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Lecture 21
“Treating the Treated: Varieties of Causal Inference”

The last decade has seen a vigorous revival of interest in models of causal inference
in econometrics and statistics more generally. In this lecture, I would like offer a few
comments on this literature that try to draw out some themes from earlier aspects of
the course. In this survey we will meet again several old friends: instrumental variables,
quantile regression, and perhaps most fundamentally – identification.

1. A Prototype: The elementary supply and demand model

Heckman (2000), in a valuable retrospective on causal analysis in econometrics,
characterizes economists as “people of the model”. We rely on models as coherent
constructs within which we can evaluate the consequences of various “thought ex-
periments.” Econometrics seeks to quantify the qualitative conclusions of the model.

The canonical example is evitably the elementary supply and demand model,

(1)
QD = QD(PD, ZD)
QS = QS(PS , ZS)

where ZD and ZS denote other variables that shift demand and supply, respectively.
From a statistical standpoint you can think of the two equations as representing the
conditional expectations of QD and QS . If ZD and ZS contain the same variables
and we impose the equilibrium conditions

(2) QD = QS and PD = PS

then we have no way of recovering the structural relationships (1). If, however, we
have independent variation in ZD that doesn’t appear in ZS , say a variable ZDi ,
then even in the equilibrium setting of the model we can recover some information
about marginal structural effects. To see this, write,

∂QS

∂ZDi
=
∂QS

∂PS
∂PS

∂ZDi

and using (2), and provided ∂PD/∂ZD
i = ∂P/∂XD

i 6= 0, we have

(3)
∂QS

∂P S
=
∂Q/∂ZD

i

∂P/∂ZD
i

Similarly, if we have ZS
j appearing independently in the supply equation we obtain

marginal structure effects on demand:

(4)
∂QD

∂PD
=
∂Q/∂ZS

j

∂P/∂ZS
j
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Note that we can view the foregoing as motivating the IV estimator of these effects.
In the linear setting the natural estimator of the ratio on the rhs of (3) and (4) would
be simply the ratio of the OLS estimators of these derivatives from the “reduced
form” model,

(5)
P = PR(ZD, ZS)
Q = QR(ZD, ZS)

Obviously, if models are nonlinear, then we need to be more careful about local
interpretations of these derivatives and their corresponding estimates.

2. IV for Errors in Variables.

It is valuable to return to the misty early history of instrumental variables to explore
the original motivation of the technique. The first paper seems to be Wald (1940),
which dealt with errors in variables models. This estimator has received considerable
recent attention in the literature, so it is particularly useful to consider it.

The simplest version of the Wald estimator is the bivariate errors in variables model

yi = β0 + β1xi + ui

x̃i = xi + vi

The model hypothesizes an unobservable covariate xi for which we have a “proxy”
observable variable x̃i. Least-squares estimation of β = (β0, β1) is unsatisfactory.
Applying least squares to the model,

yi = β + β1x̃i + ei

where
ei = ui − β1vi

clearly leads to inconsistent estimates of the parameters since the condition ei ⊥⊥ xi
fails. Thus, the condition expectation of yi given xi is different than E(yi|x̃i). Wald’s
suggestion was to define the instrumental variable,

zi = sgn (x̃i − µ̂)

and using µ̂ = mediani{x̃i} compute,

β̂IV =

∑
yizi∑
x̃izi

It is helpful to view this geometrically. We split the sample into two halves, denoting
the right and left halves by R,L and then we can write,

β̂IV =
ȳR − ȳL
x̄R − x̄L

Having averaged over both x̃ and y we get consistency. Of course, if x̃i = xi, so
there is no errors in variables problem we sacrifice efficiency relative to OLS.
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Various other similar proposals were made to improve the efficiency problem. Bartlett
(1949) suggested dividing the x̃ axis into 3 parts and ignoring the middle piece in
computing the Wald estimator. Durbin (1954) suggested using the ranks of the x̃i’s
as the IV, so

β̂IV =

∑
iy(i)∑
ix̃(i)

where x̃(i) are the order statistics of the x̃(i)’s and y(i) are ordered similarly.

