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Lecture 22
“Survival Analysis: An Introduction”

There is considerable interest among economists in models of durations, which we often
characterize as survival times preceding an event. These models originated for the most part
in biostatistics and quality control where the “event” was relapse of an illness, death, or failure
of a product component. In economics the event is sometimes more upbeat: ending a spell of
unemployment by finding a job for example, or release from a stay in the hospital. But it may
be more conventionally the end of something positive as well: to cite two examples of current
empirical research in our own department, consider models for the length of professional sports
careers, and models for survival times of banks.

Such models may be thought of as conventional statistical models for positive random vari-
ables, but they have a number of common features and have developed a number of specialized
concepts and techniques which I will try to introduce gradually.

1. Survival functions and hazard rates

I like to begin by thinking optimistically about births rather than deaths, so in this spirit
consider a positive random variable, T', representing the time, since conception say, of
birth. This random variable may be characterized by its distribution function F'(t), or by
its density function, which might look something like this.
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Figure 1: Unconditional density of human gestational age at birth.

The survival function which we might think of as the duration of pregnancy distribution
of T is simply
S(t)y=1—-F(t)=P(T >1t)

and the hazard function is 1)
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®) 1—F(t)

One way to think about this is to consider the question: given that you have not given
birth by time ¢, what is the probability that you give birth before time t + s?7 Write
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to get a rate per unit time, we should compute
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The hazard rate provides an interesting alternative way to characterize the distribution
of T. As a simple example consider the exponential model where f(t) = Ae ™, S(t) =
e ™ so A(t) = A, constant. The idea that the exponential model has constant hazard is
fundamental to the subject. It is as if T' can’t remember what amount of time has already
passed and the probability of an event in the next unit of time, given no event up to the
current time is constant.

The exponential model is clearly not appropriate for many economic processes where there
is usually positive or negative aging. These terms come from the typical shape of the human
mortality hazard function which is somewhat U-shaped, declining over a short range for
infants and then gradually increasing for old adults. The Weibull model represents a
convenient generalization of the exponential model which accommodates either increasing
or decreasing hazard, but not both. In the Weibull

S(t) = e °
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so depending o whether @ 2 1 we get increasing or decreasing hazard.

Another simple example is the Rayleigh distribution which we encountered in Problem
3.1, where
)\(t) = X0+ A\t

The uniform model is also very simple with
At)y=@1-1)7"
so the hazard is rapidly increasing as one approaches the upper limit.

. Estimation and Censoring in Parametric Models

If we observe a random sample {t1,...,t,} of T;’s, we can easily estimate a parametric
model f(t,0) for the survival time by maximizing the loglikelihood

0(0) = log f(t:,0)
=1

However, it is almost inevitable that survival time data is marred by some censored ob-
servations, observations for which we know that the event didn’t occur up to some time
t, but we do not know exactly when it did occur. This may be because the individual
disappeared from the sampling framework for some reason, or because at the analysis date
some individuals were still “surviving”, or some other reason. Such observations are easily
accommodated into the parametric mle framework. Let ¢; be a censoring time for each
observation and suppose that data takes the form of pairs (¢;,d;) where 6; = I(t; < ¢),



so 0; will be called the censoring indicator with §; = 1 indicating that ¢; is an actual
survival time and §; = 0 indicating that ¢; is censored so we know only that T; > t;. The
loglikelihood for this censored survival time data may be written as

0(0) = iéi log f(ti,0) + (1 — 6;) log S(t;, 0)

i=1

Unfortunately, while these parametric models for survival times are very convenient and
relatively easy to estimate, it is often difficult to be confident about a particular parametric
specification of f and S. Note that if there are covariates we may consider making one or
more of the  parameters above dependent upon covariates.

. In this Section we introduce a crucial tool of non-parametric survival analysis, the Kaplan-
Meier estimator which may be thought of as an analogue of the empirical distribution
function except that a.) it estimates the survival function S(¢) rather that F'(¢), and b.)
it accounts for censoring.

