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Lecture 19
“Model Selection”

Often in formulating econometric models we face a preliminary stage of the process in which
we must select a preferred parametric model from among a large diverse class of alternatives.
This problem bears some similarity to classical hypothesis testing but in many respects is rather
different. In this lecture, I will describe an approach due to Schwarz (1978) which captures the
essentials of the problem from a Bayesian decision theory point of view and has been found to
be extremely useful in practice. In the process we will have a chance to revisit some basic ideas
from the first few lectures.

Suppose that we have a collection of models of the exponential family form:

fj(x, θ) = exp{θ′y(x)− b(θ)}

where θ ∈ Θj for j = 1, . . . , J. The exponential family imposes some linear structure on the
problem, but does not seem to be absolutely essential. See, e.g., Machado (1993). Suppose that
model j restricts Θ by imposing the condition Θj = mj ∩ ΘJ where mj is a linear subspace of
dimension pj in <pJ , where p1 < p2 < . . . < pJ .

We will assume that the investigator has a prior of the form

π(θ) =
∑

αjµj(θ)

where αj is the prior probability that model j is correct and µj(θ) is the prior distribution
(measure) on θ, given model j is correct. We will assume µj are bounded and locally bounded
away from zero on mj ∩Θ, so µj(θ) puts positive mass on any open subset of mj ∩Θ = Θj .

The posterior for θ is then, for iid observations, proportional to∑
αj exp{n(ȳ′θ − b(θ))}µj(θ)

where ȳ = n−1
∑n

i=1 y(xi) is the sufficient statistic for θ. An interesting preliminary question
is: How would we forecast with this family of models? The Bayesian approach to forecasting in
this circumstance would lead us to combine the forecasts of the several models according to the
posterior probabilities of the models.

But the model selection problem is rather different. In model selection we seek to select one,
of several, models and plan to ignore the others in subsequent activities. This is probably theo-
retically unsound, but practically very convenient – we don’t want to be burdened by carrying
along a big collection of models - we would like one which adequately represents our statistical
best judgement about the problem.

To represent this version of the problem more explicitly, Schwarz assumes that among the
collection of models there is a “true” one, say, j0, and that we face the decision problem of
choosing an estimate of j0 subject the 0− 1 loss

L(ĵ, j0),=

{
0 if ĵ = j0
1 otherwise
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This leads, as in other contexts, to the rule

ĵ = arg max{Sn(ȳ, j) = log

∫
mj∩Θ

αj exp{n(ȳ′θ − b(θ))}µi(θ)dθ

which chooses the j which maximizes the posterior probability among all available models. Note
that the integral in the above expression is proportioned to the posterior update of the prior
probabilities αj attached to the various models.

Theorem For fixed ȳ, j as n→∞

(∗) Sn(ȳ, j) = n supθ(ȳθ − b(θ))−
1

2
pj log n+Rn(ȳ, j)

where Rn(ȳ, j) = O(1).

Remark Since the first 2 terms in the above expression are growing with n, it is clear that
the remainder is asymptotically negligible and therefore we have the criterion

max
j
{`j(θ̂)−

1

2
pj log n}

where `j(θ̂) denotes the log likelihood of the jth model at the maximum likelihood estimate for

that model and pj is the dimension of the parameter space for the jth model, i.e., pj = dim{Θj}.
We begin by proving the result in a very restrictive special case.

Lemma 1 If ȳ′θ − b(θ) = A − λ ‖ θ − θ0 ‖2 for some λ > 0, θ0 ∈ mj and µj(θ) = µ, i.e.,
Lesbesgue measure on mj then (∗) holds.

