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Lecture 6
“An Introduction to Density Estimation ”

A fundamental problem of nonparametric statistics is density estimation. Many of the meth-
ods we will use later in the course arise in a relatively simple form here, and consequently it is a
natural place to begin. See Silverman (1986) and Devroye (1987) for rather different expositions
of this topic.

Histograms – if you must

The simplest example is the univariate histogram, or bar-graph. Suppose X1, . . . , Xn is a
random sample from F with density f . Partition the real line into T = {A1, . . . , Ak} disjoint
sets, e.g., Tn : Ai = [(i− 1)h+ c, ih+ c]. Let

A(x) = {Ai ∈ T |x ∈ Ai}

f̂n(x) =
F̂n{A(x)}
λ{A(x)}

=
#{Xj ∈ A(x)}/n

length (A(x))

e.g., we might have f̂n(x) = (nh)−1#{Xj ∈ A(x)}.
We can define a population analogue of f̂n(x) as

pT (x) =
P ((A(x))

λ(A(x))

so for f continuous at x, let h = λ(A(x)) and A(x) = [a, b]

pT (x)− f(x) = h−1
∫ b

a
f(y)dy − f(x)

= f(ỹ)− f(x) for ỹ ∈ (a, b)

→ 0 as h→ 0,

A classical measure of performance f̂n is mean squared error which can be decomposed into
squared bias and variance,

MSE (x) = E(f̂n(x)− f(x))2

= (Ef̂n(x)− f(x))2 + V (f̂n(x))

Note

Ef̂n(X) = En−1
∑

IA(Xi)/λ(A)

= n−1
∑

P (A)/λ(A) = pT (x).

1



V (
∑

IA(x)/(nλ(A))) =

(
1

nλ

)2∑
V (IA(x))

= (nλ)−2nP (A)(1− P (A))

for λ = h :

= (nh2)−1P (A)(1− P (A))

= (nh)−1pT (x)(1− P (A))

≤ (nh)−1pT (x)

so we have,

Thm: For f(x) continuous with h→ 0 and nh→∞ then MSE(x)→ 0.

This pointwise result is promising, but we might like something stronger, e.g.,∫
|fn(x)− f(x)|dx→0

I won’t prove this, see Section 2.5 of Devroye(1987), but note that∫
|f̂n − f |dx = 2

∫
(f − f̂n)+dx

and (f − f̂n)+ < f so dominated convergence gives
∫
|fn−f |dx

P→ 0. The (Lebesgue) dominated
convergence theorem is a standard technique for strengthening pointwise convergence to stronger
forms of convergence: If fn → f a.e.[µ] and there exists g such that |fn| ≤ g a.e.[µ] for all n
and

∫
gdµ <∞, then

∫
fndµ→

∫
fdµ.

Bandwidth Choice and Rates of Convergence We would like to have more guidance on how to

choose h. To this end consider,

MSE(x) = (nh)−1pT (x) + o((nh)−1) + (pT (x)− f(x))2

where

pT (x)− f(x) = h−1
∫ b

a
(f(y)− f(x))dy

but by the mean value theorem, f(y) = f(x) + f ′(x̃(y))(y − x) so,

pT (x)− f(x) = h−1
∫

(y − x)f ′(x̃(y))dy

where we have assumed f(x) is absolutely continuous and x̃(y) ∈ (x, y) ⊂ (a, b). Assume, further,
|f ′(y)| ≤ ch(x) for (x− y) < h so,

|pT (x)− f(x)| ≤ h−1
∫
|(y − x)||f ′(x̃(y))|dy ≤

∫
ch(x)dy ≤ hch(x).

Note that limh→0 ch(x) = |f ′(x)|, so

MSE (x) = (nh)−1f(x) + o((nh)−1) + h2(f ′(x))2 + o(h2)

2



minimising with respect to h we have the first order conditions,

−(nh2)−1f + 2h(f ′)2 = 0

so h3 = (2n)−1f/(f ′)2 or h = kn−1/3, and therefore, at the optimal bandwidth,

MSE (x) = n−2/3[f(x)/k + k2(f ′(x))2] + o(n−2/3)

Note that this is rather unsatisfactory by comparison with convergence rates in parametric
problems where MSE (θ̂) = O(n−1). We may regard this as “the cost of being non-parametric.”
We get to heaven more slowly when we don’t know the correct model.