Wald’s approach was criticized by Neyman and Scott (1951) and others. Fuller(1987)
argues that the crucial condition for the validity of the Wald estimator – that the
variable zi indicating the classification of observations into the two groups is indepen-
dent of the ui’s – is rather implausible. To the extent that the errors of observation
lead to misclassification across the median x boundary we will still have bias. A
nice paper by Pakes (1982) shows that in the strictly Gaussian case there is no
improvement in bias from the Wald procedure.

An interesting exercise is to compute asymptotic relative efficiencies for these alter-
natives for various distributions of (xi, yi).

An interesting connection, at least to me, to quantile regression can be made. Hogg
(1975) proposed a method of quantile regression analogous to Wald’s IV estimator.
The technique was graphical, but can be interpreted formally in light of Wald. Let
ψτ (u) = τ − I(u < 0) and consider β̂IV (τ) “solving”,∑

ziψ(yi − β0 − β1x̃i) = 0

where zi = sgn (x̃i − med (x̃i)), so we have the pair of equations∑
ψ(ui) = 0∑

ziψ(ui) = 0

and everything is determined by the counts of residuals in the four quadrants
x̃i ≶ med{x̃i} and ûi ≶ 0.

Let P = #{ûi > 0}, N = #{ûi < 0} and P+ = #{ûi > 0, x̃i > med {x̃i}}, etc.

Rewriting our pair of equations we have

(1) τP = (1− τ)N

(2) τ(P+ − P−) = (1− τ)(N+ −N−)

If we now add these two equations together, and then subtract them, canceling the
resulting twos on both sides we obtain the pair of equations,

τP+ = (1− τ)N+

and
τP− = (1− τ)N−
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and we have shown that Hogg’s proposal is just the Wald IV version of quantile
regression.

Clearly, this can be extended to higher dimensions, but there are some real questions
about how the zi should be defined in the multivariate case.

Treatment Effects
Undoubtedly the most basic statistical question is: do two populations differ or are

they really the same? This requires some evaluation of how to measure the difference
between the two populations. The classical setting for these questions is the two sample
treatment control problem. We have a treatment population and a control population,
and suppose for the moment that subjects are randomly assigned to the two populations.
And suppose that we have a continuously measured response variable. A very general
notion of the treatment effect has been proposed by Lehmann(1974):

“Suppose the treatment adds the amount ∆(x) when the response of the un-
treated subject would be x. Then the distribution G of the treatment responses
is that of the random variable X + ∆(X) where X is distributed according to
F .”

Doksum (1974) defines ∆(x) as the “horizontal distance” between F and G at x, i.e.

F (x) = G(x+ ∆(x)).

Then ∆(x) is uniquely defined as

∆(x) = G−1(F (x))− x.

This is exactly what is plotted in the conventional statistical QQ plot. Changing variables
so τ = F (x) we have the quantile treatment effect (QTE):

δ(τ) = ∆(F−1(τ)) = G−1(τ)− F−1(τ).

An example is illustrated in Figure 1 where we illustrate a standard normal control distri-
bution for F and a shifted G which is N (1, 4). The dotted lines illustrate the mean and
median treatment effect, which are identical in this case, but also clearly shows that the
QTE at other quantiles can be very different from the mean treatment effect.

In very simple special cases we have the location shift model in which,

δ(τ) = δ0,

a constant, or the scale shift model,

δ(τ) = δ1F
−1(τ)

or the location-scale shift model,

δ(τ) = δ0 + δ1F
−1(τ)
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These cases are illustrated in Figure 2, where we plot distribution functions, densities, and
the QTE’s for examples of all three models.

The Lehmann QTE is naturally estimable by

δ̂(τ) = Ĝ−1
n (τ)− F̂−1

m (τ)

where Ĝn and F̂m denote the empirical distribution functions of the treatment and control
observations, Consider the quantile regression model

QYi
(τ |Di) = α(τ) + δ(τ)Di

where Di denotes the treatment indicator, and Yi = h(Ti), e.g. Yi = log Ti, which can be
estimated by solving,

min

n∑
i=1

ρτ (yi − α− δDi)

where ρτ (u) = u(τ − I(u < 0)).
An important aspect of this simple version of the treatment control setting is that we

cannot identify anything about the joint distribution of the pair of random variables that
would describe the response of subjects under both the treatment and control. Since we
never observe subjects in both states it is hard to see how we can be expected to learn
anything about this joint distribution. We see the two marginals but the so-called copula
function,

ϕ(u, v) = H(F−1(u), G−1(v))

is not identified by the marginal distributions of the control, F, and treatment, G, dis-
tributions. The nature of the dependence is shrouded in mystery. The Lehmann QTE
characterizes the difference in the marginal distributions, but it cannot reveal anything
about the joint distribution, H.

