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Lecture 23
Introduction to Modern Survival Models

Economic Motivation. This Section was inspired by a talk by Gregory Kordas in April, 2001
based on work of Kordas and Deltas. An interesting analogue to survival models arises in discrete
demand analysis. Consider a commodity like MP3 music players for which consumers buy either
one or zero units. The willingness to pay of consumer i, say wi, may be viewed as a survival
time. The willingness to pay may be viewed as the interval of prices from zero to wi such that
the consumer is willing to purchase the good. Typically, in survey market research a sample of
prospective consumers are asked, e.g., “would you be willing to purchase a player at price vi?”
Responses may be viewed as censored observations on the actual wi’s. It is standard practice to
analyze such data by expressing wi as a function of covariates, plus a random component, e.g.,

wi = x′iβ + ui

and then assuming the ui’s are iid normal, the probability of a “yes” is

P (wi > vi) = P (−ui < x′iβ − vi)
= P (ui > −(x′iβ − vi))
= 1− Φ(−(x′iβ − vi))
= Φ(x′iβ − vi).

So we model πi = P (yi = 1|xi) as Φ(x′iβ − vi), yielding a probit model that includes the xi’s
and vi as covariates, that is we estimate,

Φ−1(πi) = xiβ + αvi

We expect α < 0, and then impose α = −1 on the final estimate of β so

β̂ = −γ̂/α̂.

Of course the iid assumption may be poor.

The usual survival analysis, say á la Kaplan-Meier, isn’t much help here since we never
observe an uncensored “event.” Kordas and Deltas consider an alternative estimator β̂(τ) anal-
ogous to quantile for this problem:

min
∑

ρτ (yi − I(xiβ − vi > 0)).

A somewhat more sophisticated design that is often used in contingent valuation settings
involves two questions. If the respondent says “no” to the first question, the interviewer lowers
the price and asks once more. If “yes”, then the price is raised. This yields a data structure
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somewhat analogous to the interval censored data of survival analysis. Let U and V denote the
upper and lower prices respectively and W be the value assigned by the subject. We see

δ = I(W ≤ U)

γ = I(U < W ≤ V )

If we have a model like
logit F (t|z) = logit F0(t) + x′β,

we can form a likelihood

L =
∏

F (ui)
δi(F (vi)− F (ui))

γi(1− F (vi))
1−δi−γi

This model is investigated in Huang and Rossini (1997, JASA), in the context of survival analysis
it is usually called interval censoring.

The Relationship between Survival and Binary Response Models

This section is based mainly on Doksum and Gasko (1990, Intl Stat Review). We can think
of the usual binary response model as a survival model in which we fix the time of survival and
ask, what is the probability of surviving up to time t. For example, in the 472 problem set on
quit behavior of Western Electric workers, we can ask what is the probability of not quitting up
to time 6 months. By then varying t we get a nice 1-1 correspondence between the two classes
of models. We can specify the general failure-time distribution,

F (t|x) = P (T < t|x)

and fixed t so we are simply modeling a survival probability, say S(t|x) = 1 − F (t|x) which
depends on covariates. We will consider two leading examples to illustrate this, the logit model,
and the Cox proportional hazard model.

Logit
In the logit model we have,

logit (S(t|x)) = log(S(t|x)/(1− S(t|x)) = x′β

where F (z) = (1 + e−z)−1 is the df of the logistic distribution. In survival analysis this would
correspond to the model

logit (S(t|x)) = x′β + log Γ(t)

where Γ(t) is a baseline odds function which satisfies the restriction that Γ(0) = 0, and Γ(∞) =
∞. For fixed t we can simply absorb Γ(t) into the intercept of x′β. This is the proportional-odds
model. Let

Γ(t|x) = S(t|x)/(1− S(t|x)) = Γ(t) exp{x′β}

and by analogy with other logit type models we can characterize the model as possessing the
property that the ratio of the odds-on-survival at any time t don’t depend upon t, i.e.

Γ(t|x1)/Γ(t|x2) = exp(x′1β)/ exp(x′2β).
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Now choosing some explicit functional form for Γ(t) for example log Γ(t) = γ log(t), ie. Γ(t) = tγ ,
gives the survival model introduced by Bennett (1983).

