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Regularization for Density Estimation

Maximum likelihood estimation of densities

max
f∈F

n∑
i=1

log f(Xi)

over any (reasonably) large class F yields . . .
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Dirac Catastrophe

Cai Guo-Qiang’s “Transient Rainbow” New York, 2002
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Regularization – Remedies for Ill-Posedness

Two general classes of treatments:

Norm Constraints: maxf∈F

∑n
i=1 log f(Xi) − λ‖Dkh(f)‖

I Good (1971) ‖D
√
f‖2

2
I Silverman (1982) ‖D3 log(f)‖2

2
I Wahba/Gu (2002) ‖D2 log(f)‖2

2
I Davies/Kovac (2004) TV(f) = ‖Df‖1

I Koenker/Mizera (2005) TV((log f) ′) = ‖D2 log f‖1

Shape Constraints: maxf∈F{
∑n
i=1 log f(Xi)|D

kh(f) ∈ K}
I Grenander (1956) f monotone
I Rufibach/Dümbgen (2006) log f concave
I Cule, Samworth, Stewart (2006) log f concave

Roger Koenker (U. of Illinois) Quasi-Concave Density Estimation Århus: 24.6.2010 4 / 34
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I Rufibach/Dümbgen (2006) log f concave
I Cule, Samworth, Stewart (2006) log f concave

Roger Koenker (U. of Illinois) Quasi-Concave Density Estimation Århus: 24.6.2010 4 / 34



On Tautology: The New, Improved Histogram

The simplest example of a total variation penalized density estimator is the
tautstring estimator of Hartigan and Hartigan (1985) elaborated by Davies
and Kovac (2001, 2004) and van de Geer and Mammen (1997).

Make a ±ε Kolmogorov tube around the empirical df.

Attach a string to the points (X(1), 0) and (X(n), 1).

Pull the string taut.
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The Kolmogorov Tube
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The Slack String
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The Taut String

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

Roger Koenker (U. of Illinois) Quasi-Concave Density Estimation Århus: 24.6.2010 8 / 34



Taut String Densities are Piecewise Constant
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And Good at Estimating Modality
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MLE’s using TV Penalties on (log f) ′ Are Even Better
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Shape Constrained Density Estimation: Early History
Grenander (1956) considered the maximum likelihood estimation of a monotone
density:

max{
∑

log f(Xi) | f↘,

∫
fdx = 1}

Solutions are piecewise constant functions with jumps at the observed {Xi}; they
are derivatives of the least concave majorant, of the empirical distribution
function, Fn.
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Grenander in Asymptopia

What do we know about the asymptotic behavior of Grenander’s fn?
There is a large literature: Prakasa Rao (1969), Groeneboom (1985), ...

Prop 1 If a monotone density f is differentiable and strictly decreasing at
a point, x, then,

n1/3(f̂n(x) − f(x)) |4f ′(x)f(x)|1/3argmax{Z(h) − h2}

where {Z(h) : h ∈ |R} is a standard Brownian motion with Z(0) = 0.

Prop 2 If f is strictly monotone decreasing and twice differentiable, then

n1/3

∫
|f̂n(x) − f(x)|dx 

∫
|4f ′(x)f(x)|1/3dx E argmax{Z(h) − h2}.
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From Monotone to Unimodal Densities

If f is unimodal with a known mode then we can employ Grenander on
each side of the mode to the same effect. Estimation of the mode can also
be done so that the same rate is achievable with an estimated mode.
Birgé (1997).

But unimodal densities aren’t quite as appealing as they might at first
appear. A more attractive class consists of strongly unimodal, or
log-concave densities.

Definition A density f : |Rd → |R is log-concave if g = − log f is convex.