Effects with Imperfect Compliance
In most social/economic programs, even in experimental settings, we have imperfect

compliance. For example, individuals are randomized into the treatment group, but this
only allows them to be treated, it cannot compel them to be treated. The classical treat-
ment control model considers

Yi = DiY1i + (1−Di)Y0i

where Di is the treatment indicator. Elaborating, we may have a latent variable model
for Di, so

D∗i = µD(Zi) + Ui

Di = I(D∗i > 0)

This is basically the Roy (1951) model of occupational choice. In the simplest setting we
would like to estimate the average treatment effect

∆ATE(x) = E(∆ = Y1 − Y0|x)
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but this is difficult to identify so more typically we try to estimate the ATE on the treated,

∆TT (x) = E(∆|x, D = 1)

To explore this Rubin, Heckman and others consider the propensity score,

P (z) = P (D = 1|Z = z).

This is just the probability of being treated given characteristics z.
Now define, following Heckman and Vytlacil (1999),

∆LATE(x, P (z), P (z + ∆z))

=
E(Y |X = x, P (Z) = P (z))− E(Y |X = x, P (Z) = P (z + ∆z)

P (z)− P (z + ∆z)

and taking limits let,

∆LIV (x, P (z)) = lim
∆z→0

∆LATE(x, P (z), P (z + ∆z))

=
∂E(Y |X = x, P (Z) = P (z))

∂P (z)
.

This provides, when it exists, a local IV notion; integrating with respect to various weight-
ing functions over z we obtain a variety of notions that appear in the literature.

Average Treatment Effects

To expand on these ideas a bit and clarify the various notions of “treatment effect”
in the recent literature we will briefly survey some recent work on estimation of average
treatment effects. The discussion here is based closely on Wooldridge (2002, Chapter 18).

The basic framework will be the “potential outcomes” scheme of Rubin (1974). We
have an outcome, or response, variable, y, and a binary treatment variable, w. Observa-
tions are identified as either treatment w = 1, or control w = 0 according to whether they
receive the treatment and we observe

y = wy1 + (1− w)y0.

The Rubin scheme is counterfactual in the sense that it posits the existence of a response in
both treatment and control states even though we can only observe one of these responses.

In most of the literature the focus is on estimating the average treatment effect (ATE)

β = E(y1 − y0)

or the average treatment effect on the treated

γ = E(y1 − y0|w = 1)

Clearly, we need further assumptions since we lack data on the pair (y1, y0). To anticipate
somewhat more general settings we can also consider estimating conditional versions of
these effects

β(x) = E(y1 − y0|x)

γ(x) = E(y1 − y0|x,w = 1)
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by disaggregating in x over the entire population.
Suppose, to begin that the treatment is randomly assigned so

w ⊥⊥ (y1, y0) (1)

then, it is easy to see that β = γ, and we can estimate these effects by the difference in
sample means, since

E(y|w = 1) = E(y1|w = 1) = Ey1

E(y|w = 0) = E(y0|w = 0) = Ey0

However, effective randomization is difficult in many evaluation settings. we have self-
selection into treatment, or partial compliance with treatment and these create problems
for the simple estimator based on unconditional means.

A somewhat weaker condition under which we can estimate γ, but not β, is that

E(y0|w) = Ey0 (2)

So the control response is “mean independent” of the treatment indicator, this certainly
doesn’t seem very plausible in most self selection settings, but may have some plausibility
in other settings. Note that since

y = y0 + w(y1 − y0)

we have under the condition (1)

E(y|w = 1)− E(y|w = 0) = E(y0|w = 1)− E(y0|w = 0) + E(y1 − y0|w = 1)