Proportional Hazard Model

One can, of course, model not S, as above, but some other aspect of S which contains
equivalent information, like the hazard function,

λ(t|x) = f(t|x)/(1− F (t|x))

or the cumulative hazard,
Λ(t|x) = − log(1− F (t|x)).

In the Cox model we take
λ(t|x) = λ(t)ex

′β,

so
Λ(t|x) = Λ(t)ex

′β,

which is equivalent to
log(− log(1− F (t|x)) = x′β + log Λ(t).

This looks rather similar to the the logit form,

logit (F (t|x)) = x′β + log Γ(t).

but it is obviously different. This form of the proportional hazard model could also be written
as,

F (t|x) = Ψ(x′β + log Λ(t)).

where Ψ(z) = 1− e−ez is the Type I extreme value distribution. For fixed t we can again absorb
the log Λ(t) term into the intercept of the x′β contribution and we have the formulation,

log(− log(1− θ(x))) = x′β

this is sometimes called the complementary log− log model in the binary response literature. So
this would provide a binary response model which would be consistent with the Cox proportional
hazard specification of the survival version of the model. In general, this strategy provides a
useful way to go back and forth between binary response and full-blown survival models.

Accelerated Failure Time Model

A third alternative, which also plays an important role in the analysis of failure time data is
the accelerated failure time (AFT) model, where we have

log(T ) = x′β + u

with the distribution of u unspecified, but typically assumed to be iid. A special case of this
model is the Cox model with Weibull baseline hazard, but in general we have

P (T > t) = P (eu > te−x
′β) = 1− F (te−x

′β)
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where F denotes the df of eu and therefore in this model,

λ(t|x) = λ0(te−x
′βex

′β)

where λ0 denotes the hazard function corresponding to F . In effect the covariates are seen to
simply rescale time in this model. An interesting extension of this model is to write,

Qh(T )(τ |x) = x′β(τ)

and consider a family of quantile regression models. This allows the covariates to act rather
flexibly with respect to the shape of the survival distribution.

Consider the general form of the binary response form of the survival model

G−1(S(t|x)) = h(t) + x′β

Here we are saying that there is a transformation G−1 of the conditional survival probability
such that the resulting G−1(π) is additively separable in t and x′β. This is strong, but subsumes
some interesting models. Then,

P (h(T ) > t|λ) = P (T > h−1(t)|x)

= S(h−1(t)|x)

= G(h(h−1(t))|x)

= G(t− xβ)

This says that,

P (h(T ) < t) = 1−G(t− xβ)

P (h(T ) < t+ x′β) = 1−G(t)

P (h(T )− x′β < t) = 1−G(t)

so h(T )− x′β is iid with df 1−G and hence, h(T ) = x′β + v with v iid with df (1−G).

Example: Cheng, Ying and Wei, (1995) Biometrika, 82, 435-45.
Consider the transformation model

h(T ) = X ′β + U

where U is iid F . If, for example, F is extreme value F (s) = 1 − e−e
s
, then we have the

proportional odds models. It is of considerable interest to explore the general problem of esti-
mating semiparametric models and methods for this model especially if they can be adapted to
censoring.

Suppose we have data {Yi, δi} where Yi = min{Ti, Ci} and δi = I(Ti ≤ Ci) as usual. If h is
strictly increasing, then the ranks of {h(Ti)} are the same as the ranks of {Ti} so Chen, Ying
and Wei suggest that using the marginal ranks to make inference about β might be appropriate.
However, this is difficult, so they adopt the following simpler approach

4



Consider an estimator based on the following observation;

E(I(Ti ≥ Tj)|Xi, Xj) = P (h(Ti) ≥ h(Tj)|Xi, Xj)

= P (Ui − Uj ≥ X ′ijβ)

= ξ(X ′ijβ)

where Xij = Xi −Xj ,
and

ξ(s) =

∫ ∞
−∞

(1− F (t+ s))dF (t).

