14.4-7  Ler 8 53 all be subsets of 00 8™ 8%
probability if and only if their intersection {11 | S occurs in probability.

all aceur in

Theorem 14.4-6 can be used to simplify the discussion in example 14.4-6,
Theorem 14.4-T is useful when the analytic parts of theorems 14.4-4 and 14.4-5
require the combination of a number of @, o terms. For example, a simple applica-
tion of theorems 14.4-6 and 14.4-7 proves the following complicated theorem
involving the simultancous use of the 0,0 and 0, 0, notation.

THEOREM 1448 Let A (j=1....0 g™y k=1,...,
Sfunetions such that iff {x,} is a nonstochastic sequence and
(i) ghhx) = olst) for k =1,.... K,

. be a stochastic sequence

K and hy-) be

(i) 90,0 = 00 for j=1.....J,

then hix)) = Ot} (or = ot ). Moreover, let X, X, ..
such that

@ XD = 0 for j= 1. d, (i) @K} = o) fork = 1,....K.

Then b X)) = Ot} or = odr )
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While this result is sufficiently general to include many applications, it is
generally easier in any specific case to apply theorems [4.4-6 and 14.4-7 directly.

14.4.6  Exercises

I. Show that o, and 0, obey the same rules for products as do o, .

(P11 Oyla,l0ib) = O fab,),

{Pz.' ap{ﬂn}ap{bn} b optaﬂ'bl}"

(P3) o,fadoib,) = o,(a,b,)
2. Show that if X, is the sum of n independent and identicall v distributed random

variables, each with mean y and variance #? < a0, then X, = mp + 04,/ n).

- Prove theorem 14.4-2,
- Prove theorem 14.4-6,
. Prove theorem 14.4-7.
- Show that if ¥, = 0,{n™"2), then ¥, = o,{1).

. Show that &, = H fw) = O,(b,) ifand only if for any § = 0 there is a scquence
of (extended real) numbers d, = d () such that

i) PN Sd}z1~nioralln:
(i) d, = Ofb,).

B Showthat &, = Hfw,) = @b} if and only if for any 5 = 0 there 15 4 sequence
of Borel sets (in e-dimensional Euclidean space) T, = T.{n) such that

() A{SeT)z1 - nloralln;
(i) if x, & T, for every n, then x, = b, ).

=] G Lhoua

9. Show that £, = H fw,} = b} ifand only if for any 5 > 0 there is d sequence
of imeasurable) sets 5, = S = 0, such that

() Plw,eS,) 21— gloralln;
(i) if w, e 5, for every n, then x, = Hjw,) = Ofb,).

10. Show that the results of problems 7. 8, and 9 remain true il O and 0, are
replaced throughout by o and [ 58

14.5  Convergence of Moments
I #1X,] = #[X]. we may also want to know if

E(X7) — E(X7) (14.5-1]

for various choices of r, usually I and 2. It should be noted that convergence in
distribution does not in general entail (14.5-1) for any value of r « 0. In most of
the applications in this book, however, (14.5-1) does hold if #[X,] - #[X]

The remainder of this section is devoted to a short discussion of this convergence
problem.
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1451 Limits of moments and asymprotic moments
If #[X,] — #[X]. then we refer to
E(X") (14.5-2)
as the asymptotic rth moment of X, while
lim E(XT) (14.5-3)

n—u

i imil i ists. Since (14.3-3) and {14.5-2) may be
the limit of the rth moment of X, if it exists 5
fﬂﬂ]u&l wefhave separale terminology for them. The next example gives a case

when they are equal.

Example 14.5-1 Square of a binomial proportion

i le
i ial distribution #(n. p) and f = n~'X,, then I'mnl'l examp
:aﬁh:'z thr:v:'g[ﬁ;ﬁ_ pY)] = £[V], where V has the pu:rrml ;:hgtr.!butmn
h.»ir’l (0, 4p1 — pl). We caleulate that the actual variance of ,/n(f* — p’)is:

Var(y/n(p? — p*) = nVar(@)
= 4p31 — p) + n” P10 — l6p + 6)
—nTipi6pt — 120+ Tp = 1)
= 4p¥1 — p) + Oln”" b (14.5-4)

Hence we have

lim Var(,/n(p* — p*)) = Var(¥). 18

The general relationship between the limit of the variances and the asymptotic
variance is given in the next theorem. |
THEOREM 14.5-1 If #[X.] = #[X] and if we let VarlX,) denpte the variance
of X, when it exists and set it equal to + oo otherwise, then
lim inf Var(X ) = VadlX)
L il o}
For a proof, see Zacks [1971], pp- 252-251. .

3 i he asymplotic varianc
From this theorem we see that 1 i
than the limit of the variances. Exa_mplﬁ can be given

strictly smaller (see exercise | of Section 14.5.3),

(14.5-3)

e of X, can be no larger
to show that it can ha

1452 The order of moments and o,

In example 14.5-1, we saw that
Eip*) = p* + oll) {14.5-6)

Var(pl) = n~'4p*(l — ph + oln” ') (14.5-7)

However, from the § method discussed in Section 14.6 and example 144-4, we
know that .
LS - p] — A0 4p%(1 = PN