What’s so great about log-concave densities?
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From Monotone to Unimodal Densities

If f is unimodal with a known mode then we can employ Grenander on
each side of the mode to the same effect. Estimation of the mode can also
be done so that the same rate is achievable with an estimated mode.
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Virtues of Log Concavity

(Strong Unimodality) Convolutions of log-concave random variables are log
concave. (Ibragimov (1956))

(Increasing Failure Rate) Hazard functions for log-concave random variables
are increasing (Proschan (1965), Flinn and Heckman (1983))

(Monotone Likelihood Ratio) Log-concave densities have the MLR property
for their location parameter:

f′(x− θ)/f(x− θ0) is↗ in θ.

and consequently the MLE (of location) is unique, and UMP tests exist ...

(Variation Diminishing Kernels) Kernel smoothing with log concave kernels
insures that the number of modes of estimated density is decreasing in the
bandwidth Silverman (1981) based on Karlin (1968).

Many common densities are log concave: uniform, Gaussian, Laplacian,
some Gammas, some Weibulls, ...

Numerous applications in virtually every corner of economic theory: search,
signaling, reliability, auction design, pricing in differentiated product
markets, and social choice all rely on log concavity conditions.
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Beyond the Log Concave Horizon

Following Hardy, Littlewood and Polya (1934), recall that means of order
ρ are defined as

Mρ(a;p) = Mρ(a1, ...,an;p) = (
∑

pia
ρ
i )

1/ρ

for p in the unit simplex, S = {p ∈ |Rn+|
∑
pi = 1}.

Examples: The classical means:

ρ = 1 Arithmetic,

ρ = 0 Geometric,

ρ = −1 Harmonic.
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Beyond the Log Concave Horizon

Definition (Avriel (1972)) A non-negative real function g defined on a
convex set C ⊂ |Rd, is ρ-concave if for any x0, x ∈ C and p ∈ S,

g(p0x0 + p1x1) >Mρ(g(x0),g(x1);p).

Note that

concave functions are 1-concave,

log-concave functions are 0-concave, ...

σ-concaves are ρ-concave for all σ > ρ.

−∞-concaves are quasi-concave.

Moral: Some concaves are more concave than other concaves, but all are
quasi-concave, that is they have convex level sets.
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An Application to Voting and Social Choice

Caplin and Nalebuff (1992) consider a spatial model of voting in which
agents have preferred positions in “issue space” according a ρ-concave
density f : |Rd → |R.
It is then demonstrated that the mean voter’s preferred position is
preferred by at least a proportion 1 − δ of voters to any other proposed
position, where

δ(d, ρ) = 1 −

[
d+ 1/ρ

d+ 1 + 1/ρ

]d+1/ρ

.

In the log-concave case, a simple computation then yields, for any d,

δ(d, 0) = lim
ρ→0

(
1 −

[
d+ 1/ρ

d+ 1 + 1/ρ

]d+1/ρ
)

= 1 − 1/e ≈ .64.

This generalizes the celebrated Black (1948) median voter result for
(weakly) unimodal densities.
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Nonparametric Maximum Likelihood

We can easily pose the problem:

max
f

{

n∏
i=1

f(Xi) | f is a log-concave density}

(P) min
g

{

n∑
i=1

g(Xi) |

∫
e−g(x)dx = 1, and g is convex}

This is quite like the classical Grenander (1956) MLE for monotone
densities. For d = 1 recent papers by Rufibach (2007), and Pal,
Woodroofe, and Meyer (2007) provide active set algorithms.

What about dimension d > 1? Koenker and Mizera (2008) suggest
interior point methods, while Cule, Samworth and Stewart (2007) explore
gradient methods.
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Nonparametric Maximum Likelihood

We can easily pose the problem:

max
f

{

n∏
i=1

f(Xi) | f is a log-concave density}

(P) min
g

{

n∑
i=1

g(Xi) |

∫
e−g(x)dx = 1, and g is convex}

This is quite like the classical Grenander (1956) MLE for monotone
densities. For d = 1 recent papers by Rufibach (2007), and Pal,
Woodroofe, and Meyer (2007) provide active set algorithms.