How does this yield an estimator? We have a “moment condition” and we can look for a β to
solve the nonlinear equations

U(β) =
∑
i

∑
j

Xij(I(Ti ≥ Tj)− ξ(X ′ijβ))

Extensions

1. We can add weights: MLE type weights would be wi = ξ′(·)/(ξ(·)(1− ξ(·))).

2. If there is censoring, then we don’t always observe I(Ti ≥ Tj), but

E

(
δjI(Yi ≥ Yj)
G2(Yj)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Xi, Xj

)
= E

[
E

(
I(Ti ≥ Tj)I(min(Ci, Cj) ≥ Tj)

G2(Tj)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Tj , Xi, Xj

)]
= E(I(h(Ti) ≥ h(Tj))|Xi, Xj)

= ξ(X ′ijβ0)

so we have

Ũ(β) =
∑
i

∑
j

Xij

(
δjI(Yi ≥ Yj)
G2(Yj)

− ξ(X ′ijβ)

)
where G(· is the survival function of the censoring n. variable C, and can be estimated.
Horowitz (1998) also discusses this model, and mentions the Cheng, Ying, Wei estimator.

The Nelson-Aalen estimator of Λ(t).

We have already introduced the Kaplan Meier estimator of the survival function S(t). In
this section we consider an alternative strategy in which we estimate instead the cumulative
hazard function Λ(t) for iid observations. This enables us to introduce some basic concepts.
The discussion follows Therneau and Grambsch (2000) and is intended to introduce the some
aspects of the approach I would like to pursue in my Fall 2001, 478 topics course.

Consider the Nelson (1969) fan data, 70 observations on the failure times of diesel generator
fans. The data is heavily censored – only 12 of the 70 observations represents an actual failure,
the others are all censoring times. The data are conveniently printed in R and S using the
convention of Therneau’s Survival5 package that censored event times are indicated by a + sign.
The event times are given in thousands of hours.
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> Surv(fans,cens)

[1] 4.5 4.6+ 11.5 11.5 15.6+ 16.0 16.6+ 18.5+ 18.5+ 18.5+

[11] 18.5+ 18.5+ 20.3+ 20.3+ 20.3+ 20.7 20.7 20.8 22.0+ 30.0+

[21] 30.0+ 30.0+ 30.0+ 31.0 32.0+ 34.5 37.5+ 37.5+ 41.5+ 41.5+

[31] 41.5+ 41.5+ 43.0+ 43.0+ 43.0+ 43.0+ 46.0 48.5+ 48.5+ 48.5+

[41] 48.5+ 50.0+ 50.0+ 50.0+ 61.0+ 61.0 61.0+ 61.0+ 63.0+ 64.5+

[51] 64.5+ 67.0+ 74.5+ 78.0+ 78.0+ 81.0+ 81.0+ 82.0+ 85.0+ 85.0+

[61] 85.0+ 87.5+ 87.5 87.5+ 94.0+ 99.0+ 101.0+ 101.0+ 101.0+ 115.0+

The practical question of interest is quite simple: Is the failure rate, i.e., the hazard function,
increasing decreasing or constant? It might be conjectured that the fans were heterogeneous
and that after the demise of a few “bad apples ” the remaining fans would appear quite robust.
This would suggest decreasing hazard. Alternatively, we might have parts that gradually wore
out, which would suggest increasing hazard. An answer to this question would be an important
piece of the more complicated problem of designing a good maintenance/replacement policy, see
Rust (1987) for an extended analysis of this sort.

We will assume that the failure times T ∗i are iid with df F , density f and hazard, λ. To
formalize the heterogeneity hypothesis we may view F , its associated density function f and the
associated survival function S as mixtures of some underlying set of fundamental fan “types,”
but unless we are able to untangle these types with some covariate, for example, the day of the
week of manufacture, we are just as well to consider them as iid provided we permit a flexible
form for their distribution. We may view this as an early example of a frailty model.

As usual, we observe Ti = min{T ∗i , C∗i }, where C∗i denotes a censoring time for the ith

observation.

