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Lecture 3
“Everything that Rises Must Converge”

Often we are interested in sequences X1, X2, . . . of r.v.’s on a p-space (Ω,A, P ). It is fash-
ionable now to speak of asymptopia, a mythical land which serves as a laboratory of statistics
where we may conduct thought experiments to compare performance of estimation and infer-
ence procedures. In this land sample sizes tend to infinity and comparisons are much easier
than the workaday world of everyday life. “Easier than what?” you may ask. Easier than exact
finite sample results, I would say. Here we will emphasize validation by monte-carlo of these
thought experiments and the constructive interplay between these two tools. We are interested
in behavior of sequences of r.v.’s, and in particular, in the convergence of the tail elements of
the sequence.

1. Convergence in Probability

Let {Xi}i=1,2... and X be real valued r.v.’s on (Ω,A, P ). We say Xn converges in probability
to X if

lim
n→∞

P (|Xn −X| < ε) = 1

for any ε > 0. And we will write Xn → X.

Often X will be a degenerate r.v., e.g., If Xn = X̄n = n−1
∑n
i=1 Zi where Zi are iid

N (µ, σ2) then Xn → µ, and we can think of µ as the degenerate r.v. X which takes the
value µ wp1.

2. Convergence with Probability 1

We say Xn converges wp1 , or almost surely, to X if

P ( lim
n→∞

Xn = X) = 1

or equivalently, for any ε > 0,

lim
n→∞

P (|Xm −X| < ε, for all m > n) = 1.

Sensibly, almost sure convergence ⇒ convergence in probability, but we will encounter
examples in which the converse fails.

3. Convergence in qth Mean

Xn converges in qth mean to X if

lim
n→∞

E|Xn −X|q = 0
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By the moment inequality Xn
qth→ X ⇒ Xn

pth→ X for any 0 < p < q. Often q = 2, in
practice. As an example of extreme behavior suppose that Xn = 0 with probability 1−n−3
and Xn = n with probability n−3, then taking X = 0, we have limE|Xn − X|q = 0 for
q = 1, 2, but E|Xn −X|3 = 1.

4. Convergence in distribution (law)

Xn converges in distribution to X if for their respective distribution functions

lim
n→∞

Fn(x) = F (x) at each continuity point of F

We will write this as Xn
D→ X, or as Fn ⇒ F, the latter is generally pronounced Fn

converges weakly to F . Often I’ll just write Xn ; X, or e.g. Xn ; N (0, 1).

5. The Story of O

For positive deterministic sequences {an}, {bn}

1 If there is a ∆ <∞ such that an/bn ≤ ∆ for sufficiently large n, we say

an = O(bn)

2 If an/bn → 0 we say
an = o(bn)

Clearly, if an = O(nr) and bn = O(ns), then anbn = O(nr+s) and an + bn = O(nmax(r,s))
and similarly for o. This useful device was extended to r.v.’s by Mann and Wald (1943)
and developed somewhat by Pratt and others.

For sequences {Xn} and {Yn} of r.v.’s on (Ω,A, P ) and any ε > 0,

1’ If there exists ∆ <∞ such that P (|Xn| ≥ ∆|Yn|) < ε for n sufficiently large, we write
Xn = Op(Yn).

2’ If P (|Xn| ≥ ε|Yn|)→ 0, we write Xn = op(Yn)

Often, Yn will be nonstochastic, and in particular we will often write

Xn = Op(1) for “bounded in probability”
Xn = op(1) for “tending to zero in probability”

Further details on Op and op are provided in the handout from Bishop, Fienberg and
Holland(1975) Discrete Multivariate Analysis, which is available from the web site in the
“Readings” section.

6. Some Basic Tools

Thm: Xn
qth→ X ⇒ Xn → X.

Pf: E|Xn −X|q ≥ E[|Xn −X|qI(|Xn −X| > ε) ≥ εqP (|Xn −X| > ε).
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Thm (Prop 4.1 of Shorack (2000)). Suppose that X ∼ F,Xn ∼ Fn such that Xn → X.
Then Xn →d X.

Pf:

Fn(t) = P (Xn ≤ t) ≤ P (X ≤ t+ ε) + P (|Xn −X| ≥ ε)
≤ F (t+ ε) + ε for n ≥ nε

And

Fn(t) = P (Xn ≤ t) ≥ P (X ≤ t− ε, |Xn −X| ≤ ε)
≡ P (A ∪B)

≥ P (A)− P (BC)

= F (t− ε)− P (|Xn −X| ≤ ε)
≥ F (t− ε)− ε for n ≥ n′ε

Thus, for n ≥ max{nε, n′ε} we have

F (t− ε)− ε ≤ limFn(t) ≤ limFn(t) ≤ F (t+ ε) + ε

and for all continuity points of F the result follows by letting ε→ 0. 2

Thm: If
∑∞
n=1 P (|Xn −X| > ε) <∞ for every ε > 0, Xn → Xa.s.

