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Lecture 7
“By Shape of likelihood the news was told” Henry IV. part 1

Introduction to the MLE via Sufficiency.

We will begin with a brief introduction to statistical decision theory

θ ∈ Θ states of the world, e.g. rain or no rain today.
a ∈ A actions, e.g. umbrella, or no umbrella today.
L(a, θ) loss function
Z ∈ Z data (information relevant to Θ, like the weather forecast.)
a = d(z) decision function (rule), how the forecast influences the action.

Assuming Z has a density, given θ, f(z|θ), we will consider the risk of the decision rule d(·)
as,

R(θ, d(Z)) = EZL(θ, d(Z)) =

∫
L(θ, d(z))f(z|θ)dz

Obviously, some rules will be good for some θ’s, e.g., d(z) = argmindL(θ0, d) is especially
good if θ = θ0, but we would like the rule to be good in some broader sense.

Def: We say d∗ dominates d, or d∗ � d iff R(θ, d∗) ≤ R(θ, d) for all θ ∈ Θ. And d∗ strictly
dominates d, d∗ � d if d∗ � d and R(θ, d∗) < R(θ, d) for some θ ∈ Θ.

Definition d is admissible iff no d′ strictly dominates d.

Finding admissible decision rules was one of the major party games of the statistics profession
in the 1950’s and 1960’s inspired by the work of Wald, Stein, LeCam and others. It slowly lost
popularity as participants began to realize that it was extremely difficult to get beyond what
had already been done by their forefathers.

Example The most celebrated admissibility result is Stein’s (1956) discovery that the multivari-
ate sample mean is inadmissible in dimension 3 or more. An explicit improvement is achieved by
the James-Stein (1961) estimator. Suppose we have (possibly correlated) jointly normal random
variables, Y1, · · · , Yn with Yi ∼ N (µi, 1), i = 1, · · · , n and would like to estimate the n-vector µ
under squared error loss:

L(µ̂, µ) =

n∑
i=1

(µ̂i − µi)2 = ‖µ̂− µ‖2

The MLE for each µ is just the (unbiased) vector Y itself,1 but James and Stein demonstrated
that the estimator

µ̂i = (1− n− 2

S
)Yi

with S =
∑
Y 2
i has better L than the MLE whenever n ≥ 3.

1Consider the regression of Y on the n-dimensional identity matrix, regardless of the form of the error covariance
matrix, the MLE is µ̂ = Y .
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To see this we review the Efron’s version of Stein’s (1981) argument. Given the identity,

(µ̂i − µi)2 = (µ̂i − Yi)2 − (Yi − µi)2 + 2(µ̂i − µi)(Yi − µi),

summing and taking expectations yields,

Eµ‖µ̂− µ‖2 = Eµ‖Y − µ̂‖2 − n+ 2
∑

Cov(µ̂i, Yi),

where the covariance can be computed [Why?] as if Y ∼ N (µ, In). By Stein’s lemma2

Cov(µ̂i, Yi) = Eµ
∂µ̂i
∂Yi

implying that ∑
Cov(µ̂i, Yi) = Eµ

∑
[(1− n− 2

S
) + 2

n− 2

S2
Y 2
i ]

= n− Eµ
(n− 2)2

S
,

while,

Eµ‖Yi − µ̂‖2 = Eµ
∑

(
(n− 2)

S
Yi)

2 = Eµ
(n− 2)2

S
.

Thus,

Eµ‖µ̂− µ‖2 = n− Eµ
(n− 2)2

S
,

and the last term is positive for n ≥ 3.
Shrinking the MLE toward the origin dominates the MLE itself irrespective of what the

original µi might look like. This still seems quite astonishing after 50 years, and still hasn’t pen-
etrated most textbook treatments of econometrics. As data becomes more plentiful, this result
and related ideas arising from empirical Bayes methods are becoming increasingly important.