Counting Process Formulation
Let Yi(t) = I({Ti ≥ t}) so Yi(t) is 1 until failure, T ∗i , or censoring C∗i , whichever comes

first. The counting process, Ni(t) associated with Yi(t) is simply the number of observed events
in [0, t] for unit i. In our fan example, Ni(t) is 0 up to Ti and 1 thereafter, but the formalism
obviously accommodates multiple events. Thus

Ni(t) = I({Ti ≤ t}, {δi = 1})
Yi(t) = I({Ti ≥ t})

Note the right continuity of Yi(t) and the left continuity of Ni(t); this is quite crucial. We
may designate Yi(t) as a predictable process – if we need to know Yi(t), then we are assured that
it is sufficient to know Yi(t−). In gambling, Yi(t) might indicate subject i’s wealth at time t and
something about his bets “at risk”. This can depend upon the past in a complicated fashion,
but it is known at t.

Now consider the aggregated processes

Ȳ (t) =
∑

Yi(t) # at risk at t

N̄(t) =
∑

Ni(t) # of failures up to t
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Figure 1: This figure illustrates two examples of the N and Y processes. In the two left panels
we illustrate a censored observation with event time 3. In the two right panels we illustrate an
uncensored observation with event time 4.
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Since
Λ(s+ h)− Λ(s) ≈ λ(s)h

it is natural to estimate this by the number of events occurring in [s, s+h] divided by the number
of subjects at risk at s, i.e., by (N̄(s+ h)− N̄(s))/Ȳ (s). Summing over all of [0, t] we have

Λ̂(t) =

∫ t

0

dN̄(s)

Ȳ (s)
.

We need to be careful about the notation. In principal dN̄(s) can accommodate both discrete
and continuous components of the counting process, i.e.,

dN̄(t) = ∆N̄(t) + n(t)dt

where ∆N̄(t) denotes the discrete component and the n(t)dt denotes a component with density
with respect to Lebesgue measure. The quantity,

∆N̄(t) = N̄(t)− (̄N(t−)

is the number of events occurring at precisely t. Since counting processes are pure jump processes
the continuous part is unnecessary, so we may rewrite the Nelson-Aalen estimator in somewhat
less intimidating, but fully equivalent fashion as

Λ̂(t) =
∑
i:ti≤t

∆N̄(ti)

Ȳ (ti)

Note carefully the ti ≤ t!

Interpretation: Two versions

1. Λ̂(t) estimates the average number of failures up to time t, so, for example, up to t = 87, 500
hours Λ̂(t) = .3368 there would be about 1

3 of the installed fans failing. This needs to be
carefully interpreted – think of a repair policy that minimally repaired each of the fans so
they were not “good as new” at failure time, but “good as at time of failure”. This policy
yields ≈ 1

3 of the installed fans failing.

2. The slope of Λ̂(t) is λ̂(t). Constant slope indicates exponential hazard, the mle of λ for the
exponential model is # of failures /“total time on trial”

λ̂ =
∑

δi/
∑

Ti

=
12

3443
= 0.0035

and this fits quite well.

The Nelson-Aalen estimate of the cumulative hazard function is illustrated in Figure 2 with the
exponential fit superimposed as the dotted line. This reproduces Figure 2.1 of TG] the R code
to produce this figure is given below.
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Figure 2: This figure illustrates the Nelson Aalen estimate of the cumulative hazard function
for the fan data. The dotted line represents the fit of the exponential model.

#Reproduce Fig 2.1 from Therneau and Grambsch

d <- read.table("fans.dat",header=T)

fans <- d[,1]

cens <- d[,2]

ps.options(paper="special",width=6,height=4,horizontal=F)

postscript(file="fans1.ps")

plot(survfit(Surv(fans,cens),type="fleming-harrington"),fun="cumhaz")

#exponential fit

lambda <- sum(cens)/sum(fans)

abline(coef=c(0,lambda),lty=2)

frame()

It is important to assess the precision of Λ̂(t). A crucial virtue of the counting process
formulation is that it reveals clearly that N(t) can be modeled as a Poisson process, at least
locally. Thus, the number of events in a small interval [t, t + h], N̄(t + h) − N(t) = ∆hN(t) is
approximately Poisson with some intensity or rate parameter,∫ t+h

t
Ȳ (s)λ(s)ds ≈ Ȳ (t)λ(t)h.
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Conditional on the past,

E(∆hN̄(t)/Ȳ (t)) ≈ λ(t)h

and

V (∆hN̄(t)/Ȳ (t)) ≈ λ(t)h/Ȳ (t)

