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Appendix to 13 Ways

This Appendix provides an overview of some of the background that is
left undeveloped in “13 Ways of looking at a random variable.” It is neither
necessary or sufficient to grasp the essentials of that lecture. Pollard (2002)
constitutes an unmeasureably more thorough and sophisticated treatment.
The marginal comments are in the spirit of Graham, Knuth and Patashnik
(1989) but a pale imitation, at best.

1. Instant Measure Theory
Just add water, how
much?

Our first question, which is not strictly necessary, or relevant, but is a
useful bit of general education is: What is the difference between Riemann
and Lebesgue integral? A straightforward answer may be provided with
the aid of a couple of pictures. Riemann integral works by dividing up the
domain and approximating via mean value theorem like this

RSm =

m∑
i=1

f(x∗mi)(xmi − xmi−1).

This works well for nonnegative, continuous functions, but fails in the
sense that the approximation may fail to converge, i.e., there exist sequences
fn → f such that ∫ b

a
fn(x)dx→

∫ b

a
f(x)dx

fails.

The Lebesgue integral proceeds by subdividing the range rather than the
domain,

LSm =

2m∑
k=1

k − 1

2m
× µ({x :

k − 1

2m
≤ f(x) <

k

2m
})

so rather than having fixed-width intervals of the domain and multiplying
by heights as in elementary calculus, we have fixed width division of the
range and we weight by the width, or length, or measure of the set of x such
that f(x) lies in these intervals. So the Lebesgue approximation is the area
below the red curve in Figure 2. To see this start with the top block we get Do you see any red curve?

all area below this block. Then we get the two neighboring strips, etc. etc.

Note that we can perturb f at a few isolated points and this doesn’t affect
the Lebesgue sum, since these heights are multiplied by zero.
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Figure 1. Riemann approximation divides the domain into
pieces and computes an approximate area for each piece.

So why does this work better than the Riemann scheme, or when does it
work better? For our function, f , we need to be able to find the length,
measure of the sets

{x :
k − 1

2m
≤ f(x) <

k

2m
}

If we can assure ourselves that these sets are measurable, then we are set.(so to speak).

This leads us to the concept of σ-fields.

Set Theory in BriefWhat about Boxers?

Let A be a nonempty set of subsets, A, of a nonempty set Ω. Recall,

Ac denotes the complement of A
A ∪B denotes the union of A and B
A ∩B denotes the intersection of A and B
A ⊂ B means A is contained in B, i.e. is a subset of B
An ↗ means the sequence An is increasing so An ⊂ An+1 for all n ≥ 1
An ↘ means An ⊃ An+1 for all n ≥ 1.
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Figure 2. Lebesgue approximation divides the range into
pieces and computes an approximate area for each piece.

Def. A is a field if it is closed under complements and unions, so A ⊂
A, B ⊂ A ⇒ Ac ⊂ A, A ∪B ⊂ A.

Def. A is a σ-field if it is closed under complements and countable unions
so Ai ⊂ A i = 1, 2, . . . ⇒ Aci ⊂ A and

⋃∞
i=1Ai ⊂ A.

Remark σ-fields are also closed under intersections since A∩B = (Ac∪Bc)c.

Def. If A is a σ-field and µ : A → [0, 1] is a set function that is countably
additive in the sense that for disjoint Ai

µ(

∞⋃
i=1

Ai) =

∞∑
i=1

µ(Ai),

then µ is called a measure, or a countably additive measure on (Ω,A).

Examples:

1) Lebesgue: length of the set A
2.) Counting: #(A) cardinality of A, i.e. number of elements of A
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3.) Indicator: δω0(A) = Iω0(A) =

{
1 if ω0 ∈ A
0 otherwise.

Borel Sets

It is convenient to have a minimal σ-field containing a specified class of
sets, ξ. We say ξ is the generator of a σ-field and write,

σ[ξ] ≡
⋂
{Fα : Fα is a σ-field of subsets of Ω for which ξ ⊂ Fα}

Since it is the intersection it has to be minimal.

Suppose Ω = <, and ξ consists of all finite disjoint unions of intervals of the
form

(a, b], (−∞, b], and (a,+∞)

ξ is a σ-field, but not a field since we can’t get (a, b) by finite unions but we
can by countable unions: take (a, bn] with bn ↗ b. Then,

B = σ[ξ]

is called the Borel subsets of <. And µ(A) is the countably additive measure
assigning the length of the intervals composing A.

This can be extended to general metric spaces. Let (Ω, d) be a metric space
and

U = { all d-open supsets of Ω}
then B = σ[U ] are the Borel sets of (Ω, d) or the Borel σ-field of (Ω, d).

Expectations and the Lebesgue Integral
Let (Ω,A, µ) be a probability space and suppose that X,X1, X2, . . . are

measurable functions from (Ω,A, µ) to (<,B). If the sets {Ai : i = 1, . . . , n}
are disjoint, it is convenient to write

n⋃
i=1

Ai =

n∑
i=1

Ai

and if, further,
∑
Ai = Ω we say that the Ai are a partition of Ω.

We may define the Lebesgue integral in a sequence of steps beginning with
the simplest cases and building up from these.

(1) If X =
∑n

i=1 xiIAi , we call it a simple (block) function provided
xi ≥ 0 and the Ai’s constitute a partition of Ω. Then∫

Xdµ ≡
∑

xiµ(Ai).

This is the simplest version of our original definition with only a
finite number of possible values for X.

(2) If X ≥ 0, then∫
Xdµ = sup{

∫
Y dµ : Y is a simple function such that 0 ≤ Y ≤ X}



5

(3) For general measurable X,∫
Xdµ =

∫
X+dµ−

∫
X−dµ

provided either
∫
X+dµ or

∫
X−dµ is finite.

(4) For unmeasurable X, if X equals a measurable function Y on a set
A such that µ(Ac) = 0, has zero measure, then∫

Xdµ =

∫
Y dµ

Properties

(1) Using a simple functions it is easy to show that
(a)

∫
(X + Y )dµ =

∫
Xdµ+

∫
Y dµ

(b)
∫
cXdµ = c

∫
Xdµ

(c) X ≥ 0⇒
∫
Xdµ ≥ 0.

(2) (Monotone Convergence Theorem) Suppose Xn ↗ X a.c. for mea-
surable functions Xn ≥ 0, then

0 ≤
∫
Xndµ↗

∫
Xdµ

(3) (Fatou’s Lemma) For measurable Xn ≥ 0 a.e.∫
lim inf Xndµ ≤ lim inf

∫
Xndµ

(4) (Dominated Convergence Theorem) Suppose |Xn| ≤ Y a.e. for some
Y such that

∫
|Y |dµ < ∞. And assume either (i) Xn → X a.e., or

(ii) Xn →µ X. Then∫
|Xn −X|dµ→ 0 as n→∞

Remark. Note, e.g. Shorack (2000, Chapter 3), that (4) implies that∫
Xndµ→

∫
Xdµ

and that

sup
A∈A
|
∫

A

Xndµ−
∫

A

Xdµ| → 0.

This follows from the observation that

|
∫
Xn −

∫
X| ≤

∫
|Xn −Xn|

and thus uniformly for A ∈ A,

|
∫

A

Xn −
∫

A

X| ≤
∫

A

|Xn −X| ≤
∫
|Xn −X| → 0.