= γ

While condition (1) isn’t very plausible, it may be more plausible to assume that some
conditional version of it holds,

w ⊥⊥ (y0, y1) conditional on x (3)

that is, for same vector of observables, x, we have conditional mean independence. This is
sometimes called “selection on observables” since we can view it as a device for assigning
treatment based on the variables x. If knowing x, allows us to predict w and the assump-
tion 3 then implies there is no further role played by the response. This would certainly be
the case if there were a a deterministic rule to assign w based on x, but also if there were a
random assignment as long as the random component conditional on x, was independent
of the response. We can weaken (3) to its mean independent form

E(yi|x,w) = E(yi|w) i = 0, 1 (4)

We can then estimate the average treatment effects β and γ by estimating,

ri(s) = E(y|x,w = i) i = 0, 1
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these two functions can, in principle, be consistently estimated nonparametrically. Then
we may simply average over the relevant population to obtain,

β = n−1
n∑
i=1

(r̂1(xi)− r̂0(xi))

and

γ = (
∑

wi)
−1

n∑
i=1

wi(r̂1(xi)− r̂0(xi))

This presupposes that it is really practical to estimate r̂i(·) i = 0, 1 nonparametrically.
The prior strategy breaks down in the case that there is no overlap in the (x,w)

distribution. To see this in an extreme version, suppose that there is one binary x and
that in the population x = 1 implies w = 1. Then we cannot estimate E(y|x = 1, w = 0)
for example, and this makes impossible to implement the foregoing strategy since it relied
on the fact that

E(y|x,w = 1)− E(y|x,w = 0) = E(y1|x)− E(y0|x) = β(x)

One can also take a parametric approach to the estimation of ATE. Assume condition 3
holds and that

yi = µi + vi i = 0, 1

with Evi = 0, this gives the switching regression or mixture model,

y = µ0 + (µ1 − µ0)w + v0 + w(v1 − v0)

Now assume that E(v1 − v0)|x = 0, then

E(y|w, x) = µ0 + βw + g0(x)

where g0(x) = E(v0|x).
In this formulation, g0(x) is sometimes referred to as a “control function”. In para-

metric models we can view this as adding covariates that “control for” the effect of the
endogeneity in w.

If we were to view g0(x) as expandable as a linear function in parameters, say Zδ, then
we would have

β̂ = (w′QZ̃w)−1w′QZ̃y

where Z̃ = [1
...Z], and QZ = I − Z(Z ′Z)−1Z ′. Another way to think about this is that

this is 2SLS in which we have used the orthogonal complement of the space spanned by
Z as instrumental variables. Similar caveats are in order for situations in which we have
perfect predictability of w based on x.

Again we can weaken our assumptions somewhat and consider models of the form,

E(y|x,w) = µ+ βw + g0(x) + ω(g1(x)− g0(x))

so we have new interaction terms, again in the linear case we have a simple estimation
strategy. Note that in this case we should center the interaction effect as estimating the
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effect at the mean. A special case of this model is the regression discontinuity design:
suppose w = f(x) for example

w = I(x1 > ξ0)

If the rule is really non-stochastic like this, so ξ0 is a known, fixed constant, then the con-
ditioning of our assumptions must apply and then the only problem is finding a sufficiently
flexible form for estimating the functions g0 and g1.

Binary Treatment Models and Randomization

The simplest experimental treatment model is the following

yi = α+ βDi + ui

where Di is 1 if the subject is “treated”, and 0 if the subject is a control. In this model
the least squares estimator of β is,

β̂ = ȳ1 − ȳ0

and
α̂ = ȳ0

Why? If, as is common, the response yi is really a change in something after a treatment
is completed, then we have instead

∆yi = α+ βDi + ui

and
β̂ = ∆y1 −∆y0

This is the beloved diff-in-diff model. It has many elaborations; a good overview can be
found in Angrist and Pischke’s Mostly Harmless. It need not be the case that we have only
two periods and a binary treatment. If we consider the standard panel data setup with
an indicator variable that flips from 0 to 1 at some known date, then when we consider
the usual Frisch Waugh treatment of the model we see that effectively the other effects in
the model are based on with estimates that are differences in means before and after the
flip. Individual specific effects, geographic effects are similar. As implied by the epigraph
in the relevant section of Mostly Harmless however, one should be aware that all of these
intercept shifting effects leave the typical assumption that the slope effect corresponding to
the treatment variable intact, so there is an (often implicit) parallelism condition that may
be implausible. At some point it is worthwhile to consider interaction effects to explore
this.