Note that we use the predictability of Ȳ (t) here in a crucial way. The variance of the estimate
can be estimated quite easily. Since E(∆hN̄(t)) ≈ Ȳ (t)λ(t)h and V (∆hN̄(t)) ≈ Ȳ (t)λ(t)h we
have,

V (∆hN̄(t)/Ȳ (t)) ≈ λ(t)h/Ȳ (t)

and thus,

V (Λ(t)) =

∫ t

0
Ȳ (s)−2dN̄(s) =

∑
i:ti≤t

∆N(ti)/Ȳ
2(ti)

Variability for Poisson models is sometimes assessed on the log scale. Using the δ-method we
have

V (log Λ̂(t)) ≈ V (Λ̂(t))/Λ̂2(t)

This for log Λ(t) we have the confidence interval

log Λ(t) ∈ log Λ̂(t)± zασ̂/Λ̂(t)

where σ̂2 is the estimate of V (Λ̂(t)) described above. Or we have

Λ(t) ∈ Λ̂(t) exp{±zασ̂/Λ̂(t)}

as an alternative interval for Λ(t) on the original scale.

Nelson-Aalen vs. Kaplan-Meier
There is a very close connection between the Nelson-Aalen estimator of Λ(t) and the Kaplan-

Meier estimator of S(t). To explore this recall that

Λ(t) =

∫ t

0
λ(s)ds =

∫ t

0

f(s)

1− F (s)
ds = − log(1− F (t)) = − logS(t)

so

dΛ(s) =
dF (s)

1− F (s−)

and

F (t) =

∫ t

0
dF (s) =

∫ t

0
(1− F (s−))dΛ(s).

Thus, we can recursively define the estimator,

Ŝ(t) = 1−
∫ t

0
S(s−)dΛ̂(s)
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and since Ŝ(t−)− Ŝ(t) = −∆Ŝ(t) = Ŝ(t−)∆N(t)
Y (t) we have,

Ŝ(t) = Ŝ(t−)

(
1− ∆N(t)

Y (t)

)
=
∏
s<t

(
1− ∆N(s)

Y (s)

)
which is recognizable as the Kaplan-Meier estimator.

It is also informative to contrast the usual estimates of the precision of the two estimators.
In the notation of L22, we can write the Kaplan-Meier estimator

Ŝ(t) =
∏(

1− dj
nj

)
≡
∏

(1− hj)

The product is rather awkward, but we can easily consider

Var (log Ŝ(t)) ∼=
∑

Var (log(1− hj))

≈
∑

(1− hj)−2 Var (hj)

≈
∑

(1− hj)−2hj(1− hj)
nj

≈
∑ dj

nj(nj − dj)

So, again using delta method,

Var (S(t)) ≈ S(t)2
∑ dj

nj(nj − dj)

which is known as Greenwood’s (1926) formula.
This is almost the same formula we found for the Nelson-Aalen estimator variance

Var (Λ̂(t)) =
∑

∆N(ti)/Y
2(ti) =

∑ dj
n2
j

,

except for the slight modification of the denominator that obviously causes a serious problem
when the last dj = 1.

Introduction to Martingales for Survival Analysis One natural property of the Nelson Aalen
estimator is that

(∗)
n∑
i=1

Λ̂(Ti) =
n∑
i=1

Ni(Ti)

If we observe that (why?)

Λ̂(Ti) =

∫ ∞
0

Yi(s)dΛ̂(s)

and (why?)
Ni(Ti) = Ni(∞)
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we can write (*) as
n∑
i=1

(Ni(∞)−
∫ ∞

0
Yi(s)dΛ̂(s)) = 0

we can view the summands as a useful residual derivable from martingale properties of the Λ̂(s)
estimator.

Some Basic Concepts
This will be a very brief sketch of some basics of martingales. In order to be explicit about

conditioning we need some fundamental notion of the history of the process up to time t on
which we will condition.

