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Lecture 20
A Not Too Random Walk in Markov Chains

We will begin by considering the random walk

Xi = Xi−1 + ξt

or

Xi = X0 + ξ1 + ξ2 + . . .+ ξt

where ξt are iid random variables with probability of ξt = 1 of p and probability of ξt = −1 of q = 1− p.

Gambler’s Ruin: Suppose we have R and G flipping (p− q) coins. R has $a initially, G has $b. They flip
until one is bankrupt. What is the probability that R is ruined?

Let uj = Prob(Xn hits 0, before it hits c = a+ b when it starts from j)
we really need just ua, but all the other uj ’s are necessary intermediate products. Now we have the
difference equation,

(∗) uj = puj+1 + quj−1 1 ≤ j ≤ c− 1

with boundary conditions u0 = 1 and uc = 0.

To see (*), note that if R is at j and the probability of getting to j + 1 is p, and at that point the
probability of ruin is uj+1, while with probability q he gets to j − 1 and then has ruin probability uj−1.
The result now follows by application of the rule,

P (B) =
∑
i

P (Ai)P (B|Ai)

since the only way to get to state j is via state j − 1 or j + 1.

Now, using p+ q = 1, write (∗) as,

q(uj − uj−1) = p(uj+1 − uj)
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or
dj = rdj−1

where r = q/p, dj = uj − uj+1. Thus
dj = rjd0

and summing by parts, (remember summing by parts?),

(+) 1 = u0 − uc =

c−1∑
j=0

(uj − uj+1) =
∑

dj =
∑

rjd0 =
1− rc

1− r
d0

and similarly, we have

uj = uj − uc =

c−1∑
i=j

(ui − ui+1) =

c−1∑
i=j

rid0 =
rj − rc

1− r
d0

so, using (+)

(×) uj =
rj − rc

1− rc
0 ≤ j ≤ c

Now, reversing the roles of R and G, flip p and q and j to c− j, then for vj we have

vj =
1/rc−j − 1/rc

1− 1/rc
=

(1/r)c(rj − 1)

1− (1/r)c
=

1− rj

1− rc

where we see that uj + vj = 1. This solves our problem, but also shows that there is no probability that
X bounces forever between 0 and c, however big c is! This is an important lesson, since it shows that
everything that is possible will (eventually) happen. For r = 1, i.e. p = q, we get by L’Hôpital and (+)

lim
r→1

1− rc

1− r
=
−crc−1

−1

∣∣∣∣
r=1

= c ⇒ 1 = cd0

and from (×), we have the intuitive result that,

uj =
j − c
−c

=
c− j
c
⇒ ua =

b

c

This property of the random walk can be extended from its discrete setting to continuous time. Let
δ be the new unit of time, now say P (ξk =

√
δ) = P (ξk = −

√
δ) = 1

2 so

Eξk = 0, σ2(ξk) =
1

2
(
√
δ)2 +

1

2
(−
√
δ)2 = δ

suppose X0 = 0 so Xt =
∑t/δ
k=1 ξk. When t is fixed and δ → 0 we have by the DeMoivre-Laplace CLT,

Xt ∼ N (0, t). This yields a (very naive) construction of Brownian motion.
Definition (Brownian Motion): A family of random variables indexed by a continuous variable t over
[0.∞) is a Brownian Motion iff

(i) X(0) = 0

(ii) {X(si + ti)−X(si)} over an arbitrary collection of disjoint intervals, (si, si + ti) are ⊥⊥ r.v.s

(iii) for each s ≥ 0, t ≥ 0, X(s+ t)−X(s) ∼ N (0, t)

Establishing the existence and properties of such processes is one of the major accomplishments of
20th century mathematics. The foregoing sketch of random walks and their continuous analogue yielding
Brownian motion can be generalized dramatically.
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Markov Chains
Consider a sequence of random variables {Xt} taking values in a set S to be called the state space.

(We will assume provisionally that S is finite.) Our fundamental assumption is that if Xt is in state i at
any time, regardless of where it has been before, the probability that it will be in state j, in period t+ 1
is given by pij , that is,

(�) P (Xt+1 = j|Xt = i, A) = P (Xt+1 = j|Xt = i) = pij

for any conditioning event A determined by prior history of X, {X0, . . . , Xt−1}. This is the Markov
property, the second equality in (�) insists that the process has stationary, or temporally homogeneous,
transition probabilities.

