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Lecture 18

“Logspline Density & Hazard Estimation”

In the previous lecture we considered using smoothing splines for non-parametric regression.
We found that the roughness penalty (aka smoothness prior)

∫

(g′′(x))2dx implied that solutions
were cubic splines, i.e., twice continuously differentiable functions on ℜ or [0, 1] such that on
each segment [xi, xi+1) we may write s(x) as a cubic polynomial.

For smoothing splines we introduce knots at each xi value and rely on the penalty to shrink
the ĝ(xi) = ai’s toward the linear fit. An alternative to this approach is simply to delete knots
and rely on the knot deletion to accomplish what the shrinkage does.

More formally, let

S0 = {s : ℜ → ℜ|s ∈ C2, s is a cubic polynominal on the intervals (−∞, t1], (t1, t2], . . . , (tk,∞)}

There are (K + 1) segments (intervals), at each ti, i = 1, . . . ,K we have 3 linear continuity
constraints so the dimension of S0 is 4(K + 1)− 3K = K + 4. Define the K-dim subspace S of
S0 consisting of s ∈ S0 such that the extreme intervals are linear. Now construct a basis for S
of the form {1, B1(x), . . . , Bp(x)} where p = K − 1.
[Require that B1 is linear on (−∞, t1) while B2, . . . , Bp vanish there, and Bp is linear on (tK ,∞)
and B1, . . . , Bp−1 vanish there and B1 has a negative slope, and Bp a positive one]
Some typical B-spline basis functions are illustrated in the following figure adapted from Hastie
and Tibshirani (1990). The figure can be easily reproduced at home by the R commands:

library(splines)

u <- 1:1000/100

matplot(u,bs(u,knots=c(2,5,7)),type="l")

Now consider densities of the form,

f(y, θ) = exp{
p

∑

i=1

θiBi(y)− c(θ)}

where c(θ) is chosen so that
∫

f(y, θ)dy = 1, i.e.,

c(θ) = log{

∫

ℜ

exp{
∑

θiBi(y)}dy}.

These are just the densities whose logarithm is a piecewise cubic function. An important special
case is the normal density which has a globally quadratic log density.

Note that c(θ) is just a constant of integration which assures that

∫

f(y, θ)dy = 1.
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Figure 1: This figure illustrates some typical cubic B-spline basis functions. They are evaluated
on an equally spaced grid from 0 to 10, interior knots are located at 2,5,7. This figure can be
reproduced in R by
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Proof:

1 =

∫

f(y, θ)dy =

∫

exp{
∑

θiBi(y)}dy

exp c(θ)

⇒ c(θ) = log(

∫

exp{ }dy)

Note that the information matrix

−E∇2
θ log f = ∇2

θc(θ)

which is positive definite so the model has a concave likelihood, hence unique mle, etc.
Given a random sample y1, . . . , yn from f we have sufficient statistics: bj =

∑

Bj(Yi), and
we can employ the Newton method to compute mle. (Some modifications are required to insure
that the slopes have the right signs in the tails). Note that the normal model is nested in this
class.

The trick here is to choose the knots properly, cleverly, fortuitously. Ref [1] discusses this in
detail. Akaike, Schwarz, and various other chicanery can be used.

Instead of more theory about this, I’ll discuss an example. In Figure 1 I have illustrated the
outcome of a contest that I ran in 478 in 1993. I generated 200 observations from a mixture
of 3, 3-parameter lognormal, densities. This target density is illustrated in each panel by the
dotted curve. I asked each student to write an S-function to compute an estimated density using
whatever technique they wanted. I illustrate some of their estimates here. Most students used
kernels. In the upper right panel I illustrate my best kernal estimate based on Hall,Sheather,
Jones, and Marron’s preliminary bandwidth selection and Silverman’s adaptive kernel approach.
In the lower left panel I illustrate the Gallant and Nychka Hermite series estimate. Obviously, all
these do poorly. In contrast, Frank Shorfheide’s entrant – the Stone and Kooperberg logspline
method with default settings – does spectacularly well. Frank was at the time an undergraduate
German exchange student, subsequently he was a graduate student at Yale and is now on the
faculty at Penn.

For more details on the R implementation of this try library(logspline); help(logspline.fit)
on ragnar. If you would like to try this yourself you can use the function rlambda to generate
the data:

> rlambda <- function(n, mu = c(0.5, 1.1, 2.6), sigma = c(0.2, 0.3, 0.2),

alpha = c(0.4, 1.2, 2.4), w = c(0.33, 0.33, 0.34))

{

#mixture of lognormals -- random numbers

#No error checking! w is a weight vector which should add to one.

m <- length(w)

w <- cumsum(w)

U <- runif(n)

W <- matrix(0, n, m)

W[, 1] <- U < w[1]

for(i in 2:m) {

W[, i] <- (U < w[i]) & (U >= w[i - 1])

