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Lecture 24
Competing Risks and Opportunities

A common situation in survival analysis is that there are several competing risks. We might imagine
a latent variable model for {Tj : 1, . . . ,m} denoting failure times due to causes j = 1, . . . ,m. We observe

(Y, J) = (min
j
{Tj}, arg min

j
{Tj})

This formulation has some philosophical difficulties: Joe dies after being hit by a bus at age 35, of
alcoholism at 55, by drowning at 75, ... It seems to require what is called a “many worlds” interpretation
in modern physics. In this view it seems desirable to analyze the joint distribution of the vector T . But
in the immortal words of the Rolling Stones, “you can’t always get what you want, but if you try real
hard – you get what you need.”

Identifiability of Competing Risks

Cox (1962, p. 112) notes that given data on (Y, J) we cannot identify the form of the underlying
dependence in the vector T . In particular, we may imagine estimating the conditional densities:

f1(t) = lim
h→0

P (T1 ∈ (t, t+ h], T2 > t)

h

f2(t) = lim
h→0

P (T2 ∈ (t, t+ h], T1 > t)

h

but for an arbitrary joint distribution of T1 and T2 we can always find a specification of independent T1
and T2 with the same f1 and f2.

Do we really need a sample of cats, who die nine times, to estimate a dependent competing risk
model? No, under some conditions we can make some progress without cats. Heckman and Honoré
(1989) consider a variant of the Cox PH model. They suppose that

Si(t|x) = exp{−Λi(t)φi(x)} i = 1, . . . ,m

solving for the cumulative hazards

Λi(t) = − logSi(t|x)(φi(x))−1

and evaluating at a random event time Ti we have

Λi(Ti) = − logUi/φi(x)

where Ui ∼ U [0, 1]. This formulation yields a simple way to simulate from this model by computing

Ti = Λ−1i (− logUi/φi(x))

The Ui’s can be taken as independent, or alternatively can be generated as dependent. Note that random
vectors U ∈ [0, 1]m with uniform marginals are characterized by their distribution function C(ui, . . . , um),
or copula function. In the independent case this is just the uniform distribution on [0, 1]m. The form of
the PH model imposes enough structure so that under some further regularity conditions we can identify
some (restricted) forms of dependence. Further details are given in Heckman and Honoré (1989) and
Abbring and van den Berg (2003).
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An alternative approach originating, with Prentice et al (1978), that seems to have become more
common in Biostatistics, is to focus on cause specific hazard and incidence functions. These are always
identifiable. Briefly, consider what is called the crude risk of failure from cause 1 represented by the
random variable

T ∗1 =

{
Y if J = 1

+∞ otherwise,

which has df
F1(t) = P (T ∗1 < t) = P (Y < t, J = 1).

This is estimable. In the counting process notation of L23, let Ni(t) = I(Yi ≤ t, δi = 1, J = 1) and
Ri(t) = I(Yi ≥ t) where δi is the usual censoring indicator I(Yi ≤ C). A nonparametric estimator of F1

is given by

F̂1(t) =

∫ t

0

Ŝ(u)

R̄(u)
I(Ȳ (u) > 0)dN̄(u)

where Ŝ(u) is the Kaplan-Meier estimator based on {(Yi, δi) : i = 1, . . . , n} the Kaplan-Meier estimator
pooling all the risk categories into one.

Note that this is again using the fact that

F (t) =

∫ t

0

dF (s) =

∫ t

0

(1− F (s−))dΛ(s)

except that we have Ŝ(s) for (1− F (s−)) and we need to account for the possibility that Ȳ (u) can take
the value 0.

Note also that if there is no censoring – so Ŝ is the empirical df of the Yi – then this expression for
F̂1(t) is just the edf of T ∗1 .

Once you have F̂i(t) you can compute quantiles as in Peng and Fine (2007), and given discrete
treatment variables one can plot F̂1’s for the samples with and without treatment to visualize QTE’s.

Postscript on the Roy Model

To end the course on an economic note I would like to conclude by briefly discussing a model of
occupational choice that is closely related to the competing risk model. The crucial reference is Heckman
and Honoré (1990).

Roy (1951) proposed the following model of occupational choice: Agents have skills of two types,
fishing/hunting, fighting/loving, etc. (S1, S2) which are associated with wages π1, π2, the agents choose
the occupation that maximizes earnings. Skills are distributed in the population according to the df
F (s1, s2), which is assumed to have density f(s1, s2). In fact Roy assumed normality, but this seems to
be something that warrants empirical investigation.

Let p denote the proportion of the population choosing occupation 1,

p =

∫ ∞
0

∫ π1s1/π2

0

f(s1, s2)ds1ds2

The marginal density of S1 is,

f1(s) =

∫ ∞
0

f(s, s2)ds2

which should be distinguished from the density of s1 for those employed in occupation 1,

g1(s) = p−1
∫ π1s/π2

0

f(s, s2)ds2
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The density of earnings in the whole economy is, changing variables si → πisi ≡ wi,

g(w) = pg1(w) + (1− p)g2(w).

Many questions ensue: does inequality increase as a result of self selection into occupations, who is
self-selected into occupations, as wages change, how do average skill levels change?

Roy assumed lognormality of skills, but some of the results he derived are shown to be valid by
Heckman and Honoré under the much weaker assumption of log concavity of the distribution of

log(π1S1)− log(π2S2)

or somewhat more generally under the assumption of log concavity of

(w1, w2) = (log(π1S1), log(π2S2))

Under normality, moments of w and various conditional versions are easily computed and consequently
one can investigate the effects of comparative static “experiments” like what happens to income inequality
when π1 changes,

Theorem: For log-normal distributed skills, self selection reduces income inequality as measured by the
variance of log earnings relative to random assignment.

Identifiability of the Log Normal Roy Model?

Can we identify the parameters of the normal theory Roy model? As in the Cox model the answer is
“yes” provided that we have covariates that shift the mean skill levels. More surprising is

Theorem (Basu and J.K. Ghosh): Suppose (X1, X2) ∼ N (u,Σ|) and Z = mink{Xi} and I = arg mini{Xi}
then u,Σ| are identified from (Z, I).

This is quite esoteric and attempting to generalize it leads back to the non-identifiability results
of Cox. In the general case we can always find an independent skill distribution that rationalizes the
observed data. Heckman and Honoré note however that if we have varying skill prices, π, then these
independent configurations would have to be consistent over different π and this can be used to identify
the joint distribution.
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