For R users, note that the R hist command uses h = 1/(log2(n) + 1) which R calls Sturges
rule and is sometimes also called Doane’s Rule. Since the number of bars in a histogram is m =
O(h−1) we have m = O(log2(n)+1) bars while for optimal method we have m = O(k−1n1/3). So
the number of bars increases much faster for optimal choice. For n < 500 it doesn’t matter much
but for n larger than 500 it does matter. A reasonable value for k above is 3.5. Wand (1997) has
a good discussion of this. In fact, Wand (1997) serves as a good example of style and content for
a 574 paper. R allows the user to specify one of these alternative rules by specifying breaks =

"Scott" for the rule k = 3.5σ̂n−1/3 or breaks = "FD" for the rule k = 2σ̃n−1/3 where σ̂ is the
usual standard deviation estimate, and σ̃ is the estimated interquartile range, which is generally
regarded as safer, more robust, choice.

If f ′(x) = 0, then there are obvious problems with the choice of k suggested by these MSE
calculations. This would be the case, for example, if we considered x = 0 and f were any
unimodal density symmetric about zero. One way to circumvent this problem is to explicitly
admit that we don’t simply want to estimate the density at a single point but that we would
really like to minimize integrated mean squared error. We can develop an approximation for this
quite easily from what we have already done.

Write ∫
V (f̂n(x))dx =

∞∑
k=−∞

∫
Ak

V (f̂n(x))dx =
1

nh

∞∑
k=−∞

P (Ak)(1− P (Ak))

Note that
∑
P (Ak) =

∫
f(x)dx = 1 and by the mean value theorem,

∑
P 2(Ak) =

∑
f2(ξk)h

2 = h

∫
f2(x)dx+ o(1)

so the integrated variance may be approximated by∫
V (f̂n(x))dx = (nh)−1 − n−1

∫
f2(x)dx+ o(n−1)

Now consider the integrated bias:

hpT (x) =

∫
(f(x) + (t− x)f ′(x) +

1

2
(t− x)2f ′′(x) + . . .)dt

= hf(x) + h(
h

2
− x)f ′(x) +O(h3)
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so the bias at x is,

pT (x)− f(x) = (
h

2
− x)f ′(x) +O(h2)

and ∫
Ak

(
h

2
− x)2f ′(x)2dx = f ′(ξk)

2
∫

(
h

2
− x)2dx =

h3

12
f ′(ξk)

2

for some ξk ∈ Ak, and integrated squared bias is,

h3

12

∞∑
k=−∞

(f ′(ξk))
2 =

h2

12

∫ ∞
−∞

(f ′(x))2dx+ o(h2)

Now, note that if we minimize the asymptotic integrated squared error,

AMISE(h) =
1

nh
+
h2

12

∫ ∞
−∞

(f ′(x))2dx

we obtain h∗ = kn−1/3, with k = (6/
∫

(f ′)2)1/3, So integrated squared error is also O(n−2/3) like
the pointwise MSE, but now we can consider k based on global considerations. For example, if
f ∼ N (0, 1), ∫

(f ′)2 =
1

4
√
π

so k ≈ 3.5. If instead f ∼ N (µ, σ2), then we have Scott’s k ≈ 3.5σ. This is quite reasonable
unless the data are very heavy tailed in which case the estimation of σ may be problematic.
(More on this later in the course.) As an alternative, Freedman and Diaconis have proposed the
rule

h∗ = 2rn−1/3

where r is the interquartile range. This is somewhat narrower than the normal theory proposal
of Scott (1992).