What about dimension d > 1? Koenker and Mizera (2008) suggest
interior point methods, while Cule, Samworth and Stewart (2007) explore
gradient methods.

Roger Koenker (U. of Illinois) Quasi-Concave Density Estimation Århus: 24.6.2010 19 / 34



A Characterization Lemma

Solutions to (P) are polyhedral convex functions of the form

ĝ(x) = inf

{ n∑
i=1

λiYi | x =

n∑
i=1

λiXi,
n∑
i=1

λi = 1, λi > 0

}
,

where {Xi} are the sample observations and the Yi are freely varying,
representing ordinates of the estimated density at the Xi’s.

Implications:

Reduces the problem to a finite, albeit n-dimensional, one.

Solution log-densities are piecewise linear, i.e. polyhedral..

Solution densities are piecewise exponential.

Estimated densities vanish off the convex hull of the observations.
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A Family of Convex Variational Problems

A functional version of our MLE problem (P) can be written as

min
g

{

∫
gdPn +

∫
e−gdx | g ∈ K}

where K denotes the cone of convex functions on C(X), the linear space of
all bounded continuous functions on H(X), the convex hull of the {Xi}.

It is useful to expand somewhat the class of these problems beyond the
MLE log concave case, so we will rewrite this as,

min
g

{

∫
gdPn +

∫
ψ(g)dx | g ∈ K}
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MLE log concave case, so we will rewrite this as,

min
g

{

∫
gdPn +

∫
ψ(g)dx | g ∈ K}
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Through the Looking Glass, Dually

Theorem Suppose that ψ is a decreasing convex function of a real
variable with conjugate (Legendre transform) ψ∗(y) = supx{yx−ψ(x)},
then the strong dual of the primal problem

(P) min
g

{

∫
gdPn +

∫
ψ(g)dx | g ∈ K}

is given by:

(D) max
G

{−

∫
ψ∗(−f)dx | f =

d(Pn −G)

dx
, G ∈ K∗}

where K∗ = {G ∈ C∗(X) |
∫
gdG > 0 for all g ∈ K}, and C∗(X) is the

space of signed Radon measures on H(X), the set of bounded, continuous
functions on X. Note that G must anihilate the atoms of Pn so that f is a
(Lebesgue) density.
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Dual Exhausts
Thus, for the original MLE log-concave example: ψ(x) = e−x we have
ψ∗(y) = −y log(−y) + y giving the dual problem,

max
f

{−

∫
f log(f)dx | f =

d(Pn −G)

dx
,G ∈ K∗}

So the MLE problem becomes a maximum Shannon entropy problem.

Why Shannon? Why not some other (e.g. Renyi) entropy?

Eα(f) = (1 − α)−1 log(

∫
fα(x)dx)

The usual suspects (shades of Cressie-Read and Csiszár divergences):

α = 1 is Shannon (taking limits)

α = 2 is Pearson χ2

α = 1/2 is Hellinger

α = 0 is (some form of) Empirical Likelihood
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Don Juan in Hellinger

Our favorite alternative to Shannon is α = 1/2,

(D) max
f

{−

∫ √
fdx | f =

d(Pn −G)

dx
,G ∈ K∗}

(P) min
g

{

∫
gdPn +

∫
g−1dx | g ∈ K}

Here, f = ψ′(g) = (g−1)′ = −g−2, so g = f−1/2 so the convexity
constraint in (P) requires that f−1/2 be concave.

All Student’s are admitted up to and including Cauchy.

These are Avriel’s ρ-concaves, with ρ = α− 1 = −1/2.

Recall that this class nests the log-concaves.
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Inference about Log Concave Mixtures

Another interesting class of densities is mixtures of log-concaves.

Theorem (Walther (2002)) Let {fi} be a collection of log-concave
densities on |Rd, then on any compact set G ⊂

⋂
supp{fi} we have the

following representation for the mixture density:

f(x) ≡
∑

pifi(x) = exp{φ(x) + c‖x‖2}

for p ∈ S, c > 0 and φ concave on G ⊂ |Rd.

