
R. Koenker Spring 2017

Economics 574
Problem Set 1

1.: Suppose X,Y are random variables with joint density

f(x, y) = x2 + xy/3 x ∈ [0, 1], y ∈ [0, 2].

Find: (a) the joint df, (b) the marginal density of X, (c) the conditional density of Y given
X, (d) the conditional expectation of Y given X, (e) the unconditional expectation of Y , (f)
the conditional and unconditional variance of Y given X.

2.: SupposeX1 andX2 are independent and uniformly distributed on [0, 1]. Let Y1 = min(X1, X2)
and Y2 = max(X1, X2).
(a): Show that the joint density of Y1, Y2 is given by

f(y1, y2) = 2I(0 < y1 ≤ y2 < 1)

(b): Find the conditional density of Y2 given Y1. Are Y1 and Y2 independent?
(c): Show that

Esin(Y1Y2|Y1 = y1) =
1

y1(1− y1)
[cosy21 − cosy1]

3.: Let V be a uniformly distributed random variable on [0, 2π] and let X = cos(V ) and Y =
sin(V ). Show that X ⊥ Y but X ⊥⊥ Y, does not hold, i.e. X and Y are not independent.
Explain.

4.: [A Berlin Problem] Suppose we have uncorrelated r.v.’s X1, ..., Xn, but not necessarily in-
dependent. Assume, in addition, that each Xi is symmetrically distributed around zero, i.e.
FX(−x) = 1− FX(x) for all x ∈ <. Is Sn =

∑
Xi necessarily symmetric about zero?

Hint: Consider the example, X ∼ U [−1/2, 1/2], and Y |X ∼ U [−|X − 1/2|, |X − 1/2|].

Moments are frequently employed to characterize r.v.’s, particularly in econometrics. This is fre-
quently useful, but occasionally dangerous. The following sequence of problems illustrate some “bad
moments in statistical folklore.”

5.: Suppose Z = logX is N (0, 1), so X has the log normal distribution with density

f(x) = φ(log x)/x =
1√
2π

1

x
e−(log x)

2/2.

The moments of X may be computed from the mgf of Z as

EXr = mZ(r) = exp(
1

2
r2).

(a): Why? Generalize to logX ∼ N (µ, σ2) and interpret.
(b): But the mgf of X is divergent for all real t suggesting that there may be other distri-

butions with the same moment sequence. Consider the density

g(x) = f(x)(1 + sin(2π log x))

Plot f and g to get some feeling for how different they are and then show that they have
the same moment sequence.
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Hint: Show that

EXk =

∫ ∞
0

xkg(x)dx since
1√
2π
ek

2/2

∫ ∞
−∞

e−s
2/2sin(2πs)ds = 0,

for k = 0, 1, 2, ....
6.: The Cauchy distribution with standardized density f(x) = 1/π(1 + x2) is the source of many

interesting pathological examples.
(a): Although the Cauchy density is symmetric about 0, and rather “bell-shaped” like the

normal, it fails to have a mean, i.e., EX is divergent, as are higher moments. This fact
gives rise to examples of pairs of densities which “appear” rather similar, but have wildly
different moment sequences. Suggest such an example based on a mixture of normal and
Cauchy rv’s.

(b): Using the fact that the characteristic function of a Cauchy random variable is φ(t) =

e−|t|, show that the sample mean of n independent Cauchy random variables, X̄n =
1
n

∑n
i=1Xi, follows the same Cauchy distribution.

(c): Generalize (b) to weighted averages X̃n =
∑n

i=1wiXi with wi > 0 and
∑
wi = 1.

7.: Lest problems (3.) and (4.) leave the impression that the inadequacy of moments to char-
acterize distributions depends upon pathological behavior of the mgf, we give an example in
which the mgf is perfectly innocuous. Let f(x) be the standard normal density and

g(x) = f(x)(1 + 1/2 sin(2πx))

Compare f and g by plotting, and then compare their moments or cumulants.
Hint: Verify that the kgf of g is

k(t) =
1

2
t2 + log(1 + 1/2e−2π

2
sin(2πt))

This might convey yet another wrong impression that because the mgf/kgf are almost indis-
tinguishable the characteristic functions are also. This isn’t the case: it can be shown that
the characteristic functions for the normal and the McCullagh densities differ by a purely
imaginary component of the form

d(t) =
1

4
ie−

1
2
(2π+t)2(e4πt − 1)

which, when plotted reveals that there are significant descrepancies around ±8. Indeed the
Plancherel identity asserts that the L2 difference in densities equals the L2 difference in char-
acteristic functions so this implies that big differences in densities are detectable by differences
in characteristic functions, even though they may not be detectable by moments.

