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Lecture 17
“Smoothing Things Over: Some Notes
on Cross-Validated Smoothing Splines”

1. In which we narrow the topic

We will consider the simplest Gaussian non-parametric regression problem, i.e.,

yi = g(xi) + ui i = 1, . . . , n (1.1)

where {xi} is a know sequence of scalars in [0, 1] g is unknown, but pleasantly smooth
function, and {ui} are independent and identically distributed Gaussian random variables.
Our task is to produce a credible estimate of g on [0, 1].

A nice approach to this problem is offered by Reinsch (1967) who suggests solving

min
g∈G

n∑
i=1

(yi − g(xi))
2 + λ

∫ 1

0
(g′′(x))2dx (1.2)

where G = {g|g, g′ absolutely continuous, and g′′ ∈ L2[0, 1]}. (This is a Sobelev space.)
Evidently, this approach balances a desire for the estimate to exhibit some fidelity-to-
the-data represented by the first term, while achieving a reasonable degree of smoothness
expressed by the second term. The parameter λ controls the significance attached to the
roughness penalty. As λ → ∞, g is required to approach linearity and thus the solution
approaches the least squares solution to a bivariate linear model.

2. In which we review what you may already know

The solution to the problem posed in (1.2) is a cubic smoothing spline. See Reinsch (1967)
or DeBoor (1978) for discussions in the “How to” spirit of the present exposition. See
Wahba (1978) for a beautiful treatment from a somewhat Bayesian (Reproducing Kernel
Hilbert Space) point of view.

A cubic spline is a piecewise cubic polynomial: a function with continuous first and second
derivatives, whose third derivative may take discrete jumps at designated points, called
knots, or breakpoints. Since the function is cubic in each subinterval all higher order
derivatives (than the third) vanish. Why? Because the Euler condition for the solution to
(1.2) says,

(yi − g(xi))δxi(x) +
d2

dx2
g′′(x) = 0 (2.1)

which implies that ψ′′′′(x) = 0 for almost all x ∈ [0, 1]. Thus a solution takes the form

ĝ(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

for x ∈ [xi, xi+1) and i = 1, . . . n− 1. The following counting exercise may serve to clarify
the essentially finite dimensional nature of the estimate ĝ. We have 4(n − 1) unknown
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coefficients in the previous expression, and if we wish to extend ĝ beyond x(1) and x(n)
we have another 4 parameters, say, a0, b0, an, bn. Note that the c’s and d’s in these outer
regions are zero; were they not, the roughness penalty could be reduced without disturbing
the value of the first term in the objective function. Now at each of the design points, xi,
we have 3 linear continuity restrictions on the coefficients, so we are left with a problem
in n parameters.

Following Reinsch and DeBoor we may express the objective function as

(y − a)′(y − a) + λc′Rc (2.3)

where a = (ai, . . . , an), c = (c2, . . . , cn−1), and R is a (n − 2)2 tridiagonal matrix with
entries rii = 2(hi + hi+1)/3, ri,i+1 = ri+1,i = hi+1/3, and hi = xi+1 − xi. We will assume
that the observations are ordered so that 0 ≤ x1 < x2 < . . . < xn ≤ 1. The continuity
restrictions imply that

Rc = Q′a (2.4)

where Q is a n × (n − 2) tridiagonal matrix with entries qi,i+1 = 1/hi+1, qi+1,i = 1/hi+1,
and qii = −(1/hi + 1/hi+1). Thus we may write (2.3) as,

(y − a)′(y − a) + λa′QR−1Q′a (2.5)

This is obviously a garden-variety, finite-dimensional, quadratic optimization problem with
solution,

a = (I + λQR−1Q′)−1y (2.6)

Premultiplying (I + λQR−1Q′)a = y by Q′ and using (2.4) gives,

c = (R+ λQ′Q)−1Q′y

and we may write,

a = y + λQc

= (I + λQ(R+ λQ′Q)−1Q′)y

= A(λ)y. (2.7)

Note that (2.7) is preferable to (2.6) since linear system to be solved has a simpler banded
structure.