Proof Note that

Q =

∫
αj exp{n(A− λ ‖ θ − θ0 ‖2)}dµ = αje

nA

∫
exp{−nλ ‖ θ − θ0 ‖2}dµ

but this integral is proportional to a pj dimensional normal density with covariance matrix Ω
such that

1

2
Ω−1 = nλIpj

so
Ω = (2nλ)−1Ipj ≡ ωIpj

and |Ω| = ωpj so,∫
exp{−nλ ‖ θ − θ0 ‖2}dµ = (2π)pj/2 |Ω|1/2 ·

∫
(2π)−pj/2 |Ω|−1/2 exp{ }dµ

= (2π)pj/2(2nλ)−pj/2 = (π/nλ)pj/2

and therefore
Q = αje

nA(π/nλ)pj/2 .
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But of course
sup
θ
{A− λ ‖ θ − θ0 ‖2} = A

so we have

Sn(ȳ, j) = nA− 1

2
pj log n+Rn

where Rn = 1/2pj log(π/λ) + logαj �

Example In the Gaussian linear model we may write,

‖ y −Xb ‖2= nσ̂2 + (b− β̂)′(X ′X)(b− β̂)

where σ̂2 = n−1 ‖ y − Xβ̂ ‖2 and β̂ = (X ′X)−1X ′y. Thus, here σ̂2 plays the role of A, but
the norm for (b− β̂) is not just simply Euclidean. Of course, we can always reparameterize the
model so it would be Euclidean.

What does the lemma really say? The crucial conclusion to draw from the lemma is the
fact that the only asymptotically nonnegligible effect of the prior is the penalty term 1/2pj log n
everything else from the prior, the αj , the details of µj(θ) if it were to depend upon θ vanishes
without trace because it is all Op(1) where as the likelihood and the penalty are n-dependent.

Now we extend the domain if relevance of the lemma to more general and realistic situations
by establishing two further lemmas.

Lemma 2 If two bounded positive r.v.s U, V agree on the set where either exceeds ρ for
some ρ such that 0 < ρ < supU then

logEUn − logEV n → 0 as n→∞.

Proof Without loss of generality, suppose that for U < ρ, V = 0 so

0 ≤ Un − V n ≤ ρn

Thus

EV n ≤ EUn ≤ EV n + ρn = EV n

(
1 +

ρn

EV n

)
Then, since

lim
n→∞

(EV n)1/n → supV = supU > ρ

we have
ρ

(EV n)1/n
< 1⇒ ρn

EV n
→ 0

so

log

(
1 +

ρn

EV n
→ 0

)
�

Lemma 3 For some ρ such that 0 < ρ < eA, A = sup{y′θ − b(θ)}, a vector θ0, and some
λ, λ̄, if exp{y′θ − b(θ)} > ρ, then

A− λ ‖ θ − θ0 ‖2< y′θ − b(θ) < A− λ̄ ‖ θ − θ0 ‖2 .
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Proof It is well known that B(θ) = ∇2b(θ) is the covariance matrix of y, hence y′θ − b(θ)
is globally strictly concave and therefore has a unique maximum, say θ0. Expanding at θ0, we
have

F (θ) = y′θ − b(θ) = A− 1

2
(θ − θ0)′B(θ∗)(θ − θ0)

where θ∗ = ωθ + (1− ω)θ0 and ω ∈ (0, 1). Since x′Ax can be bounded by

λA ‖ x ‖2≤ x′Ax ≤ λ̄A ‖ x ‖2

we can bound F (θ) for Nθ0,M = {θ| ‖ θ − θ0 ‖< M} where λA and λ̄A are taken as twice the
maximum and minimum eigenvalues of B(θ∗) for θ∗ in Nθ0,M .

We may now prove the theorem.

Proof By the local boundedness of µj(θ), there exists µ0 such that

exp{y′θ − b(θ)}dµj(θ) ≥ exp{y′θ − b(θ)}dµ0.

Now let U = exp{ȳ′θ− b(θ)}, choose ρ as in Lemma 3; then for U > ρ by Lemma 3 we have

A− λ ‖ θ − θ0 ‖2< logU < A− λ̄ ‖ θ − θ0 ‖2

for all θ ∈ Nθ0,M . Now,
EUn = E exp{n(y′θ − b(θ))}

and satisfies

EV n < EUn < EV n + ρn = EV n

(
1 +

ρn

EV n

)
→ EV n

for log V = A− λ ‖ θ − θ0 ‖2 . So by Lemma 2, logEUn − logEV n → 0 �

Remark In effect we have reduced the general case to the special one of Lemma 1 with λ
equal twice the maximum likelihood of B(θ) in a neighborhood of θ0. Note in the Gaussian case
B(θ) is independent of θ.