It is often convenient to think of a random initial state, so P (X0 = i) = pi Where {pi, i ∈ S} is the
initial distribution. For any pij satisfying, for all i, j ∈ S: (i) pij ≥ 0 and (ii)

∑
j∈S pij = 1, we have a

homogeneous Markov chain.
It proves to be convenient to organize our transition probabilities into matrix form Π = (pij). Note

that if we would like to compute the probability of a transition from state i to state j in exactly n periods,

i.e., P (Xn = j|X0 = i) ≡ p(n)ij , then we have

p
(n)
ik =

∑
j

pijp
(n−1)
jk =

∑
p
(n−1)
ij pjk

e.g. Π2 = Π Π = (p
(2)
ij ) so we are just doing matrix multiplication and thus Πn = (p

(n)
ij ) and Πn+m =

Πn ·Πm.

Ex 1 Random Walk without boundary has

Π =



0
. . . 0

. . .
. . . 0 p

. . . q p

q
. . .

. . .
. . . p

0 q 0


at each stage there is a transition to only the adjacent state.

Ex 2

Π =


1 0 · · · 0
q 0 p · · ·
0 q 0 p · · · 0

. . . 0 q 0 p
0 · · · 0 1


Here there are absorbing states at the ruin points. The matrix is (c+ 1) by c+ 1.

Ex 3

Π =


0 1 0
q 0 p · · ·

. . .

q 0 p
0 · · · 1 0
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Here the ruined guy gets one dollar to restart his luck from his opponent. This is the “reflecting barrier”
as opposed to the absorbing barrier case in Ex 2.

Ex 4 Extending the integer valued model further, suppose

Xt = Xt−1 + ξt

Where
P (ξt = j) = aj with ξt ⊥⊥ Xt−1

So Ex 1 is a special case of Ex 4. “Baby” Chung offers further, more sophisticated, examples.

Structure of Markov Chains
Now we introduce some more formal terminology,

Definition: i j(i leads to j) iff ∃ n ≥ 1 p
(n)
ij > 0

Definition: i! j(i communicates with j) iff i j and j  i

The first occurrence time, or first passage time,

Tj = min{t ≥ 1|Xt = j}

is an important quantity. We would like to characterize two probabilities

f
(n)
ij = P (Tj = n|X0 = i) and f∗ij =

∞∑
n=1

f
(n)
ij

Thus, the probability that Xt gets to state j only after hell freezes over is

f∞ij = 1− f∗ij

We can write more explicitly, f
(1)
ij = pij , and we would like to be more explicit about

f
(n)
ij = P (Xt+s 6= j, 1 ≤ s ≤ n− 1, Xt+n = j|Xt = i)

by homogeneity we don’t need to worry about when we start, the initial time t is irrelevant.

Theorem: For any i and j and 1 ≤ n <∞,

p
(n)
ij =

n∑
s=1

f
(s)
ij p

(n−s)
jj

Proof:

p
(n)
ij = Pi(Xn = j)

= Pi(Tj ≤ n,Xn = j) [Xn = j ⇒ Tj ≤ n]

=

n∑
s=1

Pi(Tj = s,Xn = j) [Xn = j events disjoint]

=

n∑
s=1

Pi(Tj = s)Pi(Xn = j|X1 6= j, . . . , Xs−1 6= 1, Xs = j) [ConditionalPi]

=

n∑
s=1

Pi(Tj = s)P (Xn = j|Xs = j) [Markov Prop]

=

n∑
s=1

Pi(Tj = s)Pi(Xn−s = j) [Temporal Homogeneity]

=

n∑
s=1

f
(s)
ij p

(n−s)
jj �
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Computation is facilitated with help of generating functions as suggested in L1.

Let

Pij(z) =

∞∑
k=0

p
(k)
ij z

k

Fij(z) =

∞∑
k=1

f
(k)
ij z

k

for |z| < 1. Then, using the prior Theorem, with δij as Kronecker’s δ,

Pij(z) = δij +

∞∑
n=0

n∑
s=1

f
(s)
ij p

(n−s)
jj zszn−s

= δij +
∞∑
s=1

f
(s)
ij z

s
∞∑
n=0

p
(n−s)
jj zn−s

= δij + Fij(z)Pjj(z)

The inversion of the order of summation is justified because both series are absolutely convergent for
|z| < 1.

Theorem: For any state i we have f∗ii = 1, iff

∞∑
k=0

pkii =∞

if f∗ii < 1,
∑∞
k=0 p

k
ii = 1/(1− f∗ii).