Given the a’s it is a simple matter to compute the b’s, c’s, and d’s. In R everything is
handled nicely with the function smooth.spline.

The question remains how should we choose λ? Ideally we would minimize,

R(λ) = n−1E ‖ g − ĝ ‖2= n−1 ‖ (I −A)g ‖2 +
σ2

n
Tr(A)2 (2.8)

but this is unrealistic since g is unknown. A possible approach if σ2 is known would be to
minimize,

R̂(λ) = n−1 ‖ (I −A(λ))y ‖2 −σ
2

n
[Tr(I −A)2 − TrA2]

= n−1 ‖ (I −A)y ‖2 +
2σ2

n
TrA− σ2 (2.9)
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This yields a version of Mallow’s Cp criterion. A natural alternative for unknown σ2 is to
minimize the cross-validation criterion,

V (λ) = n−1
n∑

i=1

(yi − ĝ(i)(xi))2 (2.10)

where ĝ(i) is the estimate of g omitting the ith observation. It is well known, see for
example Efron (1982) that,

V (λ) = n−1
n∑

i=1

(yi − ĝ(xi))
2/(1−Aii(λ))2. (2.11)

Craven and Wahba (1978) suggest that instead one should minimize

V (λ) =
n−1 ‖ (I −A)y ‖2

(n−1Tr(I −A))2
(2.12)

This is a variant of the cross-validation approach in which the quantities in the denominator
of (2.11) are replaced by their sample average. They call it generalized cross-validation,
or GCV.

3. In which we interpret GCV and suggest a modification

For convenience we will work with the reciprocal of λ, say µ, so (2.6) becomes,

a = A(µ)y = (I −Q(µR+Q′Q)−1Q′)y. (3.1)

Modifying V (λ) accordingly, and taking the logarithm of its square-root we have,

ν(µ) = log(σ̂(µ))− log(1− n−1TrA(µ)) (3.2)

where σ̂2 = n−1 ‖ (I − A(µ))y ‖2. Now A(µ) plays the role of the “hat” matrix in the
theory of linear regression. In the present case TrA(µ) varies from 2, when µ = 0 to n as
µ→∞. Thus k(µ) = TrA(µ) may be interpreted, loosely, as the “effective dimensionality”
of the estimate ĝ. As long as this is small relative to the sample size, n, we have the
approximation,

ν(µ) ' log(σ̂(µ)) + n−1k(µ) (3.3)

which is simply an “interpretation” of Akaike’s (1974) information criterion for the present
context. A similar point was made by Stone (1977), and Terasvirta (1985) has also empha-
sized the close relationship between smoothing and model selection. This interpretation
immediately suggests several modifications of the dimensionality penalty in accordance
with the proposals of Schwartz (1978) and others.

To motivate such modifications, I would like to reconsider an example from Craven and
Wahba (1979). We have exactly the model of (1.1) with g chosen to be a mixture of beta
density functions illustrated in Figure 1 by the solid line, and given by,

g(x) =
n∑

i=1

wiβpj ,qj (x)
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Figure 1: The Cubic Smoothing Spline: The figure illustrates an example from Craven and
Wahba (1979) fitting n = 49 observations. Three fitted curves are superimposed on the observed
points corresponding to effective dimension of the model: 3, 10 and 30.

with w = (.5, .2, .3), p = (10, 20, 30), q = (30, 20, 10), u ∼ N (0, σ2), σ2 = .01, and n = 50.
The design points are equally spaced on [0, 1]. The y observations plotted in Figure 1 were
generated by adding normal noise with σ = .1 to g(xi), as in Figure 2, Example III of
Craven and Wahba.