Leads to interesting tests for H0 : c = 0: Log-concavity vs everything else.
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An Identifiability Dilemma

The downside of the Walther result is that non-parametric identifiability of
mixtures is thrown into a rather perilous swamp: we can reproduce any
mixture of log-concaves by simply introducing a little convexity into the
exponential family representation of a single log-concave:

f(x) ≡
∑

pifi(x) = exp{φ(x) + c‖x‖2}

So clearly, for any φ and c > 0 there are lots of mixtures that are
indistinguishable. From which we draw the (Miltonian) conclusion:

Moral: Distributions are from God, parameterizations are from man.

Roger Koenker (U. of Illinois) Quasi-Concave Density Estimation Århus: 24.6.2010 26 / 34
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Algorithms and Actuality

Discrete implementations require two basic ingredients:

Data: {X1, · · · ,Xn}

Undata: {v1, · · · , vn}

We parameterize g = (g(vi))
m
i=1 ≡ (γi)

m
i=1, thus:∫

ψ(g)dx ≈
∑
siψ(g(vi)) ≡ s>Ψ(γ) Riemann Sum∫

gdPn =
∑
g(Xi) = w>Lγ Linear Interpolation

g ∈ K⇔ Dγ > 0 D = ∇2 Convex Cone Constraint

Yielding the primal and dual problems:

(P) {w>Lγ+ s>Ψ(γ) | Dγ > 0} = min!

(D) {−s>Ψ∗(f) | Sf = w>L+D>h, f > 0,D>h > 0} = max!
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The Discrete Charm of Duality

(P) {w>Lγ+ s>Ψ(γ) | Dγ > 0} = min!

(D) {−s>Ψ∗(f) | Sf = w>L+D>h, f > 0,D>h > 0} = max!

Theorem: (Sanity Check) In (P) suppose that for a vector of ones, ι,
w>Lι = 1 and Dι = 0, then solutions f and g are strongly dual and satisfy:

f(vi) = ψ′(g(vi)) i = 1, · · · ,m,

and
∫
f(x)dx =

∑
sif(vi) = 1, and f(vi) > 0.

The argument for the integrability constraint is especially simple and
revealing:

s>f ≡ ι>Sf = ι>Lw+ ι>D>h = 1

Since D = ∇2 the same argument implies that
∫
xf(x)dx =

∫
xdPn.
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A Gamma Example
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Log-concave Maximum Likelihood Estimator of a Gamma(3) Density
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A Log-Normal Example
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Log-concave and -1/2-concave Estimates of a Log-Normal Density
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An Historical Bivariate Example
“Student” (W.S. Gosset) in his celebrated 1908 paper writes:

Before I had succeeded in solving my problem analytically, I had
endeavoured to do so empirically. The material used was a correlation
table containing the height and left middle finger measurements of
3000 criminals, from a paper by W. R. Macdonell. The measuremensts
were written out on 3000 pieces of cardboard, which were then very
thoroughly shuffled and drawn at random. Finally each consecutive set
of 4 was taken as a sample . . .
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Student’s Middle Fingers
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Bivariate Log-Concave Estimate
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Student’s Middle Fingers, Again
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Bivariate −1/2-Concave Hellinger Estimate
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Regularization for Density Estimation

An old idea (Good, Vapnik, . . . ) whose time has come?

Bayes (in mufti) procedures that shrink toward a priori plausible
models for norm constraints.

Shape constraints also regularize thereby offering a middle ground
between parametric and nonparametric modeling.

ML estimation of log-concave densities is especially appealing on
economic theory grounds.

But other maximum entropy estimators of ρ-concave densities are
also attractive and permit a broader (algebraic) class of tail behavior.

Why density estimation? Because it is a stepping stone toward the
hegemony of semi-parametrics.
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