Proof: Set i = j in the foregoing argument and solve for Pii(z),

Pii(z) = 1/(1− Fii(z))

Then put z = 1 and use Pii(1) =
∑∞
k=0 p

k
ii, Fii(1) = f∗ii �

Remark: This is an Abelian theorem in the terminology of Feller, and it motivates the following definition:

Definition: A state i is recurrent iff f∗ii = 1, and non-recurrent iff f∗ii < 1.

Corollary: If j is non-recurrent, then
∑∞
k=0 p

(k)
ij <∞ for every i, and thus limk→∞ p

(k)
ij = 0 for all i.

Proof: For i = j this is the prior theorem, if i 6= j, then

Pij(1) = Fij(1)Pjj(1) ≤ Pjj(1) <∞

Remark: Any pair of states must either be both recurrent or both non-recurrent. But one can’t go from
recurrent to non-recurrent states.

For recurrent Markov chains it is important to understand the limiting behavior of averages:

n−1
∑
k

p
(k)
ij

Focusing first on i = j, let

mjj = EjTj =

∞∑
k=1

kf
(k)
jj

5



the mean time required to return to j from a start at j. We would like to relate mjj to the former
average, which can be interpreted as average expected occupation time in state j.

Since on average it requires mjj time units to return to i from j, there should be, on average, about
n/mjj time units spent in state j during n periods, i.e.,

lim
n→∞

1

n

n∑
k=1

pkij =
1

mjj

This can be formalized by considering iid sequences, but this is tough. A simple approach is provided by
the following discussion.

But the stationary distribution of a recurrent Markov chain is easily found given the matrix Π = (pij)
assuming that we have a single recurrent class. If one has a vector of probabilities p0 describing the
distribution of states in an initial period, then of course,

p1 = Πp0

but in a stationary situation we would have

(?) p(I −Π) = 0

Does this have a solution? Note that the columns of the matrix I − Π are all summing to 1 =
∑
j pij ,

so (?) has a nontrivial solution. Such a solution is free to be normalized as
∑
p∗i = 1. A simple way to

compute the solution to (?) is to discard one of the equations, say the first one, and solve for the other
pi’s in terms of p1. Details available from Bellman (1970).

Theorem: If A is a positive Markov matrix and xt = Axt−1, then limxt = y, y is ⊥⊥ of x0, and y is an
eigenvector of A with associated eigenvalue 1.

Proof: Consider x′nb = (Anx0, b) = x′0(An)′b = x0(A′)nb. Let zn = (A′)nb so zn+1 = A′zn, with z0 = b.
Now, let un = maxi zn and vn = mini zn, we will show un − vn → 0 as n→∞. Note that

zin+1 =

J∑
j=1

Ajiz
j
n

and
∑J

j=1Aji = 1, Aji ≥ 0 so, un+1 ≤ un and vn+1 ≥ vn, so we have monotone sequences bounded from
below by 0 (un) and from above by 1 (vn) so we have convergence to say u and v respectively. But more
can be said, in fact, un − vn → 0 so z converges to a constant vector. To see this, consider,

zin+1 =
∑

mjiz
j
n

we want an upper bound so if we have mji ≥ δ recall A is positive (!), then

un+1 ≤ (1− δ)un + δvn

(this puts minimal weight on vn and all the rest of the weight on un.) And similarly,

vn+1 ≥ δun + (1− δ)vn

then,
un+1 − vn+1 ≤ (1− 2δ)(un − vn)

and thus,
un − vn ≤ (1− 2δ)n(u0 − v0)→ 0,
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so the min and the max converge to the same value so zn → z and hence x→ y. What can we say about
this y? If z = ζ1n has identical elements then

(y, b) = lim(xn, b) = (x0, z) = ζ1′x0 = ζ

and hence is ⊥⊥ of x0. And,
y = limAn+1x0 = A limAnx0 = Ay

so y is eigenvector with unit eigenvalue. �

MCMC in Action

We have seen that under some fairly general conditions, Markov chains have unique stationary distri-
bution, with

lim
n→∞

P (Xn = j) = Pj ∀j

independent of the initial state p0. There are many further details: egodicity, speed of convergence, etc.
that we won’t delve into. Instead, we now turn to more practical considerations concerning how transition
matrices can be constructed to simulate Markov chains. We will make a leap of faith into the realm of
continuous state space chains for which we may wish to consider some sort of discrete approximation, but
we will leave all details of this to other sources. A recent detailed treatment of many practical issues can
be found in Jackman (2009). Lancaster (2005) provides a very readable, more econometric, treatment.

The Gibbs Sampler
The simplest schema for constructing a Markov chain sampler is to focus on sequential conditionals.

