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Lecture 8
“Happy Families Are All The Same”

In this lecture we consider the exponential family of densities which provide an idealized
framework for MLE.

Def: A family Fθ of parametric models is a one-parameter exponential family, (1pxf), if
there exist functions c(θ), d(θ) on Θ and real-valued functions T, S on <, and a set A such that
elements of Fθ have densities

f(z, θ) = exp{c(θ)T (z) + d(θ) + S(z)}IA(z)

Recall: IA(z) =

{
1 z ∈ A
0 z 6∈ A so this term merely constrains the support of f , but note the

support, A, is explicitly independent of θ. E.g., A = {0, 1, 2, . . . } in some cases, but the support
can’t depend upon θ!!

Random Sampling from 1pxf ’s

Consider Z1, . . . , Zn iid from a 1pxf then the likelihood may be written as

L(θ|z) =

n∏
i=1

f(zi|θ) = exp{c(θ)
n∑
i=1

T (zi) + nd(θ) +

n∑
i=1

S(zi)}
n∏
i=1

IA(zi)

so joint distribution is also a 1pxf and T =
∑n

i=1 T (zi) is sufficient for θ.

Often it is useful to treat c(θ) as “the parameter of interest”, so we call η = c(θ) “the natural
parameter” and write,

f(z|η) = exp{ηT (z) + d0(η) + S(z)} where d0(η) = d(c−1(η))

Moments of T (z) in 1pxf ’s

In order to evaluate the behavior of T (z) we would like to be able to evaluate ET (Z) and
V (T (Z)). This can be done easily with the following trick. Consider the identity∫

f(z|η)dz = 1

since the support is independent of η we can differentiate under the integral to get,

d

dη

∫
f(z|η)dz = 0 ⇒

∫
(T (z) + d′0(η)f(z|η)dz = 0

⇒ EηT (Z) = −d′0(η)
1
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differentiating again yields,

d

dη

∫
(T (z) + d′0(η))fdz = 0

⇒
∫

(d′′0(η))fdz + (T + d′0)
2fdz = 0

⇒ E(T (Z) + d′0(η)) = −d′′0(η)

⇒ E(T (Z)− ET (Z))2 = V (T (Z)) = −d′′0(η)

This can be done with mgf’s, but is much less pleasant!

Example

(1) Poisson

f(x, θ) =
θxe−θ

x!
IA(x) A = {0, 1, . . . } so f(x, θ) = exp{x log θ − θ − log(x!)}IA(x)

So the MLE for θ, θ̂ = x̄, is easily obtained,

l(θ) = log(θ)
∑

xi − nθ −
∑

log xi!

∇l(θ) = θ−1
∑

xi − n = 0

What is “happiness”? Digression on the Cramér-Rao Inequality

The Cramér-Rao inequality is ”much less deep than a random line from Ramanu-
jan’s notebooks”
C.R. Rao, Hip Pocket Restaurant, Champaign, December, 1983.

Thm: Let T (z) be any estimator of θ for a model with likelihood f(z|θ). Assume

(i): The support, Z = {z|f(z|θ) > 0}, doesn’t depend on θ
(ii): For all z ∈ Z and θ ∈ Θ |∂ log f/∂θ| <∞
(iii): For any T (z) such that E|T (z)| <∞

∂

∂θ

∫
Z
T (z)f(z|θ)dz =

∫
T (z)

∂f(z|θ)
∂θ

dz

Let EθT (z) = t(θ) and Vθ(∂ log f/∂θ) = I(θ) then VθT (z) ≥ [t′(θ)]2/I(θ)

Pf: All integrals over the full support Z;

(1):
∫
fdz = 1

(2):
∫
Tfdz = t(θ)

using (iii), setting T (z) ≡ 1 in 1′, with l ≡ l(z|θ) ≡ logf(z|θ),
(1′): ∂

∂θ

∫
fdz =

∫
∂
∂θfdz =

∫
∂
∂θ l · fdz = 0

(2′): ∂
∂θ

∫
T · fdz =

∫
T · ∂∂θfdz =

∫
T ∂
∂θ l · fdz = t′(θ)

Now set X1 = T (Z) and X2 = ∂
∂θ log f(Z|θ) and rewrite again as,

(1′′): EX2 = 0
(2′′): EX1X2 = t′(θ)
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So Cov (X1, X2) = EX1X2 − EX1EX2 = t′(θ) and since

|ρ(X1, X2)| =
|Cov (X1, X2)|√
V (X1)V (X2)

≤ 1

we have,

|t′(θ)| ≤
√
V (T (Z))V (

∂

∂θ
log f)

or

V (T (Z)) ≥ (t′(θ))2

I(θ).
2

Cor: Suppose ET (Z) = θ, then V (T (Z)) ≥ I−1(θ)

Pf: ET (z) = t(θ) = θ ⇒ t′(θ) = 1.