Two approaches to choosing d(z):

(1) Minimaxity Find the “least favorable” case for each d, i.e.,

M(d) = max
θ∈Θ

R(θ, d)

and then choose d to minimize M(d). (May be unduly pessimistic.)
(2) Bayes Rules Assign (subjective) probabilities to various states and compute expected

risk

B(d) = EθR(θ, d) =

∫
Θ
R(θ, d)g(θ)dθ

=

∫
Θ

∫
L(θ, d(z))f(z|θ)g(θ)dzdθ

=

∫
{
∫

Θ
L(θ, d(z))h(θ|z)dθ}p(z)dz

2Stein’s lemma, apparently attributable to Chernoff, asserts that if X ∼ N (0, In) and g(·) is differentiable
and well behaved (enough) as ‖x‖ → ∞, then Cov(g(X), Xi) = E∂g(X)/∂xi. This follows from the fact that,
φ′(x) = −φ(x)x so integrating by parts and invoking the well behavedness of g, we have,

∫
g(x)xφ(x)dx =

−
∫
g(x)φ′(x)dx =

∫
g′(x)φ(x)dx.
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where we have written

f(z|θ) g(θ) = h(θ|z) p(z)
↓ ↓ ↓

likelihood prior on Posterior on
θ θ

A Bayes Rule is a d(·) which minimizes this Bayes Risk, which is accomplished by minimizing
the term in { }’s. There is a general principle and a whole genre of theorems that assert that
admissible decision rules are limits of Bayes rules. These so-called “complete class theorems”
become very technical, but the intuitive appeal is obvious: there should a prior that would
justify any admissible rule. If there isn’t such a prior, it is hard to imagine how the decision
rule could be admissible.

Often as a first shot at a problem we may wish to make a point estimate of θ as our decision
rule, i.e., θ̂ = d(z). This is an obvious “academic” setting: we are interested in publishing a
paper based on some empirical analysis, we have no power to implement policies, or engage in
real actions. Instead we are able to make some assertion about the parameters in a model that
we have estimated. In this case

(∗) L(θ, θ̂) = |θ − θ̂|p

is a commonly used family of loss functions. We will remark in passing that

p = 2 ⇒ θ̂ =
∫
θh(θ, y)dθ mean of posterior

p = 1 ⇒ θ̂ = inf{t|
∫ t
−θ h(θ, y)dθ ≥ 1/2} median

p =∞ ⇒ θ̂ = argmax{h(θ, y)} mode

The former case is easily proven by a familiar argument. Let Z be a random variable with
density h we seek θ̂ to minimize

E(Z − θ̂)2 = E(Z − µ)2 + (µ− θ̂)2

which decomposes MSE into variance plus squared bias as before and is obviously minimal when
θ̂ = µ.

The median example is a special case of the following more general asymmetric linear loss
function

L(θ, θ̂) = τ(θ − θ̂)+ + (1− τ)(θ − θ̂)−

min

∫
L(θ, θ̂)h(θ, z)dθ

f.o.c. − τ
∫ ∞
θ̂

hdθ + (1− τ)

∫ θ̂

−∞
hdθ = 0

⇒ −τ(1−H(θ̂)) + (1− τ)H(θ̂) = 0

⇒ τ = H(θ̂)⇒ θ̂ = H−1(τ).

The third commonly considered loss function is 0 − 1 loss. For a continuous parameter we
can approximate this form of loss by

L(θ, θ̂) = I(|θ − θ̂| > ε)

which for sufficiently small ε leads to choosing the mode of the posterior.



4

Often we are loath to admit that we have prior information, but prefer to let the current
data analysis “speak for itself.” In this case it may be reasonable to take the prior density
g(θ) as uniform over some relevant range (move quickly here, or we will be lost in the Bayesian
swamp) in which case the posterior is proportional to the likelihood. From this Bayesian point of
view it is natural that all the information about the parameter available from the experimental
realization, z, is contained in the likelihood.

A somewhat more classical point of view may be illustrated by considering a problem with
a discrete sample space, Z ∈ {z1, . . . } and only two possible states Θ = {θ0, θ1}. Let A =
{z|f(z, θ1)/f(z, θ0) = c}, then if zi ∈ A, we have

f(zi, θ1)∑
z∈A f(zi, θ1)

=
cf(zi, θ0)∑
z∈A cf(zi, θ0)

=
f(zi, θ0)∑
z∈A f(zi, θ0)

I.e., the θ1-conditional probabilities given z ∈ A are the same as the θ0-conditional probabilities
given z ∈ A. So the conditional distribution of any statistic T (z) will be the same for both values
of the parameter, i.e., once we know λ = f(z, θ1)/f(z, θ0), T (z) will yield no new information
about θ. We will say λ is a sufficient statistic in this context. Generalizing somewhat, when θ
takes countably many values we may regard the function

λ(θ) = f(z, θ)/f(z, θ0)

as sufficient. Once we know the values taken by this function for the various values of θ, nothing
more of use can be extracted from the sample about which θ is more likely. Note however, that
when Z,Θ are uncountable then the conditioning is dicey, but we should emphasize that in some
problems a dramatic reduction of the data is possible via sufficiency. This is a concept which
we will now introduce somewhat more formally.