Practicalities of Model Selection

In Akaike (1970) it was suggested that model selection for the purpose of forecasting could
be based upon maximizing the criterion,

AIC = `j(θ̂)− pj .

However, the work of Schwarz (1978) shows that as n→∞,

P (j∗AIC > j0) 9 0

while if instead we use

j∗SIC = arg max
j
`j(θ̂)−

1

2
pj log n

then
P (j∗SIC = j0)→ 1
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Since for n > 8, 1/2 log n > 1, Schwarz’s SIC tends to select a smaller, more parsimonious,
model than does AIC.

It may be helpful to try to relate these model selection criteria to conventional asymptotic
theory of hypothesis testing. We have seen in Lecture 11, that under quite general conditions,
for Θj > Θi we have

2(`j(θ̂j)− `j(θ̂i)) ; χ2
pj−pi .

SIC says ”reject i in favor of the bigger model j” if

`j − `i >
1

2
(pj − pi) log n

i.e., if
2(`j − `i)
pj − pi

> log n.

The fraction on the left hand side of this inequality may be seen as the numerator of an F
statistic. Under H0 it is a χ2 divided by its degrees of freedom. So we can regard log n as a
critical value for an F -test to choose i vs j, in which the denominator degrees of freedom are
taken as infinite.

What is happening to the critical value as n→∞? Clearly, as n→∞ the α-level of the test
(the probability of a Type I error) is tending to zero. Is this reasonable? We are used to thinking
about fixed significance levels for tests, like 5%, or 1%, but a little reflection suggests that for
n → ∞, we should try to choose α → 0 so that both Type I and Type II error probabilities
tend to zero. This is the consequence of the implicit log n critical value of this critical value for
various sample sizes. Not unreasonably, we select a much more stringent α-level for tests in the
range n > 1000, then we might traditionally consider reasonable.

Akaike, H. (1974). A new look at the statistical identification model, IEEE Transactions on
Automatic Control, 19, 716-723.

Machado, J.A.F. (1993). Robust model selection and M-estimation, Econometric Theory, 9,
478-93.

Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461-64.

The Lasso as a Model Selection Device

Tibshirani (1996) introduced the ”Lasso” as a method of regularization for least squares
regression problems, and Chen, Donoho and Saunders (1998) discussed very similar methods in
the context of selection of basis functions in models with highly overparameterized basis selection
problems. This form of regularization is closely related to the total variation penalties that we
have already considered in function estimation.

I’ll only briefly mention an application of this `1 penalty approach to model selection in
quantile regression. For further details see Li and Zhu (2008). Consider the penalized quantile
regression problem:

min
∑

ρτ (yi − x>i β)− λ‖β‖1.

It is relatively easy to solve this problem since it can be formulated as a QR problem with
augmented data. In my quantreg package one can simply use the method = lasso option for
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rq. The advantage of the `1 penalty over the Gaussian `2 penalty is that it tends to shrink
some coefficients all the way to zero rather than gradually shrink all the coefficients a small
amount. There is still the obvious question about how to choose λ, but there is a relatively
simple suggestion that seems to work reasonably well in practice. The effective dimension of the
model selected for any choice of λ can be defined as,

p(λ) =
∑

∂ŷi/∂yi

which in the QR situation is simply the number of observations interpolated by the fitted
function. Li and Zhu suggest that this quantity can then be used in conjunction with the usual
SIC or GCV criterion, so for example, one can find λ to minimize:

SIC(λ) = log(n−1
∑

ρτ (yi − x>i β)) + p(λ) log n/(2n).

and show that this performs quite well in simulations relative to minimizing the (infeasible)
mean absolute deviation. (This suggestion was made earlier by Koenker, Ng and Portnoy in the
context of TV penalized function estimation.