The focus on mean effects and linearity thus far, although representative of the lit-
erature, may leave the faulty impression that nonlinearities are either impossible to deal
with, or unimportant. It is worth remembering that even in the standard wage equation
model that we have conveniently estimated in log-linear form, the transition back to dol-
lars and cents requires a perilous change of variable that violates the niceties of computing
expectations of linear functions.

When we step away from conditional mean models these issues come to the forefront, as
can be seen in the literature that seeks to decompose changes in the wage distribution into
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components due to changes in characteristics of the labor force and changes in the remu-
neration of these characteristics, as for example in DiNardo, Fortin and Lemieux (1996)
and Machado and Mata (2006). There is more recent discussion of quantile treatment
effects in the diff-in-diff context in Athey and Imbens (2006) and Stewart (2012).

A Case Study A classical example is the Lanarkshire milk experiment described by Student
(1931). In an effort to improve nutrition for elementary school children in a relatively poor
region of Scotland an experiment was undertaken to provide milk in schools. The intention
was to randomly select between 200-400 kids in each of 67 schools, of which half would get
milk each day; the other half would not. Evaluation of the effectiveness of the “treatment”
was exactly the diff-in-diff strategy which would be done as a t-test. The response, y, was
change in weight.

What went wrong? Teachers decided who got the milk and presumably gave the milk to
the poorer, smaller “more deserving” kids. We can check this by noting with randomization
the treated and control kids would have the same initial weight but they didn’t; treated
kids were lighter by approximately 3 months growth, and shorter by 4 months growth in
height. Since the initial weighing occurred in February and the final weighing in June, and
children were weighed with their clothes on, the real weight response is confounded with
the change in the weight of the clothes. Again, if the randomization were done properly
this would not be a problem, a source of additional variability of course, but not of bias.
As it was, it is a serious bias consideration. Could this be corrected? Not really after the
fact. Student suggests using a smaller trial with only twins, in a future experiment.

The Wald Estimator
In many instances of the treatment-control experiment, there is randomization in what

has been called “intention to treat,” but often there cannot be any way to force people
to accept the treatment. So we have to distinguish compliance from intent to treat. In
the simplest setting this gives rise to a simple form of the IV estimator. Suppose xi is
actual treatment/control as before and zi is the intent to treat variable, then in our simple
original setup we can use the Wald Estimator. The simplest way to obtain the Wald
estimator is to consider the model

yi = α+ βxi + ui

Suppose Eziui = 0 so we have the moment equations, recalling that zi is binary,

E(yi|zi = 1) = α+ βE(xi|zi = 1)

E(yi|zi = 0) = α+ βE(xi|zi = 0)

now subtract one from the other to obtain.

β =
E(y|zi = 1)− E(yi|zi = 0)

E(xi|zi = 1)− E(xi|zi = 0)

so a natural estimator would replace these population quantities by their sample analogues.
This is the Ur-iv estimator. Angrist calls it the mother of all IV estimators. In some
heuristic sense we “see” the relationship between y and x “through the looking glass”
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as reflected by the IV zi. When xi is binary, say Di to use our prior notation, then
E(Di|zi = j) = Pr(Di = 1|zi = j) ≡ πj for j = 0, 1, so the denominator is the difference in
these probabilities. Note that, focusing on the denominator, we might expect that in many
situations that the term E(xi|zi = 0) would be zero, since subject who aren’t “intended to
be treated” may find it difficult to be treated. On the other hand, E(xi|zi = 1) is generally
likely to be somewhat less than one, since some of those randomized into the treatment
may decide that they don’t want to be treated. In the extreme case that the proposed IV
zi doesn’t impact the mean of mean of the xi’s, then we have a classical failure of the IV
strategy and division by zero.

Returning to the pure randomization model for a moment, there is often, even in well
randomized experiments, a temptation to include other covariates in the model, e.g.

yi = α+ x′iβ + δDi + ui

so Di is an randomized treatment indicator and xi denotes a vector of other variables.
Now, the randomization implies that

xi ⊥ Di

and this assumption can be checked. (This is usually done by computing conditional
means of the x’s with respect to D.) What is the advantage of including the additional
covariates? We know that given their orthogonality with D that they shouldn’t change
our δ̂, so why bother?