Pf:

P (|Xn −X) > ε for some m > n) = P (∪∞m=n{|Xm −X| > ε})

≤
∞∑
m=n

P (|Xm −X) > ε)

which converges to 0, by hypothesis.

Remark: This result illustrates the gap between→ and→ a.s., if Xn → X “sufficiently
fast”, then Xn → Xa.s.

Thm: For {Xn} and X with df’s {Fn}, F and cf’s {φn}, φ, the following are equivalent

(i) Fn ⇒ F

(ii) limφn(t) = φ(t) t ∈ |R.
(iii) lim

∫
g dFn =

∫
g dF for each bounded continuous function g.

Pf. (i)⇒ (iii) is Helly Thm, converse follows by taking g(x) = I(x < t)+(x− t)I(t <
x < t+ ε) where,

F (t− ε) ≤ limFn(t) ≤ limFn(t) ≤ F (t+ ε)

for (ii) ⇔ (iii), see Gnedenko (1962) §38.

Remark: The crucial implication of this is that if φn of Xn tends to e−
1
2
t2 , then Xn ;

N (0, 1).

Thm: (Cramér-Wold device) For {Xn} andX in |Rp, Xn ; X iff for all α ∈ |Rp, α′Xn ;

α′X.
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Pf: Uses multivariate version of previous result.

Thm: (Slutsky) Let Xn ; X and Yn → y, a real constant. Then,

(i) Xn + Yn ; X + y

(ii) XnYn ; yX

Pf: We will prove (ii), (i) is similar. The argument given is that of Davidson; but
note that the roles of Xn and Yn are reversed there. For details on (i) see Bickel
and Doksum, or Serfling. Suppose y = 0, for the convenience of the moment, and let
B > 0, be a real constant, and denote

XB
n = XnI(|Xn| ≤ B)

Then
{|YnXn| ≥ ε} = {|Yn||XB

n | ≥ ε} ∪ {|Yn||Xn −XB
n | ≥ ε} (1)

for any ε > 0,
{|Yn||XB

n | ≥ ε} ⊆ {|Yn| ≥ ε/B}

and
P{|Yn||XB

n | ≥ ε} ≤ P{|Yn| ≥ ε/B} → 0.

By hypothesis Xn = Op(1) so there exists δ > 0, and Bδ < ∞ such that for n
sufficiently large,

P (|Xn −XBδ
n | > 0) < δ

Since
{|Yn||Xn −XB

n | ≥ ε} ⊆ {|Xn −XB
n | > 0}

so 1 and additivity implies,

lim
n→∞

P{|Xn||Yn| ≥ ε} < δ

Since ε and δ were arbitrary we hae shown that XnYn → 0. The result follows by
noting that Yn can be replaced by Yn − y.

Thm: (Continuous Mapping) If Xn ; X and g is continuous, g(Xn) ; g(X).

Pf: Follows immediately from weak convergence, but extremely useful.

Examples of the use of the CMT

(i) If Xn ; N (0, 1), then X2
n ; χ2

1

(ii) If (Xn, Yn) ; N (0, I2), then Xn/Yn ; Z, a standard Cauchy r.v.

(iii) When g isn’t continuous beware!

g(t) =

{
t− 1 t ≤ 0
t+ 1 t > 0

Let Xn = 1
n wp1 and X = 0 wp1, so, Xn → X, but g(Xn) → 1 but g(X) =

g(0) = −1. The conditions can actually be weakened slightly so that g can be
discontinuous on a set of P-measure zero, but this isn’t typically very helpful.
See Resnick, p260 for details on this more general version.
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Thm: (δ-method) Suppose an(Xn−b) ; X where an is a sequence of constants tending
to ∞, and b is a fixed number. Let g : |R → |R be differentiable with continuous
derivative g′ at b. Then

an(g(Xn)− g(b)) ; g′(b)X.

Pf: By Slutsky,
Xn − b = a−1n [an(Xn − b)]→ 0

and therefore Xn → b. Now apply mean value theorem to g(Xn)− g(b),

g(Xn)− g(b) = g′(X∗n)(Xn − b)

where |X∗n − b| ≤ |Xn − b|,whence X∗n → b so by the continuity of g′ and the CMT
g′(X∗n) → g′(b). Multiplying by an and again applying Slutsky we have the result.
The same argument generalizes to Xn, X ∈ |Rp.
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