A nice example of how the lasso works in applications, suggested by Donoho and Candes, is
the following secret decoder ring problem:
Problem: Transmit x ∈ |Rn over a noisey channel.

Encoding: Send y = Ax for A ∈ |Rm×n, m� n, and receive either:

ỹ = Ax+ u

ỹ = Ax+ u+ v

where u ∼ Gaussian, and v is (sparsely) arbitrarily bad.

Decoding: Set Q = I −A(A>A)−1A> and do either:

x̂ = (A>A)−1A>ỹ

x̂ = (A>A)−1A>(ỹ − ṽ)

where: ṽ = argmin{‖v‖1 such that ‖Q(ỹ − v)‖∞ ≤ K} The former is termed Gaussian decod-
ing, since it simply uses least squares fitting, while the latter is referred to as Dantzig decoding
since it relies on the linear programming solution ṽ.

As a numerical example suppose, n = 256, m = 512, and entries in x, u and A are iid
standard Gaussian, and let v be the mixture: vi = 0.9δ0 + 0.1δ−2yi . Then the next figure
illustrates the performance of of three methods: The Gaussian decoding is seriously disrupted
by the noise introduced by the vi, but Dantzig decoding is almost as good as the performance
of “an oracle” that knew the values of the vi and was able to remove their effect.

Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso, JRSS(B) 58, 267-288.

Chen, S. Donoho, D. and Saunders, M. (1998) Atomic Decomposition by Basis Pursuit, SIAM
J. of Scientific Computing, 20, 33-61.

Koenker, R. Ng, P. and Portnoy, S. (1994) Quantile Smoothing Splines, Biometrika, 81,673-680.
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Figure 1: Dantzig decoding (2) achieves almost the same accuracy as if v were known.

Li, Y. and Zhu, J. (2008) L1 norm quantile Regression, J. of Comp. and Graphical Statistics,
17, 163-185.

A Postscript on Screening Regressions, or “Fishing for Fun and Publication”

Freedman (1983) is a rather disturbing paper about the effect of preliminary testing, or
model selection, on the validity of subsequent inference. Consider the very simple linear model,

(M) y = Xβ + µ u ∼ N (0, σ2I)

Suppose X is a n× p matrix satisfying X ′X = Ip and suppose that as n→∞, p→∞ such that
p/n→ ρ for some 0 < ρ < 1. Let M0 denote the version of M in which β = 0.

Theorem 1 Under M0, R2
n → ρ and Fn → 1.

Now consider a two step estimator for model M , in which we first estimate the model, to a
preliminary screening for “significant variables” and then reestimate using only these variables.
Suppose the screening uses level α, denote the critical value for a two-tailed test at level α by
λ, and define

g(λ) =

∫
|z|>λ

z2dΦ(z).

Theorem 2 Let qn,α be the number of parameters estimated in Stage 2, and R2
n,α and Fn,α

the R2, and F statistic for that regression then, under M0,

qn,α/n → αρ

R2
n,α → g(λ)

Fn,α → g(λ)

α
/

(1− g(λ)ρ)

(1− αρ)

Proofs given in Freedman are a bit sketchy and the computations are rather tedious, so I
won’t provide details.
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Example Suppose n = 100, p = 50, so ρ = 1/2, α = .25, λ = 1.15, and g(λ) = .72 then

R2
n,α ≈ .72 (quite respectable looking!)

qn,α ≈ αρn =
1

4

1

2
· 100 = 12.5

Fn,α ≈ 4.0 scary!

P [F12,88 > 4] ≈ .0001

These asymptotic predictions are supported by some very limited Monte Carlo. What they
say is quite disturbing. Starting from a model in which “nothing matters” we can, in only two
sequential testing steps, reach a conclusion which appears to show overwhelming evidence of a
significant effect. I have thought for some time that this would be a useful topic for a thesis.

Freedman, D. (1983). A Note on screening regressions, American Statistician, 37, 152-155.
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