Kernel Density Estimation

Rosenblatt (1956) proposed the following alternative for estimating f(x). Let A = (x −
hn, x+ hn) and set

f̂n(x) = (2hnn)−1
∑

IA(Xi) =
Fn(x+ hn)− Fn(x− hn)

2hn

Clearly 2nhnfn(x) ∼ B(n, pn) where pn = F+ − F− = F (x+ hn)− F (x− hn) so,

Ef̂n =
F+ − F−

2h
→ f(x) if hn → 0

V f̂n =
(F+ − F−)(1− F+ + F−)

4nh2n
→ 0

if hn → 0 and nhn →∞, since

F+ − F−

2h
→ f and

1− F+ − F−

2nh
→ 0.
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So far this is very much like the histogram, except for the fact that the “bin” is centered at the
x-value of interest. However this turns out to have a surprisingly important effect.

Asymptotic Normality of fn(x). Recall that if Y ∼ B(n, p), EY = np, V Y = np(1 − p) and
by DeMoivre Laplace (and the quincunx)

Zn =
Yn − np√

V Y
; N (0, 1)

Here, let ∆ = F+ − F− and write,

Zn =
2nhnf̂ − n∆√
n∆(1−∆)

=
(2nhnf̂ − n∆)/

√
2nhn√

∆(1−∆)/2hn
=

√
2nhn(f̂ − (∆/2hn))√

∆(1−∆)/2hn

→
√

2nhn(f̂ − Ef̂)√
f(x)

Consider the bias, writing,

Ef̂(x)− f(x) =
1

2

[(
F (x+ h)− F (x)

h
− f(x)

)
+

(
F (x)− F (x− h)

h
− f(x)

)]

expanding F (x± h) around 0 and simplifying for η1, η2 ∈ [0, 1]

F (x+ h)− F (x)

h
= f(x) +

f ′(x)h

2
+
f ′′(x+ η1h)h2

6
F (x)− F (x− h)

h
= f(x)− f(x)h

2
+
f ′′(x+ η2h)h2
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so

Ef̂ − f =
h2

12
[f ′′(x+ η1h) + f ′′(x+ η2h)]→ h2n

6
f ′′(x)

for hn → 0, provided f ′′(x) <∞ so this cancellation of f ′ effect is the big gain over histogram.

Note that the effect of centering the kernel estimate at x, rather than using the uncentered
histogram estimate, is to remove the f ′(x) term in the bias which is O(h) and replace it with a
term which is O(h2). As in the histogram case we have,

V f̂ → f(x)

2nhn

so

MSE (x) =
f(x)

2nhn
+
h4n
36

(f ′′(x))2 + o((nhn)−1) + o(h4n).

Thm: If hn = cn−1/5−δ for c > 0 and δ ∈
(
−1

5 ,
4
5

)
, then

n4/5E(f̂(x)− f(x))2 =
1

2c
f(x)nδ +

c4

36
(f ′′(x))2n−4δ + op(1).
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Proof: At one limit δ = −1/5 + ε, so hn = cn−ε → 0 and nhn = cn1−ε → ∞, and at the
other limit δ = 4/5− ε, so hn = cn−1+ε → 0 and nhn = cnε →∞.

To minimize MSE clearly δ = 0 is optimal since otherwise n4/5 MSE → ∞. What about
the optimal value for c? Let δ = 0 and differentiating with respect to c, we have the first order
conditions,

c3

9
(f ′′(x))2 =

f(x)

2c2
⇒ c =

(
4.5

f(x)

(f ′′(x))2

)1/5

For example, if f(x) = φ(x) so f ′(x) = −xf(x) and f ′′(x) = −φ(x) + x2φ(x), then

c(x) =

(
9/2

φ(x)

φ′′(x)2

)1/5

= (2/9 φ(x)(x2 − 1)2)−1/5

so at the mean for example we have, c(0) = 1.623. Plotting c(x) we see a rather strange scallop
shape, that suggests that you would want to have wider bandwidths at ±1, I’m rather doubtful
about that, but the other implication – that bandwidth should be larger in the tails than in the
center of the distribution – definitely does seem reasonable.

We have gained substantially, by centering our histogram estimate at x, now MSE (x) =
O(n−4/5) considerably better than the O(n−2/3) for the histogram estimate. What have we lost?
We now have somewhat more computation since at each x we need an estimate; this isn’t too
burdensome, though.

Where do we go from here? Two “features” of the Rosenblatt f̂ seem awkward:

(i) sharp edges of the kernel
(ii) fixed bandwidth with respect to x.