The usual answer to this question, exemplified by Gertler (2004) is that including xi’s
“improves the power of the estimates”. Gertler is analyzing the effect of PROGRESSA
the conditional cash transfer program in Mexico. In many respects this program is like
the Lanarkshire milk experiment except that cash is distributed directly to households
according to a randomized scheme. But children’s heights and weights are still the principle
measures of program effect. What does “improves the power of the estimates” mean?
Presumably, it means “reduces their standard errors”. Since D ⊥ x this has nothing to
do with X ′X, but only with σ̂2. Clearly if x’s are effective in “explaining” y, then their
inclusion will reduce σ̂2 and thereby reduce the standard error of δ̂. What’s not to like
about this?

The case against including covariates is laid out nicely in Freedman (2009). He ar-
gues that the presumption that the linear specification is a good approximation can be
dangerous. Freedman adopts what he calls the Neymann (1923) model. It seems to be a
precursor of what is now usually called the Rubin “potential outcomes” model. We have
a response variable y and several treatment levels, individual subjects are assigned, in the
simplest case, to one and only one of the treatment options. Each individual has a poten-
tial outcome associated with each of the treatments, but we only observe one of these, for
the treatment that is actually assigned. We would like to estimate the “average” treat-
ment effect for each of the treatments, or alternatively the differential treatment effects,
treatment level i’s average response minus, say the average response under the control
treatment. This is essentially a random coefficient model in which each subject has an
individualized response to each of the treatments. The structure is quite distinct from the
usual regression model where we tend to automatically assume that treatment effects are
constant across subjects and additive. In Freedman’s context inclusion of other covariates

11



is potentially dangerous. Depending upon whether we have additivity and balanced design
there are possible biases introduced by inclusion of covariates. Generally, with treatment
randomization these biases can be show to be asymptotically negligible, but nevertheless
they may be significant in particular finite sample settings, and Freedman recommends
that the simpler model-free approach to estimating treatment effects be considered as a
“more robust” alternative.

Visual Instrumental Variables
As a final installment in this rather loosely organized lecture, I’d like to try to describe

a technique for visualizing the IV estimator in a scatter plot. What follows is my attempt
to formalize somewhat the discussion in Section 4.1.3 of Angrist and Pischke (2009).

Consider the following simple model

y = α+ zβ + u.

Suppose that z should be considered endogenous and for simplicity assume it is scalar.
Supppose too that we have another variable, say f , that we would like to act like an
instrumental variable. In R terminology f is a “factor,” i.e., it takes discrete values f ∈
{1, . . . , J}. From f we can create a matrix F of indicator (dummy) variables Fij = 1 if
fi = j, and Fij = 0 otherwise. For example, f might be an occupational indicator, or in
Angrist’s context it might some grouped version of individual i’s draft lottery number.

We have the following “reduced form” estimated equations

ŷ = F γ̂

ẑ = F δ̂

so we have two J-vectors γ̂ and δ̂. Note that these estimates are simply the group means
for y and z respectively determined by the F groups. That is, γ̂j is just the mean of the
nj observations yi that have fi = j for j = 1, · · · J.

We now plot the J points ȳ = γ̂ vs z̄ = δ̂ and overplot some sort of least squares line
obtained from the regression,

(∗) γ̂i = a+ bδ̂i + vi

The question is what sort of least squares line would deliver an slope estimate equivalent
to the 2SLS estimator? Suppose we consider OLS as a naive first thought:

‖ȳ − a− z̄b‖2 = ‖(F>F )−1F>y − a− (F>F )−1F>zb‖2

This is rather a mess, but if we modify it slightly, to do the GLS version,

‖ȳ − a− z̄b‖2(F>F ) = ‖(F>F )−1F>y − a− (F>F )−1F>zb‖2(F>F ) = ‖y − a− zb‖2PF

which is indeed the 2SLS estimator. This argument can be generalized somewhat to
replace the intercept in our simple model with a vector of coefficients associated with some
exogonous covariates and then apply the always useful Frisch-Waugh result to reduce the
situation back to our simple case.

Obviously, the case that the IVs are just a set of discrete covariates is somewhat special,
but it is a useful case to illustrate somewhat more geometrically how IV estimation works.
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By binning continuous covariates one can construct approximations to more general cases
as well.