This is usually called the filtration

Ft = σ((Ni(s), Yi(s+), Xi(s)) : i = 1, . . . , n, 0 < s < t)

where σ(A) denotes the σ-algebra comprising A. Clearly, for s < t,Fs ⊆ Ft, so information
(history) accumulates as time passes. You can think of the filtration as any conceivable way
of packaging the history of the process up the the present. For a counting process Ni(t), the
increments dNi(t) over the interval [t, t+ dt) satisfies

E(dNi(t)|Ft−) = Yi(t)λ(t)dt

Presuming that the observations are ⊥⊥ over i,

E(dNi(t)|Ft−) = P (dNi(t) = 1|Ft−)

= P (dNi(t) = 1|Yi(t))

If Yi(t) = 0, then the failure has already occurred and the conditional probability is 1, otherwise

P (dNi(t) = 1|Yi(t) = 1) = P (T ∗i ∈ [t, t+ dt)|t ≤ T ∗i , t ≤ C∗i )

Now assuming the ⊥⊥ of T ∗i and C∗i the conditioning on C∗i is irrelevant so

P (dNi(t) = 1|Yi(t) = 1) = P (T ∗i ∈ [t, t+ dt)|t ≤ T ∗i ) = λ(t)dt

or
P (dNi(t) = 1|Yi(t)) = Yi(t)λ(t)dt.

Consider the process

(∗) Mi(t) = Ni(t)−
∫ t

0
Yi(s)λ(s)ds

Definition: A sequence of rv’s X1, X2, . . . on a P -space (Ω,A, P ) that is adapted to an
increasing sequence of σ-fields F1 ⊆ F2 ⊆ . . . is called a martingale if E|Xi| <∞ for all i and

E(Xi|Fj) = Xj for all j ≤ i

Extending this definition to processes we may write this as

E(M(t)|Fs) = M(s) for 0 ≤ s < t
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We may also write it in terms of increments as

E(dM(t)|Ft−) = 0

So martingale increments have mean 0 and martingale increments are uncorrelated (though they
are not necessarily ⊥⊥)

Cov (M(t),M(t+ u)−M(t)) = 0

Cov (M(t)−M(t− s),M(t+ u)−M(t)) = 0

Counting processes are examples of submartingales, processes for which E|N(t)| <∞ and

E(N(t)|Fs) ≥ N(s) for 0 ≤ s < t

Since our N(t) process is monotone increasing this is particularly clear in this case. In general,
submartingales need not be increasing, only the expectation condition is needed. For example,
by Jensen’s inequality if M(t) is a martingale M2(t) is a submartingale; it has the same filtration
as M(·), but its conditional expectation is strictly greater than M2(s) for 0 ≤ s < t.

The Doob-Meyer Decomposition
Submartingales may be decomposed into a predictable component, usually called “their

compensator” and a martingale component. This is a crucial result due initially to Doob and
extended by Meyer and others. An example is (*) where

Ci(t) =

∫ t

0
Yi(s)λ(s)ds

is the compensator, Mi(t) is a martingale and Ci(t) subtracts off the conditional expectation of
Ni(t), given the history of the process up to time t.

It is (perhaps) useful to think about this in terms gambling strategies. You might, in a
more general setting, think of the Yi(t) process as the process that generates bets at time t, it
can depend in quite complicated ways on the whole history up to time t, including the present
wealth of the bettor, but the crucial thing is that it is left continuous so we can think of bets
being placed just prior to time t.

The counting process Ni(t) is the returns process, it is right continuous so at time t it
generates outcomes of the gambles based on bets placed at t, represented by Yi(t). At each
point, t, we may assume (optimistically!) that the conditional expectation of returns Ni(t)
given the past exceeds the current value Ni(t−). This is clear for the counting process, which
can only move from 0 to 1 and then stay there, but in general we may even consider returns
processes which may fall but still rise in expectation.

For such processes, submartingales, we may compute the conditional expectation of Ni(t)
given the past and then subtract that from Ni(t). This yields a predictable process representing
the conditional mean and the difference between Ni(t) and its conditional mean is a process
that has conditional expectation zero. This process is a martingale and this property yields a
powerful source of implications for the behavior of the original process.
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In the case of the counting process we have

Mi(t) = Ni(t)−
∫ t

0
Yi(s)λ(s)ds

where
E(M(t)|Fs) = M(s)

or, apparently more generally,

E(M(t)|M(u) : 0 < u < s) = M(s)

Many nice features follow from the decomposition and the martingale structure of the process.
Further discussion of these properties will have to be deferred to later however.

14