Information

Cor: Suppose Z1, . . . , Zn is a random sample from f(z|θ), then

V (T (Z)) ≥ (t′(θ))2

nI1(θ)

Pf:

I(θ) = V (
∂

∂θ
log f(Z|θ)) = V (

∑ ∂

∂θ
log f(Zi, θ)) = nI1(θ).

Digression à la Pitman (1979) §3.1 on Fisher Information.

The Hellinger distance between f, f0 is

ρ2(f, f0) =

∫
(
√
f −

√
f0)

2dµ = 2− 2

∫ √
ff0dµ.

Clearly ρ(f, f0) = 0 if f = f0 and ρ2(f, f0) = 2 if the supports of f and f0 don’t intersect.

Consider
ρ2

(θ − θ0)2
=

∫
(
√
f −
√
f0)

2

(θ − θ0)2
dµ

then, if
√
f has a (a.e.µ) θ-derivative at θ0, then since(

d
√
f

dθ

)2

θ=θ0

=

(
1

2

f ′√
f

)2

θ=θ0

=
(f ′0)

2

4f0

We have

lim
θ→θ0

ρ2

(θ − θ0)2
=

∫
(f ′0)

2

4f20
f0dµ =

1

4
I(θ0)

or

lim
θ→θ0

ρ

|θ − θ0|
=

1

2

√
I(θ0)

Pitman calls the lhs the sensitivity of the family Fθ to perturbations of θ at θ0. Clearly Fisher
information measures the rate at which f diverges from f0 in Hellinger distance as θ diverges
from θ0.
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Thm: (BD 4.3.2) If Fθ satisfies the conditions of the CRLB, and there exists T ∗ such that
ET ∗ = t(θ) and V T ∗ = (t′(θ))2/I(θ), i.e., T ∗achieves CRLB, for all θ ∈ Θ, then Fθ is a 1pxf.

Remark: First, we note that the sufficient statistic T (z) achieves the CRLB. We have already
seen that

ET = −d′0(η)

V T = −d′′0(η)

CRLB implies that for any statistic R(z) with ER = r(η)

V R ≥ (r′(η))2

T (η)

so for T ,

V (T ) ≥ (−d′′0(η))2/(−d′′0(η))

= −d′′0(η)

which is achieved.

Pf: Equality in the CRLB implies from the correlation inequality that

∂

∂θ
log f(z|θ) = a(θ)T ∗ + b(θ)

for all θ ∈ Θ. Integrating and then exponentiating gives a density in 1pxf form.

Compound Decisions, Bayes Rules and Exponential Families
Suppose that we observe the following process:

Yi ∼ N (µi, σ
2
0) i = 1, · · · , n,

and would like to estimate all the µi’s, subject to squared error loss. We have already seen that
the James Stein estimator,

µ̂i = (1− n− 2

S
)Yi

is one way to do this by shrinking all the unbiased estimates, Yi, toward zero. We may take the
following Bayesian perspective: if we thought that the µi’s were drawn iid-ly from a distribution
F , then the observed Yi’s would have the convolution density,

g(y) =

∫
ϕ0(y − µ)dF (µ),

where we let ϕ0(u) = φ(u/σ0))/σ0. If we knew F , so we also knew g, then the Bayes rule for
estimating the µ’s would be:

δ(y) = y + g′(y)/g(y).

This result is called Tweedie’s formula by Efron (2011). We will show that it follows very simply
from an exponential family argument, but before doing that I’d like to make an argument for
its plausibility by showing its connection to the James-Stein estimator.