To motivate the Kaplan-Meier estimate let’s begin by considering a simpler context in
which we observe an uncensored random sample of survival times {¢;,...,t,}. Suppose we
chop the real half line into intervals Now write,

S(Tk) = P(T>Tk)
= P(T>7'1)P(T>t2|T>t1)...P(T>Tk|T>Tk,1)
= P1-DP2---DPk-

As an estimate of p; it is natural to use,

(-8
n;

where d; is the number “dying” period (7;—1,7;] and n; is the number surviving to the
beginning of this period. Then, our estimate of the survival function would be

swy= 11 #

{j:Tj<t}

For the Kaplan-Meier estimator we make two minor modifications. The first is that rather
than use arbitrary intervals delimited by 7; we use the observed t; themselves as the 7;.
This is just like the usual strategy for the empirical distribution function. To deal with
the censored observations we simply let

the number “dying” in period (¢;_1,t;) is either 0, if ¢; is censored or 1 if ¢; is uncensored.
Then,

pi=1—d;/n;



as above, and denoting the ordered t; by t(;,

S’(t) = Hﬁ(i)

Ty <t

(s

UORG

Sis
H 1 )
n—1t+1

o<t

n—i \°®
B H <n—i+1)

tayst

where d(;) is the censoring indicator of the observation ;) + €. This estimator satisfies
several important requirements:

(a) It is consistent for S(t),
(

)
b) It is asymptotically normal, i.e., v/n(S(t) — S(t)) converges to a Gaussian process,
(c) In the absence of censoring it is the same as the empirical distribution function,

)

(d) It is a generalized mle in the sense of Kiefer and Wolfowitz.

In the figure below we illustrate the Kaplan-Meier estimator for a sample of 5 observations,
of which only the second smallest, t,, is censored. The indicated p;’s in the figure are the
conditional probabilities while the vertical scale represents the S (t) unconditional survival
probabilities. The Kaplan Meier estimator is particularly good in situations in which we
have a small number of groups and we would like to ask: do they have similar survival
distributions. An example of this sort of question is addressed in the next figure. Using
data from Meyer (1990) we consider the survival distributions estimated by the Kaplan-
Meier technique for individuals who have more than $100 per week in unemployment
benefits versus those with less than $100 per week in benefits.

As the figure indicates, those with higher benefits appear to stay unemployed longer. The
median unemployment spell for the high benefits group is roughly 2 weeks longer than for
the low benefits group. Note, however, that the difference is unclear in the right tail of
the distribution; the higher benefit group appears to have a somewhat lower probability
of a spell greater than 35 weeks. This plot was produced ty the R command,

plot (survfit(Surv(dur,cens),strata=exp(ben) > 100, type=‘kaplan-meier’))

where dur is the observed durations, cens is the censoring indicator, and ben is the log of
weekly benefits.

This technique is very useful in situations where we have randomized assignment into
treatment groups, but often there are other covariates which need to be accounted for
and this cannot be adequately accomplished by looking at Kaplan-Meier plots. We would
like to have some sort of compromise between the parametric approach introduced at the
beginning of the lecture and the non-parametric approach of Kaplan-Meier.
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Figure 2: A Kaplan Meier Survival Curve for a Trivial Problem with n = 5: Note that only the
second survival time is censored. The dotted lines constitute a confidence band which is rather
uniformative in this case.

4. Semi-Parametric Methods

As above, let {t;,0;: i—1,...,n} denote a random sample from the model

T, = min{T;,C;}
& = I(T; <G

and let {x;} denote a vector of covariates associated with observation i. Recall

NP

1 F(t|)
The proportional hazard model of Cox (1972) takes the form,
Mt|z) = e®Pag(t)
where we will call Ao(¢) the baseline hazard since it corresponds to the special case

A(t|0) = Ao(t)

Definition: A family of df’s F constitutes a family of Lehmann alternatives if there
exists a Fy € F such that for any F' € F,1 — F(x) = (1 — Fy(x))? for some vy > 0, and all
reR;.



Figure 3: Two Kaplan Meier Survival Curves for the length of unemployment spells: The
figure plots Kaplan-Meier estimates of the duration of unemployment function for two groups of
individuals. One is a high Ul-benefits group (those with weekly benefits more than 100 dollars,
the other with weekly UI benefits less than 100. The data is taken from Meyer(1990).



The Cox model constitutes an example of a family of Lehmann alternatives. Since,
t
S(tlz) = exp{— / Aulz)du}
0
Lot
= exp{—¢€” 5/ Ao(u)du}
0

= (So(t))” for v = e*'7.
In the important special case of two samples z’( takes only two values, say 0 and 1, and
Si(t) = 55(t)

for some 7.