}
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Figure 2: This figure illustrates four estimates of a mixture of lognormal density. In each panel
the true density is depicted as the dotted line, and the estimate as the solid line. In the upper
two panels you see two typical kernel density estimates both use the adaptive kernel method
of Silverman, the former employs a naive pilot estimate and the second uses a pilot estimate
based on the fixed bandwidth choice of Hall, Sheather, Jones and Marron. The third plot is the
Hermite series estimate of Gallant and Nychka using their suggested default settings, and the
fourth panel shows the logspline estimate of Stone and Kooperberg.
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z <- rep(0, n)

for(i in 1:m) {

z <- z + W[, i] * (alpha[i] + exp(rnorm(n, mu[i], sigma[i])))

}

}

The density can be drawn using the function dlambda:

> dlambda <- function(z, mu = c(0.5, 1.1, 2.6),

sigma = c(0.2, 0.3, 0.2), alpha = c(0.4, 1.2,

2.4), w = c(0.33, 0.33, 0.34), eps = 0.0001)

{

#mixture of lognormals density function

m <- length(w)

f <- 0 * z

for(i in 1:m) {

f <- f + (w[i] * psi(log(pmax(z - alpha[i], eps)), mu[i],

sigma[i]))/((z - alpha[i]))

}

}

Logspline Hazard Estimation

We need to recall some notation and concepts from survival analysis:
Consider Y1, . . . , Yn iid from F, f on [0,∞). Let

h = f/(1− F )

denote the hazard function and
λ(·) = log h(·)

Then

1− F (t) = exp{−

∫ t

0

h(u)du} = exp{−

∫ t

0

exp(λ(u))du}

f(t) = exp(λ(t)) exp{−

∫ t

0

exp(λ(u))du}

and

ϕ(t) = log f(t) = λ(t)−

∫ t

0

exp{λ(u)}du

The idea is to adapt the approach for log f to estimating models for hazard functions. So let’s
write

λ(y, θ) =
p

∑

j=−1

θjBj(y)

where {Bj} are again an appropriately chosen basis for the space of log hazards. To embed the
problem in a familiar parametric setting we choose for some c > 0

B−1(t) = log

(

t

t+ c

)
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and
B0(t) = log(t+ c)

we can motivate these choices as follows,

1. Suppose f is Weibull

f(t) = bγtγ−1 exp{−btγ} t > 0
F (t) = 1− exp{−btγ}
λ(t) = (γ − 1) log t+ log bγ

so for p = 1, so B1(y) ≡ 1, we set

θ−1 = θ0 = γ − 1 and θ1 = log(bγ)

2. Suppose f is Pareto, i.e.,

f(t) =
bcb

(t+ c)b+1

F (t) = 1−

(

c

t+ c

)b

λ(t) = log b− log(t+ c)

so θ−1 = 0, θ0 = −1, θ1 = log(b) gives the Pareto case. Obviously, this requires that c is
specified correctly, or estimated consistently somehow.

Principle: If you want to be non-parametric, start by nesting some reasonable standard
models as the simplest special cases.

Example: For the logspline density estimator the global quadratic is the natural special
case – i.e., the Gaussian model.

Estimation: Let T1, . . . , Tn be random sample from f, F and C1, . . . , Cn be censoring times.

Yi = min(Ti, Ci) is observed

and

δi = I(Ti < Ci) =

{

1 if uncensored
0 if censored

so we have data (Yi, δi). Recall that the loglikelihood can be written as

ℓ(θ) =
∑

ϕ(yi, δi, θ)

where ϕ(yi, 1, θ) = log f(yi, θ) and ϕ(yi, 0, θ) = log(1−F (yi, θ)), again it can be shown that the
ℓ is concave. So we have a relatively easy mle problem.

Adding Regressors To add covariates we need, simply, to make f(t|x), h(t|x), etc conditional
on a vector of covariates x. So now e.g.,

λ(t|x, β) =
p

∑

j=1

βjBj(t|x)
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and one can proceed as before if we give some structure to the basis functions {Bj}. Note if
Bj’s are all additively separable in t and x, we get the Cox proportional hazard (PH) model.
Otherwise we get a non-PH model.

Kooperberg and Stone use linear splines and their tensor products (ineractions) to specify
the {Bj}’s. So

K0 ≥ 1 tk : 1 ≤ k ≤ K0

B0k(t) = (tk − t)+ 1 ≤ k ≤ K0

t+ = max(0, t).

Km ≥ −1

B0m(xm) = xm Km = 0

Bkm(xmk) = (xm − xmk)+ 1 ≤ k ≤ Km

And form the basis as tensor product of these functions. This all has a nice exponential family
interpretation, see Barron and Sheu (1991) for more details on the density case and Stone (1997)
a complete treatment.

Kooperberg & Stone (1991). Comp Stat & Data Anal, pp. 327-347.

Kooperberg & Stone (1992). Logspline density estimation for censored data, Journal of Com-

putational and Graphical Statistics, 301-328.

Barron & Sheu (1991). Approximation of Densities by Sequence of exp-families. Annals of Stat,
1347-1349.

Hastie and Tibshirani(1990). Generalized Additive Models, Chapman-Hall.

Stone, C., M.H. Hansen, C. Kooperberg and Y.K. Troung (1997). Polynomial splines and their
tensor products in extended linear modeling: 1994 Wald lecture (with discussion), Annals
of Stat, 25, 1371-1470.
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