Suppose that we thought that the mixing distribution, F , was N (0, σ21) then clearly the
mixture distribution is,

g(y) = φ(y/
√
σ20 + σ21)/

√
σ20 + σ21

and therefore,
g′(y)

g(y)
=

−y
σ20 + σ21

.
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Thus, we obtain from Tweedie’s formula the decision rule,

δ(y) = (1− 1

σ20 + σ21
)y.

If we now admit that we don’t really know σ21 and just decide to use the natural estimator for
the variance of the Yi’s based on,

S =
∑

Y 2
i ∼ (σ20 + σ21)χ2

n,

noting tht if we replace σ20 + σ21 by S, and recall (!) that the expectation of the reciprocal of a
χ2
n is 1/(n− 2), we obtain precisely the James Stein estimator.
Now suppose that we no longer want to assume normality for F , where does the Tweedie

formula really come from? Recall that for squared error loss the Bayes rule requires us to choose
the expectation of µ based on the posterior. To compute this expectation for our normal context
it is actually easier to consider the more general setting in which Y comes from the exponential
family model,

ϕ(y, θ) = m(y)eyθh(θ).

Note that in this general framework we no longer even have the location shift form, so the
mixtures are no longer necessarily convolutions, but not to worry, we will soon revert back to
special case of the normal model. Let’s denote the random θ as Θ, so we would like to compute:

δ(y) = E(Θ|y)

=

∫
θϕ(y, θ)dF (θ)/

∫
ϕ(y, θ)dF (θ)

=

∫
θeyθh(θ)dF (θ)/

∫
eyθh(θ)dF (θ)

=
d

dy
log

∫
eyθh(θ)dF (θ)

=
d

dy
log(g(y)/m(y))

Now returning to the normal case,

ϕ(y, θ) = φ(y − θ) = K exp(−y2/2) exp(yθ) exp(−θ2/2),

so m(y) = exp(−y2/2) and our log derivative yields the Tweedie formula.

Invariance of CRLB

It is important to remember that I(θ) depends upon the particular parameterization em-
ployed. Thus, in the model f(z|θ), suppose that θ = h(η) we can express the information about
η as

I∗(η) = I(h(η))(h′(η))2

where I(·) denotes the Fisher information with respect to to θ and I∗ with respect to to η. To
see this note

I∗(η) = V (
∂

∂η
f(z|h(η)))

= V (
∂

∂θ
f(z|θ) · h′(η))

= I(θ) · (h′(η))2
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But note also that if θ = h(η) then since

∂

∂η
r∗(h(η)) = r′(θ)h′(η)

we have
(r′(θ))2

I(θ)
=

(r∗′(η))2

I∗(η)
2

Multiparameter Extensions

For problems with Θ ⊂ <p we have

I(θ) = (Iij(θ))

Iij(θ) = E

(
∂

∂θi
l(z|θ) · ∂

∂θj
l(z|(θ)

)
Again differentiating under the integral gives

E
∂

∂θ
log f = 0

so

Iij = Cov

(
∂

∂θi
l,

∂

∂θj
l

)
= −E

(
∂2

∂θi∂θj
l

)
This identity is very important.

p-parameter exponential family

f(z|η) = exp{
p∑
i=1

ηiTi(z) + d0(η) + S(z)}IA(z)

Obviously, T (z) = (Ti(z)) is jointly sufficient for η.

It is straightforward to show as in the 1pxf case that

E(Ti(z)) = −d(i)0 (η)

Cov (Ti, Tj) = −d(ij)0 (η)

where d
(i)
0 = ∂d0(η)

∂ηi
and d

(ij)
0 = ∂2d0(η)

∂ηi∂ηj
.

But now that is no presumption that the CRLB is attained. In p dimensions we need to adapt
the result somewhat and we simply state it without proof. See, e.g., Lehmann for details.

Thm: Suppose Fθ is a family indexed by θ ∈ Θ ⊂ <p. Assume

(i): the set Z = {z|f(z|θ) > 0} doesn’t depend on θ.
(ii): For all z ∈ Z and θ ∈ Θ, ∂ log f/∂θi <∞ i = 1, . . . , p.
(iii): For any scalar R(z) such that E|R| <∞ one can differentiate under the integral sign.

Then, setting α = ∇Eθ(R(Z)), we have, V (R(Z)) ≥ α′I−1α.
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