Sufficiency

Given a r.v. Z, we may define a statistic T (Z), e.g., Z = (X1, . . . , Xn) and T (Z) = X̄n. We
say T is sufficient for the family F if

fZ|T (z|t) = fZ,T (z, t)/fT (t)

is the same for all distributions in F . Typically, F is indexed by a parameter θ so T sufficient for
F , really means T sufficient for θ and that fZ|T (z|t, θ) doesn’t depend upon θ. In other words,
once we know T = t, knowing the conditional density of Z given t isn’t informative about θ.
Kiefer(1987) gives a nice characterization of sufficiency in terms of a probabilistic ability to
reconstruct the sample.

Thm: (Factorization) Given a parametric family Fθ T (Z) is sufficient for θ iff there exist
functions g and h such that for all θ ∈ Θ,

f(z|θ) = g(T (z), θ)h(z)

Proof: See Bickel and Doksum. The fundamental paper is Halmos and Savage (1949).

Example 1: Gaussian Linear Model

z = y f(y, θ) = (2π)−n/2σ−n exp

{
− S

2σ2
− (β̂ − β)′X ′X(β̂ − β)

2σ2

}
θ = (β, σ2) β̂ = (X ′X)−1X ′y; S = (y −Xβ̂)′(y −Xβ̂)



5

hence T (z) = (β̂,S) is sufficient for θ ≡ (β, σ2). In this model we can throw away y once we

have computed (β̂,S).

Example 2: Uniform Yi ∼ U [0, θ] i = 1, . . . , n

fY (y|θ) =
1

θn

n∏
i=1

u(0, yi)u(yi, θ)

where u(a, b) =

{
1 if a < b
0 otherwise

=
1

θn
u(T (y), θ)

n∏
i=1

u(0, yi)

where T (y) = y(n), showing T (y) is sufficient for θ.

Example 3: Cauchy Location Yi ∼ Cauchy(θ, 1)

fY (y|θ) = π−n
n∏
i=1

(1 + (yi − θ)2)−1

here there is very little reduction possible. Trivially, one can say that the original sample
(y1, . . . , yn) is sufficient, and we can go a little bit further. Since the observations are inde-
pendent, the ordering of the observations is immaterial, and we can take the order statistics,
Y(1), ...Y(n) as sufficient.

Sufficiency needs to be clarified somewhat since we would like to convey the notion that there
is not redundant information in T . Obviously we can always say trivially “the sample is sufficient
for the sample”, as we did in the Cauchy example, but this isn’t too interesting.

Def: A sufficient statistic T is said to be minimal if of all sufficient statistics it provides
the greatest possible reduction in the data, i.e., if for any sufficient statistic U there exists a
function H such that T = H(U).

Remark: If T has redundant components, then they won’t be computable based only on U .
Obvious example: you can’t reconstruct the whole sample from (β̂,S) in Example 1 above.

This leads to the question what should we call statistics which are redundant once we have
computed the sufficient statistics?

Def: A statistic V (X) is said to be ancillary (with respect to θ) if its distribution does not
depend upon θ.

An awkward aspect of sufficiency is that a minimal sufficient statistic may contain much
ancillary information.

Def: A sufficient statistic T is said to be complete if

Eθf(T ) = 0 for all θ ∈ Θ⇒ f(t) = 0 a.e.P.

where P = {Fθ, θ ∈ Θ}.

Examples:
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: 1. A nice example of this is Xi ∼ U [θ − 1
2 , θ + 1

2 ]. Here T = (X(1), X(n)) is a minimal
sufficient statistic, but T isn’t complete since

E

(
X(n) −X(1) −

n− 1

n+ 1

)
= 0

To see this, take θ = 1/2, so Xi ∼ U [0, 1] then

P (X(n) < x) = P (Xi < x, i = 1, . . . , n)

= P (Xi < x)n

= xn for x ∈ [0, 1]

Thus,
FX(n)

(x) = xnI[0,1](x) + I[1,∞)(x)

and
fX(n)

(x) = nxn−1I[0,1](x)

so

EX(n) = n

∫ 1

0
xndx =

n

n+ 1
and similarly

EX(1) =
1

n+ 1
.

Since Xi ∼ U [θ− 1/2, θ+ 1/2] is just a U [0, 1] r.v. with the constant θ− 1/2 subtracted,
the expectations are just shifted by θ−1/2 and the difference in expectations is the same
as it is in the U [0, 1] case.