In the last question of Problem Set 2, we will consider smoothing the kernel shape and later
we can (perhaps) consider adaptive bandwidth choice. Silverman has a good discussion of both
of these topics. Silverman is a good model for a monograph in statistics.

In problem 4 of PS 2 you are asked to review the preceding computations using a smoother
form for the kernel function. Qualitatively the situation is similar. A smoother kernel has an
effect on the relevant constants, but not on the rates for hn → 0 and MSEn → 0.

An interesting question, one that has not really received sufficient attention in the literature
is: what determines the level of difficulty of density estimation? Here I will discuss a result of
Devroye which provides an interesting partial answer to this question – in effect an analogue of
the Cramér-Rao bound for parametric situations.

Def: Let f(x) be a function on [a, b] for any partition T (x), x0 = a < x1 < . . . < xn = b, let

VT =
n−1∑
k=0

|f(xk+1)− f(xk)|.

The least upper bound of VT over partitions T is called the total variation of the function f and
may be denoted V (f).
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Some elementary facts about total variation.

F1. Monotone functions: V (f) = |f(b)− f(a)|

F2. Lipshitz functions: V (f) ≤ K(b− a)

Pf: Recall that f is Lipshitz on [a, b] if

|f(x)− f(y)| ≤ K|x− y|

thus
|f(xk+1)− f(xk)| ≤ K(xk+1 − xk)

so
V (f) ≤ K(b− a).

Note that if f has a derivative f ′ at every point x ∈ [a, b], then by mean value theorem,

f(x)− f(y) = f ′(z)(x− y)

so if f ′(z) is bounded, f is Lipshitz.

My favorite reference on this is Natanson (1974), but any real analysis book has a treat-
ment.

A result that is not quite so trivial, but quite important is the following.

F3. If f is absolutely continuous, then V (f) =
∫ b
a |f ′(t)|dt

This leads to an interesting measure of roughness for functions that seems interesting from
a statistical standpoint.

Def: Let f be an absolutely continuous function with derivative f ′ on [a, b]. The roughness of f
is given by

R(f) = V (f ′)

Remark: Note, if f ′ is absolutely continuous, then

R(f) = V (f ′) =

∫ b

a
|f ′′(t)|dt

so linear functions have roughness 0. Of course, densities can’t be linear; they can be piecewise
linear, but then the kinks contribute to the roughness. Consider a triangular density, and
compute its roughness.

Example: Seemingly nice functions can have V (f) = ∞. Take f(x) = x cos(π/2x) on [0, 1] for
T = {0 < 1

2n <
1

2n−1 < . . . < 1
3 <

1
2 < 1, then VT = 1 + 1

2 + . . .+ 1
3 + . . .+ 1

n ≈ log n.
Now we finally get to Devroye’s result.
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Thm: Let f be a density with R(f) <∞ and
∫
x2f <∞. If K(·) is a nonnegative order 2 kernel

for which
∫

(1 + x2)K2 <∞, then

infh>0E(

∫
|f̂n − f |) ≤ (1 + o(1))C(K)γ(f)n−2/5

where C(K) is a constant depending solely on K and

γ(f) = (R(f)(

∫ √
f)4)1/5

Remark: This reduces the difficulty factor to two salient functionals. One is the roughness of f
as measured by the total variation of f ′, the other is the tail behavior –

∫ √
f can be arbitrarily

large – in the Cauchy case
∫ √

f =∞. The best case from the point of view of R is the isosceles
triangle density – only the jumps at the corners and at the mode contribute to R, but in general,
we get a picture like 7.7 in Devroye. It can also be shown that

infh>0E(

∫
|f̂n − f |) ≥ (D + o(1))C(K)γ(f)n−2/5

for some D > 0 and all densities f . This for some constant c, we can plot xy4 < c where
x = R(f) and y =

∫ √
f and obtain a simple way to characterize the feasible set of densities and

how difficult various densities are by measuring the distance to this boundary. As Devroye says,
“The lower bound for γ(f) is really due to the fact that when one has to draw a density, one
either needs to create a big tail if the density is to be smooth, or one needs a lot of oscillation
if the tail is to be small.”
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