8.: Draw some moral from the proceeding three problems. You might try to work in some
comment on method of moment spaces discussion at the end of Lecture 1.

9.: Suppose Z1, . . . , Zn are iid N (0, 1) r.v’s. Show that maxi Zi/(2 log n)1/2
p→ 1. Interpret this

result in the context of some reasonable economic model, e.g. auctions.

Hint. Write Mn for the maximum and show

P (Mn ≤ (2η log n)1/2) = [1− P (Z1 > (2η log n)1/2)]n

and then use the exponential inequality for normal tails.
Extended Hint:

P (Mn ≤ a) = (1− P (Z1 > a))n = Φ(a)n
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using the Feller inequality

(
1

a
− 1

a3
)φ(a) ≤ 1− Φ(a) ≤ 1

a
φ(a)

we have,

(1− 1

a
φ(a))n ≤ P (Mn ≤ a) ≤ (1− (

1

a
− 1

a3
)φ(a))n

Now consider the lower bound, with a = an = (2γ log n)1/2...
10.: Unimodal distributions play a significant role in statistical applications: a distribution func-

tion F : < → < is unimodal about a point a if it is convex for x < a and concave for x ≥ a. The
corresponding density, whose existence is ensured by the convexity/concavity, is monotone as
a consequence. A nice characterization of unimodal distributions is the following.

Thm (Pestana (1980)) The r.v. Z has a unimodal distribution function (about the origin) iff
Z = XY for rv’s X, Y such that X ⊥⊥ Y and X ∼ U [0, 1].

This result will reappear later in the course in the context of random number generation.
An interesting consequence of the result is the following classical result of Khinchine.

Thm (Khinchine) F (x) is a unimodal distribution (about 0) iff it has characteristic function
Φ(t) representable as

Φ(t) =
1

t

∫ t

0
Ψ(u)du

for some characteristic function Ψ.
Prove. Hint: Ψ is the characteristic function of Y .

11.: This is the Tom Rothenberg Memorial Table Method of Moments Problem, and is based
on an example of Tom’s. An RA is hired to measure the length and width of a rectangular
seminar table. He makes a measurements of the two dimensions, but just before he is to report
his results his spreadsheet program crashes and he is only able to recover n area measurements
which had been calculated

Ai = LiWi i = 1, . . . , n

The problem is: can we infer anything about the length and width of the table from only the
area data?

Obviously, we need a model. Suppose that the original measurements arise according to the
following simple specification

Li = α+ ui

Wi = β + vi

with ui and vi mutually independent and independent over i. Assume, further, that ui and vi
have common distribution which is symmetric about zero, has variance σ2, and finite fourth
moment.

Under these conditions we may write

Ai = αβ + αvi + βui + uivi

(1) Verify that

EAi = αβ, V Ai = σ2(α2 + β2 + σ2)

E(Ai − αβ)3 = 6αβσ4

where by convention α ≥ β > 0.
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(2) Result (1.) suggests the following method of moments estimator might be used,

σ̂2 ≡
√
M3/6M1

and we can estimate (α+ β)2 by

S2 ≡M2/σ̂
2 − σ̂2 + 2M1

and (α− β)2 by

D2 ≡M2/σ̂
2 − σ̂2 − 2M1

Provided S2 and D2 are positive we may define the estimators:

α̂ = (S +D)/2

β̂ = (S −D)/2.

Supply an argument for the consistency of the estimator θ̂ = (α̂, β̂, σ̂2) described above.

(3) Under somewhat stronger moment conditions, it can be shown that
√
n(θ̂ − θ) is asymp-

totically normal. Either:
(a) Derive the precise form of the limiting distribution of θ̂ and explore the effect of σ

on the precision of the estimates of α and β, or
(b) Design and conduct a small monte-carlo experiment to explore the effect in (a.).