Propensity Score Methods
Rosenbaum and Rubin (1983) introduced an alternative strategy for identifying and

estimating the ATE. They suggested focusing on the propensity score,

p(x) = P (w = 1|x)

i.e., the conditional probability of treatment given covariates x.
Prop (Rosenbaum and Rubin) Suppose 4 holds and that 0 < p(x) < 1 for all x, then

β = E((w − p(x))y)/(p(x)(1− p(x)))

Proof Write,

(w − p(x))y = (w − p(x)((1− w)y0 + wy1)

= wy1 − p(x)(1− w)y0 − p(x)wy1

Now, let mj(x) = E(yj |x), j = 0, 1 and computing expectations of the above conditional
on (w, x) gives the right hand side as,

wm1(x)− p(x)(1− w)m0(x)− p(x)wm1(x)

Now, taking expectations with respect to x yields,

p(x)m1(x) − p(x)(1− p(x))m0(x)− p2(x)m1(x)

= p(x)(1− p(x))(m1(x)−m0(x))

The assertion of the proposition is

β = m1(x)−m0(x) = µ1 − µ0

but this now follows by iterated expectations.
In practice we need of course an estimate of p(x) and Rosenbaum and Rubin suggest

logit specifications, but there are many possibilities here, eventually we have estimators
of β of the form,

β̂ = n−1
∑

(wi − p̂(xi))yi/[p̂(xi)(1− p̂(xi))]

As further evidence that there is nothing new under the sun, this is just a version of the
Horvitz and Thompson (1952) estimator for handing mean estimation with nonrandom
sampling. There is considerable work on an appropriate choice of estimation strategy for
p(x), and no general agreement.

Digression on the Horvitz-Thompson estimator In sample surveys a common prob-
lem is estimating a total from a sample on a finite population. Suppose we denote Yi as
the response of the ith observation and Di as the indicator of whether the ith observation
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was sampled. Typically, we have an explicit sampling plan so we know pi = P (Di = 1),
so the HT estimator of the total is simply

Tn =
n∑
i=1

DiYi/pi.

Taking expectations conditionally shows that this gives an unbiased estimate of the total.
In fact it can be shown to be the UMVUE. To see the connection with β̂ above suppose
we want to estimate averages now, and we think of Di as a treatment rather than a
sampling decision, then the same argument shows that EDiYi/pi = EY1i and also that
E(1−Di)Yi/(1− pi) = EY0i, and combining these facts we have our expression for β̂.

There is a nice cautionary tale told by Basu (1971) about the HT estimator: A circus
impresario has to ship his 50 elephants and needs a rough estimate of their total weight.
He speaks with his trainer who suggests weighing Sambo the elephant who is roughly
middle size and then multiplying Sambo’s weight by 50. Sambo ways 5,000 kg, so the
total would be 250,000 kg. But the circus statistician intervenes and says “No, we need a
sampling plan.” So he proposes chosing Sambo with probability 99/100 and assigning the
rest of the mass uniformly to the rest of the elephants. So the impresario agrees and they
randomly draw a U [0, 1] which turns out to be less than .99 and so they weigh Sambo. The
impresario is about to multiply by 50 when the statistician says “No, stop, the Horvitz
Thompson estimator is known to be UMVUE and it tells us to divide Sambo’s weight
by pi = 99/100, so we want to multiply by 100/99 not 50, so our estimate of the total
becomes 5,050 kg, instead of 250,000 kg. Moral: Unbiasedness isn’t always such a great
property.

Commentary: Note that if, by chance, we would have chosen Jumbo the biggest ele-
phant whose pi was only 1/5000, we would have multiplied his weight by 5000, since Jumbo
weighed 7000 kg our estimation of the total would have been 35,000,000kg which would
have compensated for the drastic underestimate obtained with Sambo. But of course we
are only doing this procedure once, so the fact that repeatedly doing it gives us something
unbiased is not much comfort. Each time we would be getting something quite stupid for
an answer. Wooldridge suggests treating p(x) as a control function in a linear regression.
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Figure 1: Lehmann Quantile Treatment Effect
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Figure 2: Lehmann Quantile Treatment Effect: Examples
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