In Figure 2 we offer three distinct replications of this example of Craven and Wahba. We
plot three functions for each replication, (i.) the true mean-squared-error function, (ii.)
ν(µ) as defined in (3.2) above, and (iii.) ν∗(µ) which is identical to ν(µ) except that we have
multiplied the dimensionality penalty by 1.5. These curves are designated: mse, gcv, bic
respectively. The horizontal axis represents the effective dimension of the fitted function,
Trace(A(µ), rather than µ itself. This number is somewhat easier to interpret since it
must vary from 2 to n. There are several possible rationalizations for the factor 1.5. My
initial view was simply to replace the first term mle of σ2 by the corresponding unbiased
estimator, however, a more cogent argument may be that 1.5 happens to fall between
the numbers 1/2 log(50) ' 1.95 and log log 50 ' 1.36 suggested by Schwarz (1987) and
Hannan and Quinn (1979) respectively for the conventional model selection problem. In
Figure 2 we can see that the true mse function has a minimum at about dimension 20 in
all three realizations. The bic curves are also minimized at roughly the same value. In the
third panel of the figure the gcv criteria also has a distinct minimum at about dimension
20. However, in the middle panel we discern only a slight upward tendency in the curve
beyond dimension 20. In the first panel the gcv curve declines over the entire range and
this produces an estimate of the fitted function that is “as rough as possible” interpolating
every point. This seems to be characteristic of the gcv criteria – in a small proportion of
cases it fails quite dramatically, yielding a λ that is zero. This suggests that alternative
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Figure 2: λ-Selection for Smoothing Splines

criteria that assign more weight to the penalty may be preferable. Note that in these
examples at least the modified gcv criteria performs quite reasonably.

Finally, I would like to emphasize that the three figures appearing above constitute a very
small sample and considerable further work would be needed to draw any very convincing
conclusions. Repeating this exercise one sees that GCV fails in around five percent of cases,
this is not terrible, but it isn’t exactly encouraging either. An excellent recent reference
on related smoothing problems is Wood (2006).

Since these notes were originally written the appearance of Hastie and Tibshirani (1990)
and Green and Silverman (1994) have rendered them nearly superfluous.

GCV and SURE

Li (1985) established a nice connection betweenWahba’s GCV and Stein’s unbiased risk
estimator (SURE) which we will now briefly describe. Consider a general model

yi = µi + εi

with associated linear estimator
µ̂(λ) = A(λ)y

encompassing many situations including classical least squares regression and spline smooth-
ing.
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The GCV criterion is

GCV(λ) =
n−1 ‖ y − µ̂(λ) ‖2

(1− n−1 Tr A(λ))2

In regression, we can interpret λ as controlling the dimension of the parameter β, say p,
and then Tr A(λ) = p, so we have the criteria

GCV(λ) =
σ̂2(p)

(1− p/n)2

As we have already noted, if we take logs and approximate the denominator we obtain

log
√

GCV(λ) ≈ log σ̂ − p/n

which is the AIC criterion.

Stein (1981) showed that for Gaussian εi and squared error loss on µ, the estimator

µ̃(λ) = y −
[

σ2

y′B(λ)y

]
M(λ)y

dominates y and µ̂. Here M(λ) = I −A(λ) and

B(λ) = (Tr M(λ)I − 2M(λ))−1M(λ)2

The factor in square brackets is called the “shrinkage factor”, since if it were 1, µ̃ would
reduce to µ̂, whereas when it is less than 1 we can interpret µ̃ as a compromise between µ̂
and y,

ũ = (1− v)y + vµ̂.

where v denotes the scalar shrinkage factor.

Stein showed that

SURE(λ) = σ2 − σ4 ‖M(λ)y ‖2

n(y′B(λ)y)2

is an unbiased estimate for the risk of µ̃(λ), that is

E SURE(λ) = En−1 ‖ µ− µ̃(λ) ‖2

for any µ ∈ Rn, so to select a good λ it is natural to minimize SURE. This is obviously
equivalent to minimizing

S(λ) =
n(y′B(λ)y)2

‖M(λ)y ‖2

Now, in the same spirit as the AIC approximation, for n sufficiently large and M(λ)
balanced so its largest eigenvalue is small compared to its trace, we can approximate B(λ)
by (Tr M(λ))−1M2(λ) and then
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S(λ) ≈ n(Tr M(λ))−2 ‖M(λ)y ‖4

‖M(λ)y ‖2

=
‖M(λ)y ‖2

n−1(Tr M(λ))2

= GCV (λ).
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