(4) What happens if the errors are multiplicative not additive?
12.: A Volleyball problem

Consider a model of volleyball competition with old-fashioned volleyball scoring in which
teams only score points when they are serving. (When the serving team loses a “rally” then the
serve changes to the opposing team. In new-fashioned scoring, also known as “rally” scoring,
teams score irrespectively of which team serves.)

Team Prob Prob
Serving 1 wins 2 wins
T1 p1 (1− p1)
T2 (1− p2) p2

Suppose we have offensive and defensive ratings denoted φ and δ from the logistic paired
comparison model for teams 1 and 2. (See L20 of Ec 508.) They determine the following
probabilities:

p1 = 1/(1 + e−(φ1−δ2))

p2 = 1/(1 + e−(φ2−δ1))

Now consider the scoring transition matrix determining which team scores the next point:

State 1 wins 2 wins
next point next point

T1 wins last point α (1− α)
T2 wins last point (1− β) β

We can relate these transition probabilities to the p’s as follows:

α = p1 + (1− p1)(1− β)

β = p2 + (1− p2)(1− α)

To see these relationships consider team 1’s situation: if team 1 won the previous point then
it is serving and the probability is p1 that it gets the next point. On the other hand, if it loses
its serve (which happens with probability (1− p1) then it wins the next point with probability
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(1− β). This yields the expression for α. The same reasoning for team 2 yields the expression
for β.
(1) Solve for α and β in terms of p1, p2.
(2) Now suppose we would like to compute the probability Pn(j) that team 1 wins by a score

of n to j, j < n, assuming that team 1 serves first, which can be expressed as,

Pn(j) =
∑
k

P (Ek)

where k = (k1, . . . , kn) and Ek is the event,

Ek = { T2 scores k1 points, T1 scores a point,
T2 scores k2 points, T1 scores a point,

...
T2 scores kn points, T1 scores a point, }

so the sum is over all n-tuples k such that
∑n

i=1 ki = j. From our transition matrix, we
have, setting

c0 = α

cki = (1− α)βki−1(1− β) ki > 0

that this probability is

P (Ek) =
n∏
i=1

cki .

Let {Xi = 1, . . . , n} be iid random variables with

P (Xi = k) =

{
α k = 0
(1− α)βk−1(1− β) k > 0

and set Sn =
∑
Xi, then

Pn(j) = P (Sn = j)

show that the generating function

gX1
(s) =

∞∑
i=1

cis
i = α+

(1− α)(1− β)s

1− βs

(3) Show that the generating function for Sn is

gSn(s) = [α+ (1− α− β)s]n[1− βs]−n

so to find probabilities we just need the coefficients of the power series expansion,

gSn(s) =

∞∑
k=0

P (Sn = k)sk

Let γ ≡ (1− α− β) and δ = γ/α and write

((α− γs)/(1− βs))n = αn((1 + δs)/(1− βs))n.

The binomial theorem deals nicely with the numerator,

(1 + s)n =

n∑
k=0

(
n

k

)
sk,
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and a somewhat more exotic form that goes back to Newton (perhaps) is

(1− s)−n =
∞∑
k=0

(
n+ k − 1

k

)
sk,

so generalizing slightly we have

Pn(j) =

j∑
k=0

(
n

j − k

)(
n+ k − 1

k

)
βkαn−j+k(1− α− β)j−k.

Verify and evaluate for p1 = .45, p2 = .40 and n = 15, the probability of various scores
j = 0, 1, . . . , 13. Use Mathematica or R or some other convenient computational aid.

[Historical Note] When j > 13 then things get complicated by the end game rules. In the
ancient form of volleyball scoring teams needed to win by two points, but new forms of scoring
try to simplify this. One objective of the foregoing fun and games is that it enables us
to compute the length of matches for various serving rules. (This problem is based on some
preliminary work that I did on a paper with Wally Hendricks that was never finished tentatively
called “Redesigning Volleyball for TV.” It was intended to compare various proposals to change
the rules to make matches more predictable in length.) The “paired comparison” model
discussed in 508 can be used to estimate ratings parameters that can then be used to evaluate
the underlying probabilities in this model, and therefore to make predictions or seedings of
tournaments.