There is a large literature on estimating the Cox model and on the asymptotic theory of
the resulting estimators. I will only sketch the basic ideas. Let R; denote the index set
of observations “at risk” at time ¢;) — ¢, i.e., the index set surviving at time ¢(;) —e. The
probability in any subsequent interval can be approximated as,

P[% “ death” in [t(i)at(i) + dt)|73l] = Z ezgﬁ)\o(t(i))dt
JER (%)
and

z ()0
P[ “death” of individual (i) at ¢;|one “death” at time t;)] = eiw
ZjeR(i) e

and this gives the “partial likelihood”

n

1=t ]ER(Z)

which can be maximized “as if” it is the full likelihood. What is missing? To answer this
question recall that we could write the full likelihood in the parametric censored survival
model as,

n

L£(0) = [ £(tili, 0)% S(til i, 0) "

i=1

where 6 = (8, Ao) in the notation of the Cox model. Since Ag is an unknown function, we
sometimes call this sort of model semiparametric.

To express the likelihood in terms of the hazard function as formulated by Cox note that
the cumulative hazard function

t
A(tlz) = / A(s|x)ds = —log(1 — F(t|z)).
0
Thus in the Cox model where

A(s|z) = Ao(s) exp(2’B)



we may write
A(t|z) = Ao(t) exp(2’'B)
which is equivalent to
log(—1log(S(t|z))) = 2’8 +log Ao(t)
or

log S(t|z) = —e* P Ag(t)

or

S(t]w) = exp{—e"PAo(t)}.
So the likelihood may be written,

L) = JJOElw)S(tila:)™ S (ti|w:) '~
=1
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Comparing this with the partial likelihood of Cox we see that we can write
£(8) = £*(B)L) (8, )

where £*(/3) is the Cox factor given earlier, and

LX) (B, 1) = H( Z eIP (1)) x exp{— /Ooo( Z "% Ao (t)dt}

=1 jGR(U ]ET\’,(I)

Note that, in effect, Cox has factored the full likelihood into a part that depends solely on
B, and another part which depends on both 8y and Ag. Normally this would be no great
accomplishment and a proposal to ignore the second factor would be considered a bad
joke. Since it contains /3, it presumably contains sample information about 3. Cox (1972),
who is on a different plane of consciousness than the rest of us, argued heuristically that
if A\g is left unspecified, then the second factor would contain little relevant information
about the parameter 8. This conjecture has been subsequently supported in a number of
examples, and by asymptotic efficiency computations.

A more modern approach to the Cox profile likelihood is provided by work by Murphy
and van der Vaart (2000). They write the PH likelihood as

L(B,A) = [ ] exp{—e?A(t:) e A(t:)

and taking logs we have

(B A An) = S 2B +logA(t) — ¢F 3 A(t;)

Jiti<t;

Now differentiating we obtain,

ot 1 /
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so solving and substituting back into the likelihood we have the Cox profile likelihood,

w):HZ

Here we have ignored censoring, but it can be also accomodated in this same framework.

%P -1

ziB
it <t; €

Finally, we should briefly discuss how to estimate the baseline hazard function A\(t) in
the Cox model. I will briefly describe two approaches; one due to Breslow, the other to
Tsiatis.

In the former case, we assume that \o(¢) is constant between uncensored observations and
let

i 5
S I1 [1- =0
t(i)<t Z]ER(” e

Note here contrary to the Cox model,

So(t) # exp{—Ao(1)}
but this approach has the virtue that it simplifies to the Kaplan-Meier estimator when
there is no covariate effect since for 5 = 0, we have ZjeRu) e”'B = #R i)

Tsiatis uses instead

So(t) = exp{—Aq(t)}
where
. O
Rl = 3 [0
z’B
ti<t \ 2jeRg €
the relationship between the two estimators is simply accounted for by the familiar ap-
proximation
—log(l—z)~=z
for small z. See Kalbfleisch and Prentice (1980) Section 4.3 for further details.

Computing for survival analysis models is now quite reasonable in Limdep and Stata, but
the software designed by Terry Therneau for R is somewhat more flexible than either of
the previous options.
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