To illustrate this consider the transition equation,

p(y) =

∫
K(x, y)p(x)dx

but now partition x and y into two pieces x = (x1, x2), y = (y1, y2). To define the Markov chain, we
assume that we can draw from theth two conditionals:

1) Draw Y1 from PY1|Y2
(y1|x2)

2) Draw Y2 from PY2|Y1
(y2|y1)

Repeating 1) and 2) allows us to simulate from the stationary distribution of the chain. Write

K(x, y) = pY1|Y2
(y1|x2)pY2|Y1

(y2|y1)

≡ p12p21.

We can regard successive draws from the conditionals as represented by the integral operator with kernel
K, that is starting from an initial state drawn from the stationary distribution, successive draws from
the conditionals reproduces this stationary distribution:

p(y) =

∫
K(x, y)p(x)dx

=

∫
p12p21p(x)dx

=

∫
p12p21pY2

(x2)dx2

= p21

∫
pY1,Y2

(y1, x2)dx2

= pY2|Y1
(y2|y1)pY1

(y1)

= p(y)
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A nice example is latent variable normal theory models:

y1 is y the latent variable

y2 is β the model parameter

The conditional of y1|y2 is y|β ∼ N (Xβ, σ2I) truncated to the left at zero if yi = 1 and to the right at

zero if y = 0 y2|y1 is β|y ∼ N (β̂, σ2(X ′X)−1).

This approach is unfortunately limited to cases where conditionals are convenient like this. One should
be careful about this since it is crucial that the conditionals be right: arbitrary conditionals typical do
not define a coherent joint distribution. We leave aside questions about how long a chain is needed and
whether to remove initial realizations (burn in) – topics which are still near the research frontier. Better
diagnostics for evaluating whether we have entered the stationary region of the simulation of the chain
would be very worthwhile.

Metropolis Algorithm
This is more like rejection method considered earlier in the course, suppose we have the “proposal

distribution”, q(y|x)

Algorithm

Initialize y = y0, t = 0

Draw y from q(y|yt)

Compute r = p(y)/p(yt)

if r ≥ 1, set yt+1 = y

else, yt+1 =

{
y wp r
yt wp 1− r

Repeat. It may seem almost self contradictory that we are looking for the stationary distribution p
but seem to be using it as if it were known to compute r above. A crucial feature of the above algorithm,
however, is that we don’t need everything about p to compute r. Consider exponential family models
in which we have a sufficient statistic piece to the likelihood and then another multiplicative piece of
the likelihood that depends on the parameters in some potentially very complicated way. (Logspline
estimation provides a good example of this.) Since r depends only on the ratio this multiplicative factor
cancels and this enables us to use only the “kernel” of p without needing the other component.

Theorem: The Metropolis sampler has stationary distribution p

Proof: Suppose, for the moment, that K satisfies the so-called “detailed balance” condition:

(∗) K(x, y)p(x) = K(y, x)p(y) ∀x, y

In a finite state Markov chain this would say that the probability of transit from state x to state y, is
the same as the probability of transit from y to x. Then, for any set B,∫

K(y,B)p(y)dy ≡
∫ ∫

B

K(y, x)p(y)dxdy∫ ∫
K(x, y)p(x)dxdy∫

B

p(x)dx
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The last step uses
∫
K(x, y)dy = 1. Now to show that Metropolis kernel satisfies (*) we observe that,

K(x, y) = ρ(x, y)q(y|x) + (1 + r(x))δx(y)

where ρ(x, y) = min
{
p(y)
p(x) , 1

}
, r(x) =

∫
ρ(x, y)q(y|x)dx.

Note q(y|x) is Prob y is “produced”, ρ(x, y) is prob it is “accepted”. And r(x) sums these over y so
1− r(x) is the probability we stay at x. Now multiplying by p(x) to get

p(x)K(x, y) = p(x)ρq + p(x)(1 + r(x))δx(y)

and similarly by p(y),
p(y)K(y, x) = p(y)ρq + p(y)(1 + r(y))δy(x). �

Metropolis-Hastings
Often a modification of Metropolis is actually employed: rather than using

r(y, yt) = p(y)/p(yt)

instead we use,

r(y, yt) =
p(y)q(yt|y)

p(yt)q(y|yt)
and the acceptance probability is no longer ρ above, but rather,

ρ(y, yt) = min(r, 1)

If q(x, y) is symmetric, q(x, y) = q(y, x), then we are back to Metropolis, but if not, not. Some examples
of these methods are given by Lancaster (2005) and Koenker and Yoon (2007), and further theory is laid
out in Robert and Casella (1999).
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