: 2. In the Xi ∼ U [0, θ] it is possible to show that X(n) is a complete sufficient statistic.
: 3. In the exponential family models introduced in the next lecture it is possible to show

that the sufficient statistics are also complete provided the parameter space includes a
p-dimensional rectangle. However, the proof of this requires a bit a complex analysis
which seems beyond the purview of this course, see Lehmann (1959 p 132-33).

: 4. Not surprisingly, one can show that if T is a complete sufficient statistic, then it has
to be minimal. See Lehmann and Scheffé (1950).

Thm: (Basu) If T is a complete sufficient statistic for Fθ, then any ancillary statistic V is
independent of T .

Proof: If V is ancillary, pA = P (V ∈ A) is independent of θ for all A. Let

πA(t) = P (V ∈ A|T = t)

then
EπA(T ) = pA

hence by completeness
πA(t) = pA.

Remark: The subtlety here is that completeness means that Eθf(T ) = c ⇒ f(t) = c since
we can always redefine f to subtract (add) c. This result, although it may seem obscure at this
point, underlies the Hausman test variance computation as we shall see later in the course.

In fact, among certain regular families of densities {smooth, with support independent of
parameters} only a relatively small class of “happy families” permit dimension reduction through
sufficiency. We shall look at this class next time. In the non-regular case U [0, θ] offers an example
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of a density which admits a 1-dimensional sufficient statistic: the sample maximum. This means
that all of the foregoing theory is really of quite restricted applicability.

The existence of a complete sufficient statistic in a particular practical problem leads to the
existence of an optimal estimator (in the sense of convex loss) through the following result.

Thm: (Rao-Blackwell) Let T be a complete sufficient statistic for the parameter θ, and
suppose that there exists an unbiased estimator of θ, then there exists a uniformly best unbiased
estimator, of θ, for any convex loss function, and it is the function of T which is an unbiased
estimator of θ.

Proof: By sufficiency P (X = x|T (x) = t) doesn’t depend on θ, thus if S is any unbiased
estimator, we can write it as

S̃(t) =

∫
S(x)P (X = x|T (x) = t)dx

(We may interpret S̃ is just the estimation rule S̃(T (X)) so it really is a mapping from the
sample space.) It is easy to see that

EθS̃(T (X)) = EθS(X) = θ

Now let L(θ,D) be a loss function that is, for any θ, convex in D. By Jensen’s inequality,

L(θ, S̃(t)) ≤
∫
L(θ, S(x))P (X = x|T (x) = t)dx

for every possible value t of T (X). Multiplying both sides by Pθ(T (X) = t) and summing we
have,

EL(θ, S̃(T (X)) ≤
∫ ∫

L(θ, S(x))P (X = x|T (x) = t)Pθ(T (X) = t)dxdt

= EL(θ, S(X))

so S̃(T (X)) is at least as good as any other unbiased estimator for any convex loss function.

Finally, suppose S̃1 and S̃2 are two functions such that

EθS̃1(T (X)) = EθS̃2(T (X))

for all θ. By completeness, the only function h of T (X) for which

Eθh(T (X)) = 0 for all θ ∈ Θ

is the function h which is itself zero with probability one for all θ. So

S̃1(t)− S̃2(t) = 0

and thus

S̃1(t) = S̃2(t)

with probability one. Therefore if S1 and S2 are unbiased estimators of θ and if we obtain S̃1 and
S̃2 as above, it follows that S̃1(T (X)) = S̃2(T (X)) wp1 for all θ. So for any unbiased estimator

S the same S̃ is at least as good as S, and this S̃ is at least as good as any such S which is what
was asserted.

Remark: This result yields the celebrated method of Rao-Blackwell: Given any unbiased
estimator of θ, say S, we can then construct S̃, and it will be better than S in terms of convex
loss.



8

Example: Suppose that X1, ..., Xn are iid from U [0, θ]. We saw earlier that X(n) is a sufficient
statistic with density,

f(t, θ) = nθ−ntn−1I[0,θ](t),

and

Eθg(X(n)) = nθ−n
∫ θ

0
g(t)tn−1dt.

Completeness requires that Eθg(X(n)) = 0 implies that g(x) ≡ 0. This follows by differentiating

with respect to θ. Since EθX(n) = nθ
n+1 , we have

θ̂ = X(n)
n+ 1

n
is UMVU.
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